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Adaptive variance reduction techniques in
finance

Benjamin Jourdain

Abstract. This paper gives an overview of adaptive variance reduction techniques recently devel-
oped for financial applications. More precisely, we explain how information available in the random
drawings made to compute the expectation of interest may be used at the same time to optimize
control variates, importance sampling or stratified sampling.

Key words. Variance reduction techniques, control variates, importance sampling,stratification,
sample average optimization

AMS classification.65C05 90C15 91-08

Introduction

In mathematical finance, the price of a European option is expressed asthe expecta-
tion under the risk neutral probability measure of the discounted payoff of the option.
Sensitivities of the price with respect to various parameters, the so-calledgreeks, and
in particular the delta which is of paramount importance for hedging purposes, may
also be expressed as expectations. The simplest and most natural numerical approach
to compute these expectations, the Monte Carlo method, is widely used in banks. Ac-
cording to the central limit theorem, the precision of the empirical mean approximation
of the expectation of a random variable is proportional to the standard deviation of this
variable. Variance reduction techniques aim at improving this precision bycomputing
the empirical mean of independent copies of a random variable with the same expecta-
tion as the original one but with a lower variance. These techniques may beclassified
into two categories :

• the ones which guarantee that the variance of the new variable will be lowerthan
the variance of the original one : antithetic variables and conditioning. In general,
the variance reduction ratio obtained with these techniques is not very large.

• the ones which may lead to a more significant variance reduction ratio but may
also increase the variance depending on whether they are properly implemented :
control variates and importance sampling.

Stratified sampling is at the boundary between these two classes : when the allocation
of the random drawings into the strata is made proportionally to their probabilities,
variance reduction is guaranteed. Nevertheless, to improve efficiency, one should try
other allocation rules but then the variance may increase.

This research benefited from the support of the French National Research Agency (ANR) under the program
ANR-05-BLAN-0299 and of the “Chair Risques Financiers”, Fondation du Risque
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Adaptive methods have been developed to ensure a proper implementation of the
second category of variance reduction techniques : information available in the ran-
dom drawings made to compute the expectation of interest is used to optimize the
variance reduction technique at the same time. In general, they save computation time
in comparison to their more natural and earlier investigated alternative : optimize the
variance reduction technique on a first pilot set of random drawings and then compute
the empirical mean of the resulting random variable on a second set of independent
drawings. Such two stages procedures lead to unbiased estimators whereas, in general,
adaptive estimators are only asymptotically unbiased.

Sections 2, 3 and 4 are respectively devoted to adaptive control variates, adaptive
importance sampling and adaptive stratified sampling. Since we are interested in finan-
cial applications, we will pay in what follows particular attention to the computation of
E(f(G)) whereG is a standardd-dimensional normal random vector andf : R

d → R.
Indeed, the price and hedging ratios of European options written on underlying assets
evolving according to a multi-dimensional Black Scholes model may be expressed in
this way. When the underlyings evolve according to a more general stochastic dif-
ferential equation, Euler discretization of this equation leads to approximations of the
price and hedging ratios by expectations of the previous form, for a possibly high di-
mensional normal vectorG and a complicated functionf . Notice that in the present
volume, Giles and Waterhouse [11] present an interesting multilevel path simulation
technique which enables to reduce the time-discretization bias by computing the ex-
pectation corresponding to a refined time-grid. In order to reduce the computation time
necessary to obtain a balanced statistical error, they suggest to combineresults using
different time-steps numbers. In the end, their method consists in computing E(f(G))
for an even higher-dimensional and more complicated functionf than the one derived
from standard Euler discretization.

0.1 Adaptive control variates

Let us first illustrate the basic ideas of adaptive variance reduction on thesimple exam-
ple of linearly parametrized control variates (see for instace [21], [24] or Section 4.1 in
[12]) before dealing with general parametrization.

0.1.1 Linearly parametrized control variates

Suppose that we want to compute the expectationE(Y ) of a real random variableY
and thatZ = (Z1, . . . , Zd)∗ is a relatedRd-valued centered random vector withY and
Z both square-integrable. We also assume, up to removing some coordinates ofZ,
that the covariance matrixCov(Z) of Z is non-singular and we denote byCov(Y,Z) =
E(Y Z) the covariance betweenY andZ . In finance, typicallyY = e−rT f(X1

T , . . . ,Xd
T )

wheref is the payoff of a European option with maturityT written ond underlying as-
setsX1, . . . ,Xd with respective initial pricesx1, . . . , xd and since the discounted price
of each asset is a martingale under the risk neutral measure, one may choose

Z = (X1
T − erT x1, . . . ,Xd

T − erT xd)∗.
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Forθ ∈ R
d, sinceE(Y −θ.Z) = E(Y ), one may approximate the expectation of interest

E(Y ) by the empirical meanMn(θ)
def
= 1

n

∑n
j=1(Yj − θ.Zj) where((Yj , Zj))j≥1 are

independent copies of(Y,Z). The classical estimator1
n

∑n
j=1 Yj corresponds to the

choiceθ = 0. The variance ofMn(θ), equal tov(θ)
n

where

v(θ)
def
= Var(Y − θ.Z) = Var(Y ) − 2θ.Cov(Y,Z) + θ.Cov(Z)θ,

is minimal forθ⋆ = Cov(Z)−1Cov(Y,Z). Of course, whenE(Y ) is unknown, so isθ⋆.
But one may estimate the covariancesCov(Z) andCov(Y,Z), respectively, by

Cn
def
=

1

n

n∑

j=1

ZjZ
∗
j −



 1

n

n∑

j=1

Zj







 1

n

n∑

j=1

Z∗
j





andDn
def
=

1

n

n∑

j=1

YjZj −



 1

n

n∑

j=1

Yj







 1

n

n∑

j=1

Zj



 .

Let N be the smallest indexn such that no strict affine subspace ofR
d contains

{Z1, . . . , Zn}. SinceCov(Z) is non-singular,N is a.s. finite. MoreoverCn is non-
singular if and only ifn ≥ N . Forn ≥ N , one may approximateθ⋆ by the estimator

θn
def
= C−1

n Dn which converges a.s. toθ⋆ whenn → ∞. The derived adaptive control
variate estimatorMn(θn) = 1

n

∑n
j=1(Yj − θn.Zj) of E(Y ) is biased in general (but not

when(Y,Z) is a Gaussian vector or more generally whenE(Y |Z) = E(Y ) + θ⋆.Z).
Nevertheless,Mn(θn) is a.s. convergent toE(Y ). Moreover, writing

√
n(Mn(θn) − E(Y )) =

(
1

θn

)
.

1√
n

n∑

j=1

(
Yj − E(Y )

Zj

)
,

one deduces from the central limit theorem governing the convergencein law of the
second term in the product and Slutsky’s theorem thatMn(θn) is asymptotically normal
with optimal asymptotic variancev(θ⋆). To sum up,

Proposition 0.1 The vector(θn,Mn(θn)) converges a.s. to(θ⋆, E(Y )) and

√
n(Mn(θn) − E(Y ))

L→ N1(0, v(θ⋆)).

Variance reduction is guaranteed in the limit sincev(θ⋆) ≤ v(0) = Var(Y ), the in-
equality being an equality only whenY andZ are uncorrelated. Whenv(θ⋆) = 0 i.e.
whenY = E(Y ) + θ⋆.Z then for alln ≥ N , θn = θ⋆ andMn(θn) = E(Y ) (see [19]).
This situation is not likely to occur in financial applications but an example in thecon-
text of Markov chains is given in [14] which also discusses the asymptoticproperties
of other adaptive estimators ofE(Y ).

One could also approximateE(Y ) by the unbiased estimatorMn(θ̃m) with

θ̃m =

(
m∑

k=1

Z̃kZ̃∗
k − 1

m

m∑

k=1

Z̃k

m∑

k=1

Z̃∗
k

)−1( m∑

k=1

ỸkZ̃k − 1

m

m∑

k=1

Ỹk

m∑

k=1

Z̃k

)
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where((Ỹk, Z̃k))k≥1 are i.i.d. copies of(Y,Z) independent of((Yj , Zj))j≥1. This is an
example of the two stages procedure mentioned in the introduction. But it is apity not
to use the drawings((Ỹk, Z̃k))1≤k≤m made to computẽθm also in the computation of
the expectation of interest.
Let us finally mention thatθn introduced above as a sample average approximation
of the optimal parameterθ⋆ also has another interpretation. The vectorθn minimizes

the sample approximationvn(θ) = 1
n

∑n
j=1(Yj − θ.Zj)

2 −
(

1
n

∑n
j=1(Yj − θ.Zj)

)2

of v(θ). For more complex variance reduction techniques involving a parameter, no
explicit expression of the optimal parameterθ⋆ is in general available. So defining
θn as an estimator ofθ⋆ is no longer possible. But the alternative definition ofθn as
the parameter minimizing the sample average approximation of the varianceremains
possible. We will see applications to generally parametrized control variates in the next
paragraph and to importance sampling for normal random vectors in Section 0.2.

0.1.2 General parametrization

General parametrization of control variates for the computation of the expectation
E(Y ) of a square-integrable random variableY is addressed by Kim and Henderson
[19, 20]. LetΘ ⊂ U ⊂ R

p with Θ compact andU bounded open,Z be ad-dimensional
random vector related toY , h : U × R

d 7→ R be such that

∀θ ∈ U, E(h2(θ, Z)) < +∞ andE(h(θ, Z)) = 0,

and((Yj , Zj))j≥1 be a sequence of independent copies of(Y,Z).

For anyθ ∈ U , Mn(θ)
def
= 1

n

∑n
j=1(Yj − h(θ, Zj)) is an unbiased and a.s. convergent

estimator of the expectation of interestE(Y ). MoreoverVar(Mn(θ)) = v(θ)
n

where

v(θ)
def
= Var(Y − h(θ, Z)).

Let m ≥ 2. When for allz ∈ R
d, U ∋ θ 7→ h(θ, z) is C1, the unbiased estimator

1
m−1

∑m
j=1(Yj−h(θ, Zj)−Mm(θ))2 of v(θ) is differentiable onU with respect toθ with

gradient equal to 2
m−1

∑m
j=1(Yj−h(θ, Zj)−Mm(θ))∇θ

[
h(θ, Zj) − 1

m

∑m
k=1 h(θ, Zk)

]
.

Let (γl)l≥0 be a sequence of positive steps such that
∑

l γl = ∞ and
∑

l γ
2
l < ∞.

Starting fromθ0 ∈ Θ, Kim and Henderson [19, 20] suggest to optimizev(θ) with
respect toθ using the following gradient-based stochastic approximation procedure :






Al+1 = 1
m

∑(l+1)m
j=lm+1(Yj − h(θl, Zj))

θl+1 = ΠΘ

(
θl − 2γl

m−1

∑(l+1)m
j=lm+1(Yj − h(θl, Zj) − Al+1)

×∇θ

[
h(θ, Zj) − 1

m

∑(l+1)m
k=lm+1 h(θl, Zk)

] ∣∣∣∣
θ=θl

)

whereΠΘ denotes a projection of points outsideΘ back intoΘ. Using the law of
large numbers and the central limit theorem for martingales, they study theasymptotic

behaviour of the associated estimatorµk
def
= 1

k

∑k
l=1 Al of E(Y ).
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Theorem 0.2 Assume that for allz ∈ R
d, U ∋ θ 7→ h(θ, z) is C1 and that

E

(
sup
θ∈U

|∇θ(θ, Z)|
(

1 + sup
θ∈U

|Y − h(θ, Z)|
))

< +∞.

Thenµk converges a.s. toE(Y ) ask → ∞. If moreoverθk converges a.s. to a random

variableθ∞, then
√

km(µk −E(Y ))
L→
√

v(θ∞) ×G whereG ∼ N1(0, 1) is indepen-
dent fromθ∞ and 1

k(m−1)

∑k
l=1

∑lm
j=(l−1)m+1(Yj − h(θl−1, Zj) − Al)

2 converges a.s.
to v(θ∞).
Last, ifΘ is a box i.e.Θ =

∏p
i=1[ai, bi] and∃θ0 ∈ Θ such that

E

(
Y 4 + sup

θ∈U

|∇θ(θ, Z)|4 + h4(θ0, Z)

)
< +∞,

then the distance ofθk to the setS of first order critical points ofv onΘ converges a.s.
to 0 and, whenS is discrete,θk converges a.s. to anS-valued random variableθ∞.

Kim and Henderson also study in [19, 20] the estimatorMn(θ̃m) obtained by a two
stages procedures wherẽθm is obtained as a first order critical point of the sample
average estimator of the variance1

m−1

∑m
k=1(Ỹk−h(θ, Z̃k)− 1

m

∑m
j=1(Ỹj−h(θ, Z̃j)))

2

computed on a sequence((Ỹk, Z̃k))k≥1 of independent copies of(Y,Z) independent
from ((Yj , Zj))j≥1.

In [20], the behaviour of both estimators is illustrated on the example of the pricing
of barrier options.

0.2 Importance sampling for normal random vectors

Adaptive importance sampling techniques have been developed to approximate mul-
tidimensional integrals over the unit hypercube (see [25] and the reference therein)
or in the context of Markov chains (see for instance [3] [8]). But research on this
topic in view of financial applications was centered on normal random vectors due to
the importance of this specific case for models given by stochastic differential equa-
tions. That is why the present section is devoted to the computation ofE(f(G)) where
G is distributed according to the standardd-dimensional normal lawNd(0, Id) and
f : R

d → R.
We assume that

P(f(G) 6= 0) > 0 and∀θ ∈ R
d, E(f2(G)e−θ.G) < +∞. (0.1)

The second hypothesis is implied for instance by the existence of a finite moment of
order2 + ε with ε > 0 for |f(G)|. Let (Gj)j≥1 be i.i.d. copies ofG. Forθ ∈ R

d, since

E

(
f(G + θ)e−θ.G− |θ|2

2

)
= E(f(G)), (0.2)
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Mn(θ)
def
= 1

n

∑n
j=1 f(Gj + θ)e−θ.Gj− |θ|2

2 is an a.s. convergent and asymptotically

normal estimator ofE(f(G)) with varianceVar(Mn(θ)) = v(θ)−E
2(f(G))
n

, where

v(θ)
def
= E

(
f2(G + θ)e−2θ.G−|θ|2

)
= E

(
f2(G + θ)e−θ.(G+θ)+

|θ|2

2 e−θ.G− |θ|2

2

)

= E

(
f2(G)e−θ.G+

|θ|2

2

)
. (0.3)

Notice that the translated normal variableG+θ has the densitypθ(x) = (2π)−
d
2 e−

|x−θ|2

2

and that the importance sampling ratiop0

pθ
(G + θ) = e−θ.G− |θ|2

2 appears as a factor in
the left-hand-side of (0.2). The interest of the class of importance sampling estimators
Mn(θ) parametrized by the translation vectorθ ∈ R

d is that a very simple analytic
mapping (addition ofθ) permits to transform an i.i.d. sample of the standard normal
lawNd(0, Id) into an i.i.d. sample ofNd(θ, Id) . This feature is particularly convenient
to compute and study adaptive estimators in which the parameter evolves during the
simulation.

Under (0.1) the functionv is

1. C∞ with derivatives obtained by differentiation under the expectation (0.3) :

∇θv
f (θ) = E

(
(θ − G)f2(G)e−θ.G+

|θ|2

2

)

∇2
θv

f (θ) = E

(
(Id + (θ − G)(θ − G)∗)f2(G)e−θ.G+

|θ|2

2

)
.

2. strongly convex.

Therefore

∃!θ⋆ ∈ R
d : v(θ⋆) = inf

θ∈Rd
v(θ).

This suggests to approximateE(f(G)) by Mn(θ⋆) but θ⋆ is unknown. Unlike in the
analogous example of linear control variates developed in Section 0.1, no explicit ex-
pression is available forθ⋆. Methods aimed at approximatingθ⋆ have been developed
in the literature. These methods are based

• either on determistic optimization : in [13], the authors suggest to chooseθ max-
imizing R

d ∋ x 7→ log |f(x)| − |x|2
2 and justify this approximation by a large

deviations asymptotics.

• or on stochastic optimization procedures analogous to the ones presentedin Sec-
tion 0.1.2 : gradient-based stochastic approximation ([27] [26]), adaptive Robbins-
Monro procedures [2, 1, 16, 23], robust optimization of the sample average ap-
proximation ofv by Newton’s algorithm [15].

Let us now describe those stochastic optimization procedures more precisely.
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0.2.1 Gradient based stochastic approximation and adaptive Robbins-Monro al-
gorithms

In [27] and [26], the authors suggest to minimizev(θ) over a compact convex subset
Θ of R

d by the following iterative procedure using an integerm ∈ N
∗, a sequence

(G̃k)k≥1 of independent copies ofG (possibly equal to(Gj)j≥1) and a sequence of
positive steps(γl)l≥0 s.t.

∑
l γl = ∞ and

∑
l γ

2
l < ∞ :

• start withθ0 ∈ Θ,

• at stepl ≥ 0 computegl = 1
m

∑(l+1)m
lm+1 (θl − G̃k)f2(G̃k)e−θl.G̃k+

|θl|
2

2 approxi-
mating∇θv(θl), then defineθl+1 as the projectionθl − γlgl onΘ.

Proposition 0.3 Under(0.1), the sequence(θl)l≥1 converges a.s. to the uniqueθΘ ∈ Θ
such thatv(θΘ) = infθ∈Θ v(θ).

The papers [27, 26] do not deal with asymptotic properties of the estimators Mn(θl)
asn, l → ∞. These questions are adressed by Arouna [2, 1] who also gets rid of the
compactΘ. More precisely, he obtains a sequence(θn)n≥1 adapted to the filtration
(σ(G1, . . . , Gn))n≥1 by stabilizing the Robbins-Monro algorithm corresponding to the
choicem = 1 and(G̃k)k≥1 = (Gj)j≥1 with Chen’s projection technique [6, 5]. Let
θ0 ∈ R

d, σ0 = 0 and(sn)n≥0 be an increasing sequence of positive numbers tending
to infinity with n and s.t.s0 ≥ |θ0|. The sequence(θn, σn) is defined inductively by

∀n ∈ N,






θn+ 1
2

= θn − γn(θn − Gn+1)f
2(Gn+1)e

−θn.Gn+1+
|θn|2

2

if |θn+ 1
2
| ≤ sσn

thenθn+1 = θn+ 1
2

andσn+1 = σn

if |θn+ 1
2
| > sσn

thenθn+1 = θ0 andσn+1 = σn + 1

.

Hereσn is the number of projections made during then first iterations.

Theorem 0.4 Under (0.1), the total number of projectionslimn→∞ σn is finite andθn

converges a.s. toθ⋆ asn → ∞.
If moreoverE(f4+ε(G)) < +∞, then asn → ∞,
(

Mn

Sn

)
def
=

1

n

n∑

j=1

(
f(Gj + θj−1)e

−θj−1.Gj−
|θj−1|2

2

f2(Gj + θj−1)e
−2θj−1.Gj−|θj−1|2

)
a.s.−→

(
E(f(G))

v(θ⋆)

)
,

and
√

n(Mn − E(f(G)))
L−→ N1(0, v(θ∗) − E

2(f(G))).

As a consequence,
√

n
Sn−M2

n
(Mn −E(f(G)))

L−→ N1(0, 1) which enables to construct

confidence intervals for the expectation of interestE(f(G)). The first statement fol-
lows from the verifiable sufficient conditions given by Lelong [22] for the convergence
of randomly truncated stochastic algorithms. Originally, Arouna [2] checked the a.s.
convergence ofθn to θ⋆ only under some explicit restrictive growth assumption on the
sequence(sn)n. In [1], remarking that

E

(
f(Gn + θn−1)e

−θn−1.Gn− |θn−1|2

2

∣∣∣∣σ(G1, . . . , Gn−1)

)
= E(f(G)),
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he derived the second statement using the law of large numbers and the central limit
theorem for martingales

The previous algorithm takes advantage of the characterization ofθ⋆ as the unique

root of the equationE
(
(θ − G)f2(G)e−θ.G+

|θ|2

2

)
= 0. Remarking that for allθ ∈ R

d,

E

(
(θ − G)f2(G)e−θ.G+

|θ|2

2

)
= e|θ|

2

E
(
(2θ − G)f2(G − θ)

)
, Lemaire and Pag̀es [23]

characterizeθ⋆ as the unique root ofE
(
(2θ − G)f2(G − θ)

)
= 0. When

∃c, α > 0, ∃β ∈ [0, 2), ∀x ∈ R
d, |f(x)| ≤ ceα|x|β

then the Robbins-Monro procedure

∀n ∈ N, θn+1 = θn − γne−2βα|θn|β (2θn − Gn+1)f
2(Gn+1 − θn)

is stable without projections and Theorem 0.4 still holds with this new definition for
the sequence(θn)n≥1. In particular, whenf is bounded,α may be chosen equal to0
and the factore−2βα|θn|β is then equal to1.

In [16], Kawai combines importance sampling with control variates remarking that
for θ, λ ∈ R

d, the expectation and variance of the random variable

[f(G + θ) − λ.(G + θ)]e−θ.G− |θ|2

2

are respectively equal toE(f(G)) andv(θ, λ) − E
2(f(G)) where

v(θ, λ)
def
= E

(
(f(G) − λ.G)2e−θ.G+

|θ|2

2

)
.

The functionv is strictly convex inθ for fixedλ and strictly convex inλ for fixedθ. Let
g(θ) (resp.h(λ)) denote the unique vector inRd s.t.v(θ, g(θ)) = infλ∈Rd v(θ, λ) (resp.
v(h(λ), λ) = infθ∈Rd v(θ, λ)). According to Kawai [16], the functionsv(θ, g(θ)) and
v(h(λ), λ) are still strictly convex (but the proof of this statement does not seem correct)
and there exists a uniqueθ⋆ ∈ R

d (resp.λ⋆ ∈ R
d) s.t.v(θ⋆, g(θ⋆)) = infθ∈Rd v(θ, g(θ))

(resp.v(h(λ⋆), λ⋆) = infλ∈Rd v(h(λ), λ)). He proposes for(θn, λn) a two-scale Rob-
bins Monro procedure with Chen’s projection technique and increment



 −γn(θn − Gn+1)(f(Gn+1) − λn.Gn+1)
2e−θn.Gn+1+

|θn|2

2

2γ̃n(f(Gn+1) − λn.Gn+1)Gn+1e
−θn.Gn+1+

|θn|2

2



 ,

where γ̃n is another sequence of positive steps s.t.
∑

n γ̃n = +∞ and
∑

n γ̃2
n <

+∞. The sequence(θn, λn) converges a.s. to(θ⋆, g(θ⋆)) or (h(λ⋆), λ⋆) depending
on whetherlimn→∞

γn

γ̃n
is equal to0 or +∞. Moereover the analogue of Theorem 0.4

holds in this setting, the estimator ofE(f(G)) being defined as

Mn =
1

n

n∑

j=1

[f(G + θj−1) − λj−1.(G + θj−1)]e
−θj−1.Gj−

|θj−1|2

2 .
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In [17], Kawai adapts the previous algorithm when the Gaussian randomvector
G is replaced by an infinitely divisible random vector (stochastic approximation by
Robbins-Monro procedures of the parameterθ only is treated in [18]). In finance,
problems involving such vectors arise for instance when the Brownian motion driving
continuous time models is replaced by a Lévy process. Kawai pays particular attention
to the case of independent gamma distributed components. This particulardistribution
has the following nice property: after the exponential change of measure (also called
Esscher transform) considered in the present section, the law of a gamma random vari-
able is the same as the law of this random variable multiplied by a constant under
the original probability measure. In comparison with the Gaussian case, addition is
replaced by multiplication.

Let us finally mention that an adaptive simulated annealing procedure hasbeen re-
cently developed by del Baño Rollin and Ĺazaro-Caḿı [7] to optimize antithetic vari-
ates. More precisely, using appropriate coordinates on the orthogonalgroup, the au-
thors propose a Robbins-Monro procedure with an additional noise to compute a se-
quence(On)n≥1 of orthogonal matrices converging toO⋆ minimizingE(f(G)f(OG))
other all orthogonal matricesO. The additional noise, obtained from a sequence
(G̃j)j≥1 of random vectors i.i.d. according toN (0, Id) independent of(Gj)j≥1, van-
ishes whenn tends to infinity and avoids that the algorithm remains trapped in a critical
point at whichE(f(G)f(OG)) is not minimal. The derived estimator

Mn =
1

4n

n∑

j=1

(
f(Gj) + f(OjGj) + f(G̃j) + f(OjG̃j)

)

of E(f(G)) is then a.s. convergent and asymptotically normal with asymptotic variance
1
4 (Var(f(G)) + Cov(f(G), f(OG))).

0.2.2 Robust sample average optimization

In order to save computation time, we introduce in [15] a parameter reduction. Indeed,
numerical simulations show that, for a model driven by a Brownian motion, it is not
useful to use different parameters for the increments of a single Brownian component.
Let A ∈ R

d×d′

be a matrix with rankd′ ≤ d. We defineτ⋆ as the unique minimizer of
the strongly convex and continuous functionR

d′ ∋ τ 7→ v(Aτ). The sample average
approximation ofv(Aτ) is given byvn(Aτ), where theC∞ function

vn(θ) =
1

n

n∑

j=1

f2(Gj)e
−θ.Gj+

|θ|2

2

is strongly convex as soon asf(Gj) 6= 0 for somej ∈ {1, . . . , n} which holds a.s. for
n large enough by (0.1). The unique minimizerτn of τ 7→ vn(Aτ) is characterized by
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the equality∇τvn(Aτ) = 0, which also writes∇τun(τ) = 0, where

un(τ) =
|Aτ |2

2
+ log




n∑

j=1

f2(Gj)e
−Aτ ·Gj





∇τun(τ) = A∗Aτ −
∑n

j=1 A∗Gjf
2(Gj)e

−Aτ ·Gj

∑n
j=1 f2(Gj)e−Aτ ·Gj

∇2
τun(τ) = A∗A +

∑n
j=1 A∗GjG

∗
jAf2(Gj)e

−Aτ ·Gj

∑n
j=1 f2(Gj)e−Aτ ·Gj

−

(∑n
j=1 A∗Gjf

2(Gj)e
−Aτ ·Gj

)(∑n
j=1 A∗Gjf

2(Gj)e
−Aτ ·Gj

)∗

(∑n
j=1 f2(Gj)e−Aτ ·Gj

)2 .

The lowest eigenvalue of the Hessian matrix∇2
τun is always larger than the one of

A∗A. Thereforeτn can easily and precisely be computed by a few iterations of New-
ton’s algorithm using the above explicit expressions of∇τun and∇2

τun. Notice that
the computation of the gradient and the Hessian ofun is not too time-consuming since
the pointsGi, at which the payoff functionf is evaluated, remain constant during the
optimization procedure.

Convergence ofτn to τ⋆ is a consequence of classical results concerning M-estimators.

Proposition 0.5 1. Under(0.1), τn andvn(Aτn) converge a.s. toτ⋆ andv(Aτ⋆).

2. If moreover∀θ ∈ R
d, E

(
f4(G)e−θ.G

)
< +∞, then

√
n(τn−τ⋆)

L→ Nd′(0, B−1CB−1)

whereB = A∗∇2
θv(Aτ⋆)A andC = Cov

(
A∗(Aτ⋆ − G)f2(G)e−Aτ⋆·G+

|Aτ⋆|2

2

)
.

In [15], we obtain convergence ofMn(Aτn) to the expectationE(f(G)) assuming that
f is continuous and satisfies some growth assumption (see Theorem 0.7 below). When
d′ = 1, continuity may be replaced by a monotonicity assumption introduced in the
next definition.

Definition 0.6 We say that a functionh : R
d → R

• is A-nondecreasing (resp.A-nonincreasing) if

∀x ∈ R
d, τ ∈ R 7→ h(x + Aτ) is nondecreasing (resp. nonincreasing),

• is A-monotonic if it is eitherA-nondecreasing orA-nonincreasing,
• belongs toVA if h may be decomposed as the sum of twoA-monotonic functions

h1 andh2 such that

∃λ > 0, ∃β ∈ [0, 2), ∀x ∈ R, |hi(x)| ≤ λe|x|
β

for i = 1, 2.

Whend = 1, V1 simply consists of functions with finite variation satisfying the pre-
vious growth assumption. The asymptotic properties ofMn(Aτn) stated in the next
theorem are proved in [15].
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Theorem 0.7 Assume(0.1) and thatf admits a decompositionf = f1 + 1{d′=1}f2

with

1. f1 a continuous function s.t.∀M > 0, E

(
sup

|θ|≤M

|f1(G + θ)|
)

< +∞,

2. f2 ∈ VA defined above.

Then, for any deterministic integer-valued sequence(νn)n going to∞ withn, Mn(Aτνn
)

converges a.s. toE(f(G)).
Assume(0.1), ∀θ ∈ R

d, E
(
f4(G)e−θ.G

)
< +∞ and thatf admits a decomposition

f = f1 + f2 + 1{d′=1}f3 with

1. f1 a C1 function s.t.

∀M > 0, E

(
sup

|θ|≤M

|f1(G + θ)| + sup
|θ|≤M

|∇f1(G + θ)|
)

< +∞,

2. ∃α ∈
(
(
√

d′2 + 8d′ − d′)/4, 1
]
, β ∈ [0, 2), λ > 0,

∀x, y ∈ R
d, |f2(x) − f2(y)| ≤ λe|x|

β∨|y|β |x − y|α,

3. f3 ∈ VA.

Then
√

n(Mn(Aτn) − E(f(G)))
L→ N1

(
0, v(Aτ⋆) − E

2(f(G))
)
.

In contrast to the estimatorMn constructed using Robbins-Monro procedures in the
previous section, there is no martingale structure forMn(Aτνn

). This explains why we
need some regularity assumptions on the functionf . Except ford′ = 1, asymptotic
normality with optimal asymptotic variancev(Aτ⋆) − E

2(f(G)) requires more regu-

larity on f than a.s. convergence. Note that
√

d′2+8d′−d′

4 is increasing withd′, equals
1
2 for d′ = 1 and converges to1 asd′ → ∞. Therefore the choiceα = 1 is always
possible forf2. So all the financial payoffs except the discontinuous ones (barrier or
digital options) satisfy the assumption made onf2 to ensure the asymptotic normality
of the adaptive estimatorMn(Aτn). If Var(f(G)) > 0, then the previous results imply
that √

n

vn(Aτn) − M2
n(Aτn)

(Mn(Aτn) − E(f(G)))
L→ N1 (0, 1) ,

and one may easily derive confidence intervals forE(f(G)).
The numerical experiments performed in [15] suggest that strong convergence and

asymptotic normality ofMn(Aτn) still hold under less restrictive assumptions onf
than those stated in the previous theorem.

0.3 Stratified sampling

We are interested in the computation ofc = E(f(X)) whereX is anR
d-valued random

vector andf : R
d → R a measurable function such thatE(f2(X)) < ∞. We suppose
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that (Ai)1≤i≤I is a partition ofRd into I strata such thatpi = P[X ∈ Ai] is known
explicitly for i ∈ {1, . . . , I}. Up to removing some strata, we assume from now on
thatpi is positive for alli ∈ {1, . . . , I}. The stratified Monte-Carlo estimator ofc (see
[12, p.209-235] and the references therein for a detailed presentation) is based on the
equalityE(f(X)) =

∑I
i=1 piE(f(Xi)) whereXi denotes a random variable distributed

according to the conditional law ofX givenX ∈ Ai. Indeed, when the variablesXi

can be simulated, it is possible to estimate each expectation in the right-hand side using
ni i.i.d drawings ofXi. Let n =

∑I
i=1 ni be the total number of drawings (in all the

strata) andqi = ni/n denote the proportion of drawings made in stratumi.
Thenĉ is defined by

ĉ =

I∑

i=1

pi

ni

ni∑

j=1

f(Xi
j) =

1

n

I∑

i=1

pi

qi

qin∑

j=1

f(Xi
j),

where for eachi the Xi
j ’s, 1 ≤ j ≤ ni, are distributed likeXi, and all theXi

j ’s, for
1 ≤ i ≤ I, 1 ≤ j ≤ ni are drawn independently. This stratified sampling estimator can
be implemented for instance whenX is distributed according to the standard normal
law onR

d, Ai = {x ∈ R
d : yi−1 ≤ θ.x < yi} where−∞ = y0 < y1 < . . . < yI−1 <

yI = +∞ andθ ∈ R
d is such that|θ| = 1. Indeed, then one haspi = N(yi) − N(yi−1)

with N(.) denoting the cumulative distribution function of the one-dimensional normal
law and whenU is uniformly distributed on[0, 1] and independent fromX, then

X + (N−1[N(yi−1) + U(N(yi) − N(yi−1))] − θ.X)θ

follows the conditional law ofX givenyi−1 ≤ θ.X < yi.
We haveE(ĉ) = c and

Var(ĉ) =
I∑

i=1

p2
i σ

2
i

ni

=
1

n

I∑

i=1

p2
i σ

2
i

qi

=
1

n

I∑

i=1

(piσi

qi

)2

qi ≥
1

n

( I∑

i=1

piσi

qi

qi

)2

, (0.4)

whereσ2
i = Var(f(Xi)) = Var(f(X)|X ∈ Ai) for all 1 ≤ i ≤ I.

In the sequel, we assumeσi0 > 0 for at least one indexi0.
Let (Xj)j≥1 be i.i.d. drawings ofX. The variance of the crude Monte Carlo estima-

tor 1
n

∑n
j=1 f(Xj) of E(f(X)) is

1

n




I∑

i=1

pi(σ
2
i + E

2(f(Xi))) −
(

I∑

i=1

piE(f(Xi))

)2


 ≥ 1

n

I∑

i=1

piσ
2
i .

For given strata, the stratified estimator achieves variance reduction if theallocations
ni or equivalently the proportionsqi are properly chosen. For instance, for the so-
called proportional allocationq ≡ p, the variance of the stratified estimator is equal
to the previous lower bound of the variance of the crude Monte Carlo estimator. For

theoptimal allocationq⋆
i

def
= piσi/

∑I
j=1 pjσj , 1 ≤ i ≤ I, the lower-bound in (0.4) is

attained. Then

Var(ĉ) =
1

n

( I∑

i=1

piσi

)2 def
=

σ2
⋆

n
.
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In general, when the conditional expectationsE(f(X)|X ∈ Ai) = E(f(Xi)) are
unknown, then so are the conditional variancesσ2

i . Therefore optimal allocation of
the drawings is not feasible at once. One can of course estimate the conditional vari-
ances and the optimal proportions by a first Monte Carlo algorithm and runa second
Monte Carlo procedure with drawings independent from the first one to compute the
stratified estimator corresponding to these estimated proportions. But whynot use the
drawings made in the first Monte Carlo procedure also for the final computation of the
conditional expectations?

Instead of running two successive Monte Carlo procedures, one canthink to obtain
a first estimation of theσi’s, using the first drawings of theXi’s made to compute the
stratified estimator. One could then estimate the optimal allocations before making
further drawings allocated in the strata according to these estimated proportions. One
can next obtain another estimation of theσi’s, compute again the allocations and so
on. This is the principle of the adaptive allocation procedure proposed in [10] and
described in the next section. Then, we will present the adaptive algorithm proposed
in [9] in order to optimize the strata themselves.

0.3.1 Adaptive optimal allocation

Let Nk (resp. Nk
i ) denote the total number of random drawingsXi

j made in all the
strata (resp. in stratumi) at the end of stepk of the following algorithm :

1. At step1, allocate theN1 first drawings in the strata proportionally to thepi and
estimateE(f(Xi)) andσi, 1 ≤ i ≤ I,

2. At the beginning of stepk ≥ 2, compute the vector(n1, . . . , nI) ∈ R
I
+ obtained

by allocating theNk − Nk−1 new drawings

• either proportionally to the estimationspiσ̂
k−1
i /

∑I
l=1 plσ̂

k−1
l of the q⋆

i

available at the end of stepk − 1,
• or in order to minimize the estimated variance

∑I
i=1(piσ̂

k−1
i )2/Nk

i of the
stratified estimator after stepk under the constraints

∑I
i=1 Nk

i = Nk and∀i,
Nk

i ≥ Nk−1
i . The explicit solution of this constrained optimization problem

is given in [10].

Then convert(n1, . . . , nI) to N
I by the following rounding procedure preserving

the sum :nk
i = ⌊∑i

l=1 nl⌋ − ⌊∑i−1
l=1 nl⌋ and allocatenk

i new drawings in stratum
i. Refine the estimationŝck

i andσ̂k
i of E(f(Xi)) andσi using these new drawings.

In fact, one has to modify this algorithm in order to enforce at least one drawing
in each stratum at each step. Indeed, ifσ̂1

i0
= 0 whereasσi0 > 0, then no drawings

are made after stepk = 1 in the stratumi0 and 1
Nk

i0

∑Nk
i0

j=1 f(Xi0
j ) = 1

N1
i0

∑N1
i0

j=1 f(Xi0
j )

does not converges toE(f(Xi0)) whenk → +∞ which prevents the stratified estimator
∑I

i=1
pi

Nk
i

∑Nk
i

j=1 f(Xi
j) from converging toE(f(X)). Choosing the sequence(Nk)k≥1

so thatNk ≥ Nk−1 + I for all k ≥ 2, enforcing one drawing in each stratum at each
stepk, and allocating the remainingNk − Nk−1 − I drawings according the previous
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procedure permits to overcome this difficulty. Then∀1 ≤ i ≤ I, ∀k ≥ 1, Nk
i ≥ k and

the following result is proved in [10] by first checking that the proportions Nk
i

Nk converge
a.s. to the optimal onesq⋆

i ask → ∞ and then applying the central limit theorem for
martingales :

Theorem 0.8

P




I∑

i=1

pi

Nk
i

Nk
i∑

j=1

f(Xi
j) −−−−→

k→∞
E(f(X))



 = 1.

If, moreover,σi0 > 0 for somei0 ∈ {1, . . . , I} and limk→+∞
k

Nk = 0, then

√
Nk




I∑

i=1

pi

Nk
i

Nk
i∑

j=1

f(Xi
j) − E(f(X))



 L−−−−→
k→∞

N1

(
0, σ2

⋆

)

with σ2
⋆ =

(∑I
i=1 piσi

)2
the asymptotic variance for the optimal allocation.

As a consequence,
√

NkPI
i=1

pibσk
i

(∑I
i=1

pi

Nk
i

∑Nk
i

j=1 f(Xi
j) − E(f(X))

)
L−−−−→

k→∞
N1(0, 1) and

one may easily construct confidence intervals forE(f(X)). Numerical experiments
performed in [10] on the pricing of arithmetic average Asian options in the Black-
Scholes model show that adaptive allocation permits to divide the varianceobtained
with proportional allocation by a factor up to50.

Another stratified sampling algorithm in which the optimal proportions and the con-
ditional expectations are estimated using the same drawings has been proposed in [4]
for quantile estimation. More precisely, for a total number of drawings equal toN , the
authors suggest to allocate theNγ with 0 < γ < 1 first ones proportionally to the prob-
abilities of the strata and then use the estimation of the optimal proportions obtained
from these first drawings to allocate theN − Nγ remaining ones. Their stratified esti-
mator is also asymptotically normal with asymptotic variance equal to the optimal one.
In practice,N is finite and it seems better to take advantage of all the drawings and not
only theNγ first ones to modify adaptively the allocation between the strata.

0.3.2 Adaptive optimization of the strata for normal random vectors

Let us now consider the problem of optimally designing the strata when they are
parametrized in the following way : for1 ≤ i ≤ I, Ai =

{
x ∈ R

d : θ.x ∈ [yi−1, yi)
}

where

−∞ = y0 < y1 < · · · < yI−1 < yI = +∞ andθ ∈ R
d is s.t. |θ| = 1.

In [9], we address a more general parametrization where the strata are defined by hy-
perrectangles but the present section is devoted to the particular case ofa single strati-
fication direction.

Our aim is to approximate the parameters(θ, y1, . . . , yI−1) defining the strata which
minimize the standard deviationσ⋆ =

∑I
i=1 piσi obtained either by optimal allocation
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or with the adaptive allocation algorithm described above. This standard deviation σ⋆

is equal to

I∑

i=1

√
(νθ(1, yi) − νθ(1, yi−1))(νθ(f2, yi) − νθ(f2, yi−1)) − (νθ(f, yi) − νθ(f, yi−1))2.

whereνθ(h, y)
def
= E(h(X)1{θ.X≤y}) for y ∈ R andh : R

d → R such thath(X) is
integrable. According to the following Lemma proved in [9] it is possible to express
the gradient ofνθ(h, y) in terms of conditional expectations.

Lemma 0.9 Whenθ.X admits a densitypθ w.r.t. the Lebesgue measure on the real line
and under further technical regularity assumptions not precised here,

∂yνθ(h, y) = pθ(y)E(h(X)|θ.X = y)

∇θνθ(h, y) = −pθ(y)E(Xh(X)|θ.X = y).

We suppose from now on thatX ∼ Nd(0, Id) is a standard normal random vector. Then

pθ(y) = e−y2/2

√
2π

and

∀i ∈ {1, . . . , I}, E(h(X)|θ.X = y) = E[h(Xi + (y − θ.Xi)θ)].

At each stepk of the above optimal allocation algorithm, this enables us

1. to estimate the gradient ofσ⋆ w.r.t. (y1, . . . , yI−1) andθ using the orthogonal
projections on the boundaries of the random drawingsXi

j made at this step in the
strata,

2. to perform a gradient descent step to update the stratification direction and bound-
aries.

In practice, the differencesNk − Nk−1 should be large enough not to increase signifi-
cantly the computation time needed to calculate the crude Monte Carlo estimator.As a
consequence, the Monte Carlo estimator of the gradient is precise and theoptimization
of the strata parameters is rather a noisy gradient descent than a stochastic algorithm.
According to our numerical experiments, optimizing the directionθ works : the gra-
dient procedure converges to some limit and this ensures effective variance reduction.
On examples involving discontinuous payoffs such as barrier options, the optimal di-
rection computed with our algorithm is significantly different and more efficient than
the one derived analytically in [13] using some large deviations asymptotics. Numer-
ical optimization of the strata boundaries was far less convincing. In [9],we explain
this numerical observation by the following asymptotic analysis performedin the limit
I → ∞. We parametrize the boundaries by a positive probability densityg on R with
c.d.f. G(y) =

∫ y

−∞ g(z)dz and setyi = G−1( i
I
) for i ∈ {0, . . . , I}.

Theorem 0.10 • Letd ≥ 2. If for h ∈ {pθ, pθ×E(f(X)|θ.X = ·), pθ×E(f2(X)|θ.X =

·)},
∫

R

h2

g
(y)dy < +∞, thenlimI→∞ σ⋆(I) = E

(√
Var(f(X)|θ.X)

)
.
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• Whend = 1, andf is a locally bounded function on the real line with a locally
integrable distribution derivativef ′ such thatesssupdy

pθ+|f ′|
g

(y) < +∞, then

limI→∞ Iσ⋆(I) = 1√
12

∫
R

|f ′|pθ

g
(y)dy.

The fact that, in the practical cased ≥ 2, the limit does not depend ong means that
under optimal or adaptive allocation, the choice of the boundaries of the strata is not
important when the number of strata is large. So only the stratification direction θ
should be optimized.

Note that the optimized directionθ computed by our algorithm can be used to design
Latin hypercube or Quasi Monte Carlo (see [12]) estimators ofE(f(X)). WhenX is
a standard normal random vector, for any orthogonal matrixO ∈ R

d×d, E(f(X)) =
E(f(OX)), but the convergence properties of Latin hypercube or QMC estimatorsas-
sociated with the variablef(OX) crucially depend onO. Unfortunately, it is very
difficult to estimate these rates of convergence and adaptive optimization of the matrix
O seems unreachable. As Latin hypercube or QMC methods somehow consist in strat-
ifying each canonical direction, choosing the first column ofO equal toθ should be
effective.
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approximation, SIAM J. Numer. Anal. 47 (2008), pp. 293–307.

[19] Sujin Kim and Shane G. Henderson,Adaptive control variates, Proceedings of the 2004 Winter
Simulation Conference (2004), pp. 621–629.

[20] , Adaptive control variates for finite-horizon simulation, Math. Oper. Res. 32 (2007),
pp. 508–527. MR MR2348231 (2008i:65005)

[21] Stephen Lavenberg, Thomas Moeller, and Peter Welch,Statistical Results on Control Variables
with Application to Queuing Network Simulation, Oper. Res. 30 (1982), pp. 182–202.
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