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Adaptive variance reduction techniques in
finance

Benjamin Jourdain

Abstract. This paper gives an overview of adaptive variance reduction tecasigcently devel-
oped for financial applications. More precisely, we explain how infdionzavailable in the random
drawings made to compute the expectation of interest may be used amniketisze to optimize
control variates, importance sampling or stratified sampling.
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Introduction

In mathematical finance, the price of a European option is expressbe aspecta-
tion under the risk neutral probability measure of the discounted paytiiecoption.

Sensitivities of the price with respect to various parameters, the so-caels, and
in particular the delta which is of paramount importance for hedging m@ganay
also be expressed as expectations. The simplest and most natuealcal@pproach
to compute these expectations, the Monte Carlo method, is widely used is. bk
cording to the central limit theorem, the precision of the empirical mearoappation

of the expectation of a random variable is proportional to the standaratibevof this

variable. Variance reduction techniques aim at improving this precisi@oimputing

the empirical mean of independent copies of a random variable with he sgpecta-
tion as the original one but with a lower variance. These techniques melpdmfied
into two categories :

- the ones which guarantee that the variance of the new variable will be tbarer
the variance of the original one : antithetic variables and conditioning.rargé
the variance reduction ratio obtained with these techniques is not very large

- the ones which may lead to a more significant variance reduction ratio dut m
also increase the variance depending on whether they are properlyriergkd :
control variates and importance sampling.

Stratified sampling is at the boundary between these two classes : whdlodatien

of the random drawings into the strata is made proportionally to their probadilitie
variance reduction is guaranteed. Nevertheless, to improve efficieneyshould try
other allocation rules but then the variance may increase.
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ANR-05-BLAN-0299 and of the “Chair Risques Financiers”néation du Risque
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Adaptive methods have been developed to ensure a proper implemerhtize
second category of variance reduction techniques : information aleikalthe ran-
dom drawings made to compute the expectation of interest is used to optireize th
variance reduction technique at the same time. In general, they saypeit@iion time
in comparison to their more natural and earlier investigated alternativeémiap the
variance reduction technique on a first pilot set of random drawindsteem compute
the empirical mean of the resulting random variable on a second setegendent
drawings. Such two stages procedures lead to unbiased estimatoesagjtirigeneral,
adaptive estimators are only asymptotically unbiased.

Sections 2, 3 and 4 are respectively devoted to adaptive control wrétaptive
importance sampling and adaptive stratified sampling. Since we are tettheginan-
cial applications, we will pay in what follows particular attention to the computaifo
E(f(GQ)) whereG is a standard-dimensional normal random vector afid R? — R.
Indeed, the price and hedging ratios of European options written orrlyimdeassets
evolving according to a multi-dimensional Black Scholes model may beesgpd in
this way. When the underlyings evolve according to a more generalasttcldif-
ferential equation, Euler discretization of this equation leads to approxinsadiothe
price and hedging ratios by expectations of the previous form, for sifdgigh di-
mensional normal vecta and a complicated functiofi. Notice that in the present
volume, Giles and Waterhouse [11] present an interesting multilevel patiiagion
technique which enables to reduce the time-discretization bias by compugirexth
pectation corresponding to a refined time-grid. In order to reduce theuttion time
necessary to obtain a balanced statistical error, they suggest to combitts using
different time-steps numbers. In the end, their method consists in ¢ongi(f(G))
for an even higher-dimensional and more complicated fungtitran the one derived
from standard Euler discretization.

0.1 Adaptive control variates

Let us firstillustrate the basic ideas of adaptive variance reduction mirtite exam-
ple of linearly parametrized control variates (see for instace [21] d28ection 4.1 in
[12]) before dealing with general parametrization.

0.1.1 Linearly parametrized control variates

Suppose that we want to compute the expectdlign) of a real random variabl®
and thatZ = (7%,..., Z%)* is a relatedR“-valued centered random vector withand

Z both square-integrable. We also assume, up to removing some cdesdofd’,
that the covariance matriXov(Z) of Z is non-singular and we denote Byv(Y, Z) =
E(Y Z) the covariance betweanhandZ . In finance, typicallyy” = e T f( XL ... X4)
wheref is the payoff of a European option with maturifywritten ond underlying as-
setsX!, ..., X with respective initial prices’, ..., z¢ and since the discounted price
of each asset is a martingale under the risk neutral measure, onéhowsec

Z=(Xk—eTgt . X4 —eTgdyr,
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Ford € RY, sinceE(Y —0.Z) = E(Y'), one may approximate the expectation of interest
E(Y) by the empirical meai/,, (6) def %Z;;l(Yj —6.Z;) where((Y;, Z;)),>1 are
independent copies @l, Z). The classical estimato¥ -1 Y; corresponds to the
choiced = 0. The variance of\/,,(6), equal to@ where

v(0) & Var(Y — 6.2) = Var(Y) — 20.Cov(Y, Z) + 0.Cov(Z)6,
is minimal for6, = Cov(Z)~*Cov(Y, Z). Of course, whefi£(Y) is unknown, so ig,.
But one may estimate the covariancés/(Z) andCov(Y, Z), respectively, by

oS (150 (157)
Jj=1 Jj=1 Jj=1
dif 1 n 1 n 1 n
ananfEZYij— EZYj EZZJ« :
J j=1 J=1

)

Let N be the smallest index such that no strict affine subspace ®f contains
{Z1,...,7Z,}. SinceCov(Z) is non-singularN is a.s. finite. Moreovet’, is non-

singular if and only ifn. > N. Forn > N, one may approximate, by the estimator

0,, def C,,1D,, which converges a.s. t whenn — oc. The derived adaptive control

variate estimatoi,, (6,) = = >>"_ (Y; — 6,,.Z;) of E(Y') is biased in general (but not

when (Y, Z) is a Gaussian vector or more generally wiigh'|Z) = E(Y) + 6,.2).
Nevertheless), (6,,) is a.s. convergent t&(Y"). Moreover, writing

V(M (0,) —E(Y)) = ( 91 )\}ﬁz( Y —ZE(Y) )

Jj=1

one deduces from the central limit theorem governing the convergeraw of the
second term in the product and Slutsky’s theoremitigfd,, ) is asymptotically normal
with optimal asymptotic varianced,). To sum up,

Proposition 0.1 The vectord,,, M, (0,)) converges a.s. t@,,E(Y)) and
V(M (6,) = E(Y)) 5 Ny (0,0(6.).

Variance reduction is guaranteed in the limit sin¢é,) < v(0) = Var(Y), the in-
equality being an equality only whén and Z are uncorrelated. Whe(6,) = 0 i.e.
whenY = E(Y) + 6,.Z then for alln > N, 0,, = 6, andM,,(0,,) = E(Y) (see [19]).
This situation is not likely to occur in financial applications but an example icdime
text of Markov chains is given in [14] which also discusses the asymptobigerties
of other adaptive estimators B{Y).

One could also approximaiY) by the unbiased estimatar,, (6,, ) with
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where((Yy, Zi,))r>1 are i.i.d. copies ofY, Z) independent of(Y;, Z;));>1. This is an
example of the two stages procedure mentioned in the mtroductlon But piitig @ot

to use the drawmge(Yk, Zk))1<k<m made to computé also in the computation of
the expectation of interest.

Let us finally mention tha#,, introduced above as a sample average approximation
of the optimal parametet, also has another interpretation. The ve(ﬂplminimizes

the sample approximation, (6) = 3" (Y — 6.Z;)* — (l i (Y —0.2; ))

of v(#). For more complex variance reduction techniques involving a paranmeter
explicit expression of the optimal parametgris in general available. So defining
0., as an estimator df, is no longer possible. But the alternative definitiordpfas
the parameter minimizing the sample average approximation of the variamaens
possible. We will see applications to generally parametrized control vaiiatike next
paragraph and to importance sampling for normal random vectorsiioS8®.2.

0.1.2 General parametrization

General parametrization of control variates for the computation of tipectation
E(Y) of a square-integrable random variableis addressed by Kim and Henderson
[19, 20]. Let® c U c R? with © compact and/ bounded opery be ad-dimensional
random vector related I, h : U x R? — R be such that

V0 € U, E(h*(0,Z)) < +occ andE(h(6, Z)) = 0,

and((Yj, Z;));>1 be a sequence of independent copie§ol?).
For anyd € U, M,,(0) = def 1 =251 (Y; = h(0, Z;)) is an unbiased and a.s. convergent

estimator of the expectation of interdstY”). MoreoverVar(M,(6)) = ”(9

v(0) & Var(Y — h(0, 2)).

Letm > 2. When for allz € R%, U 3 6 — h(6,z) is C', the unbiased estimator
LS (Y —h(0, Z;)— M, (0))? of u(6) is differentiable ori/ with respect t@ with
gradlent equaltg2s Y- (Y;—h(0, Z;)— M (0)) Ve [R(0, Z;) — = So1y h(0, Z1)].

Let (v1):>0 be a sequence of positive steps such fiat, = co and}", 77 < oc.
Starting fromd, € ©, Kim and Henderson [19, 20] suggest to optimiz@) with
respect t@ using the following gradient-based stochastic approximation procedure :

where

+1)m
Az+1:%25 +ln)l+1( i — h(01, Z;))

0141 = H@(el 2n §l+l}1)1+1( i — h(0, Z;) — A1)

< Vo [h(0.2;) — & S0 b0 Z0)]

9—91>

whereIlg denotes a projection of points outsi@eback into©®. Using the law of

large numbers and the central limit theorem for martingales, they studsymeptotic

behaviour of the associated estimaigr= pdef % l 1 A of E(Y).
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Theorem 0.2 Assume that for alt € R?, U > 6 — h(6, 2) is C! and that
E <sup IVo(0,2)] (1 + sup |Y — h(6, Z)>> < 400.
ocU ocU

Thenp,, converges a.s. tB(Y') ask — oo. If moreover,, converges a.s. to a random
variablef.., thenvkm(u, — E(Y)) £ V(0s) x G whereG ~ N;(0,1) is indepen-
dent fromf, and -t S S 4 (Vi — (611, Z5) — Ai)? converges a.s.

t0 v(0s0).
Last, if© isaboxi.e® = []"_, [a;, b;] and36, € O such that

E (Y4 + sup | Vo (0, 2)|* + h* (6o, Z)) < +o0,
0cU

then the distance &, to the setS of first order critical points ofy on © converges a.s.
to 0 and, whensS is discretef);, converges a.s. to afi-valued random variablé,.

Kim and Henderson also study in [19, 20] the estimalfy(6,,) obtained by a two
stages procedures whefig, is obtained as a first order critical point of the sample
average estimator of the variangé >/, (Yi—h(6, Z) — = >0, (YV;—h(0, Z;)))?
computed on a sequen¢€y, Zx))x>1 Of independent copies @b, Z) independent
from ((Y5, Z;))>1-

In [20], the behaviour of both estimators is illustrated on the example ofribieg
of barrier options.

0.2 Importance sampling for normal random vectors

Adaptive importance sampling techniques have been developed taxappte mul-
tidimensional integrals over the unit hypercube (see [25] and theerafertherein)
or in the context of Markov chains (see for instance [3] [8]). Bukeeesh on this
topic in view of financial applications was centered on normal randortok&edue to
the importance of this specific case for models given by stochasticatitiat equa-
tions. That is why the present section is devoted to the computatiBffofz)) where
G is distributed according to the standatalimensional normal law\;(0, 1;) and
f:RY—=R.
We assume that

P(f(G) # 0) > 0 andvl € R?, E(f2(G)e™ %) < +oc0. (0.1)

The second hypothesis is implied for instance by the existence of a finiteentarh
order2 + ¢ with ¢ > 0 for | f(G)|. Let (G;);>1 be i.i.d. copies of7. Ford € R, since

E (f(G + 9)69~G‘22) —B(f(Q)), 0.2)
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2
M, (6) FY (G + 0)e=Gi—'% is an a.s. convergent and asymptotically
normal estimator of( f(G)) with varianceVar(M, (0)) = “O=EUE) where

o(0) € E (fg(G+0) —20.G—|6)? ) <f2(G+9)€—6.(G+6‘)+9226—(-).6‘—9;)

_E <f2(G)e‘9'G+922> . 0.3)

|z—0]2

Notice that the translated normal varialile-6 has the densityo( )= (27)"2e 2

and that the importance sampling raﬁfe(G +0)=e"% o- 1 appears as a factor in
the left-hand-side of (0.2). The interest of the class of importancelgagrestimators
M,,(9) parametrized by the translation vectore R? is that a very simple analytic
mapping (addition of) permits to transform an i.i.d. sample of the standard normal
law Ny(0, I;) into an i.i.d. sample oV, (0, I;) . This feature is particularly convenient
to compute and study adaptive estimators in which the parameter evolieg the
simulation.

Under (0.1) the functiom is

1. C* with derivatives obtained by differentiation under the expectation (0.3) :

Vool (9) = ((0 - 612000 )

Viv! () =E ((Id +(0—G)(6— G)*)fz(G)e9~G+922> ,

2. strongly convex.

Therefore
310, € RY = v(6,) = inf v(6).
€R' : v(6) = inf v(6)
This suggests to approximai f(G)) by M, (6,) butd, is unknown. Unlike in the
analogous example of linear control variates developed in Section®@explicit ex-
pression is available fat,. Methods aimed at approximatirg have been developed
in the literature. These methods are based

- either on determistic optimization : in [13], the authors suggest to chibosx-
imizing R 5 o +— log|f(z)] — %= and justify this approximation by a large
deviations asymptotics.

 or on stochastic optimization procedures analogous to the ones preseStaz
tion 0.1.2 : gradient-based stochastic approximation ([27] [26]pidaRobbins-
Monro procedures [2, 1, 16, 23], robust optimization of the sampbeame ap-
proximation ofv by Newton'’s algorithm [15].

Let us now describe those stochastic optimization procedures moiisglyec
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0.2.1 Gradient based stochastic approximation and adaptive Rolis-Monro al-
gorithms

In [27] and [26], the authors suggest to minimiz@) over a compact convex subset
O of R by the following iterative procedure using an integerc N*, a sequence

(G)r>1 Of independent copies af (possibly equal tqG,);>1) and a sequence of
positive step$y;)i>0 S.t. >, v = oo and}_, 77 < oo

« start withd, € ©,

10,12

. at stepl > 0 computeg; = - Zl(l“)m(el — G f2(Gr)e~?-Cr+ 5 approxi-

m m+1

matingVyv(6;), then defind), ., as the projectiod; — ~;g; on ©.

Proposition 0.3 Under(0.1), the sequenc@,),>; converges a.s. to the unigdg € ©
such thatw(fe) = infyce v(0).

The papers [27, 26] do not deal with asymptotic properties of the estisn&ip(6;)
asn,l — oco. These questions are adressed by Arouna [2, 1] who also gets rid of th
compact©. More precisely, he obtains a sequeriég),,>1 adapted to the filtration
(0(Gh,...,Gy))n>1 by stabilizing the Robbins-Monro algorithm corresponding to the
choicerm = 1 and(Gy)r>1 = (G;);>1 with Chen’s projection technique [6, 5]. Let

0o € R, oy = 0 and(s,).>0 be an increasing sequence of positive numbers tending
to infinity with » and s.t.sy > |0y|. The sequencé,,, o,,) is defined inductively by

_ 165 |2
en_t,-% - 971 - ’Yn(en - Gn-‘rl)fz(Gn-‘rl)e On-Gri1t =5
VneN, ¢if[6,,1] < so, thenb,1 = 6,1 ando, 1 = oy,
if \0n+%| > 4, thend, 1 =60y ando,41 =0, + 1

Herea,, is the number of projections made during thérst iterations.

Theorem 0.4 Under (0.1), the total number of projectiorian,, ... o,, is finite andd,,
converges a.s. té, asn — oo.
If moreoverE(f4*+¢(G)) < +oo, then asn — oo,

2
Oj—1l

Mo ) st Ly~ (0 f(Gy+ T e e W (i (e))
Sh nem\ GG+ 01‘—1)6*263’*1'@*“’#1‘2 v(0y) ,
and./n(M, — E(f(G))) == My (0,v(6.) — E*(f(@)).

As a consequenc?/ﬁ(Mn —E(f(G))) £, N1(0, 1) which enables to construct
confidence intervals for the expectation of intef@6f(G)). The first statement fol-
lows from the verifiable sufficient conditions given by Lelong [22] foe tonvergence
of randomly truncated stochastic algorithms. Originally, Arouna [2] kbddhe a.s.

convergence of,, to 0, only under some explicit restrictive growth assumption on the
sequenceés,,),. In [1], remarking that

10n—112

1
2

E <f(Gn + Oy )e It GnT

U(G17 ey Gn_1)> = ]E(f(G)),
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he derived the second statement using the law of large numbers anelntinal dimit
theorem for martingales
The previous algorithm takes advantage of the characterizatiopas the unique

root of the equatiof ((0 - G)fQ(G)efe'GJr#) = 0. Remarking that for a € R,

E((60- G)fZ(G)e—9~G+#) — ¢""E (20 - G)f*(G — 0)), Lemaire and Pags [23]
characterizé, as the unique root & ((26 — G) f*(G — 6)) = 0. When

Je,a >0, 33 €[0,2), Vo € RY, | f(z)| < ceol®l’
then the Robbins-Monro procedure
Vn € N7 Gn-‘rl = on - ’Y'rn€_23a|6n|5(29n - G7L+1)f2(Gn+1 - en)

is stable without projections and Theorem 0.4 still holds with this new definiton f
the sequencé,,),,>1. In particular, wheryf is boundedn may be chosen equal
and the factor—2"21%1” is then equal td.

In [16], Kawai combines importance sampling with control variates r&mg that
for 6, A € R9, the expectation and variance of the random variable

[F(G+0) — \(C +0)]e00—'F

are respectively equal #(f(G)) andv (0, \) — E2(f(G)) where

v(0,\) LE ((f(G) - A.G)QeG-G“zQ) .

The functionw is strictly convex ird for fixed A and strictly convex in for fixed 6. Let
g(0) (resp.h())) denote the unique vector B s.t.v(6, g(0)) = inf\cpa v(0, \) (resp.
v(h(X), A) = infeera v(6,N)). According to Kawai [16], the functions(d, ¢(0)) and
v(h(X), \) are still strictly convex (but the proof of this statement does not seeraatpr
and there exists a uniqdg € R? (resp.)\, € R?) s.t.v(6,, g(0,)) = infyera v(0, g(0))
(resp.v(h(As), Ax) = infyera v(h(A), A)). He proposes fofd,,, \,,) a two-scale Rob-
bins Monro procedure with Chen’s projection technique and increment

~Yn(On — Gry1)(f(Gry1) — )‘n-Gn+1)2670"'G"+1+%
2:7n(f(Gn+1) - /\n-Gn—&-l)Gn+1eien'G"+l+% ,

where7,, is another sequence of positive steps St, 7, = +oo andZ 2 <

+oo. The sequencéd,,, \,) converges a.s. t¢,,g(6,)) or (h(As), A«) depending

on whethetim,,_, o = is equal tad or +oco. Moereover the analogue of Theorem 0.4

holds in this setting, the estimator Bf f(G)) being defined as

1 & ) 105
*Z (G+0;1) =X 1.(G+0;q)]e PG,

3
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In [17], Kawai adapts the previous algorithm when the Gaussian randmtor
G is replaced by an infinitely divisible random vector (stochastic approximéaijo
Robbins-Monro procedures of the parametesnly is treated in [18]). In finance,
problems involving such vectors arise for instance when the Brownidiomdriving
continuous time models is replaced by @y process. Kawai pays particular attention
to the case of independent gamma distributed components. This particitéution
has the following nice property: after the exponential change of medalso called
Esscher transform) considered in the present section, the law ofragsamdom vari-
able is the same as the law of this random variable multiplied by a constant unde
the original probability measure. In comparison with the Gaussian cddéjoa is
replaced by multiplication.

Let us finally mention that an adaptive simulated annealing proceduredessre-
cently developed by del B Rollin and lazaro-Carn[7] to optimize antithetic vari-
ates. More precisely, using appropriate coordinates on the orthogong, the au-
thors propose a Robbins-Monro procedure with an additional noisenpuie a se-
quence0,,),>1 of orthogonal matrices converging @. minimizing E(f(G) f(OG))
other all orthogonal matrice®. The additional noise, obtained from a sequence
(G;);>1 of random vectors i.i.d. according #(0, I;) independent ofG;);>1, van-
ishes whem tends to infinity and avoids that the algorithm remains trapped in a critical
point at whichE(f(G) f(OG)) is not minimal. The derived estimator

n

>~ (F(G)) + £0,G) + £(Gy) + £(0,6)))

j=1

1

M, = —
4n

of E(f(@)) is then a.s. convergent and asymptotically normal with asymptotic varianc
T (Var(f(@)) + Cov(f(G), (OG))).

0.2.2 Robust sample average optimization

In order to save computation time, we introduce in [15] a parameter tieduéndeed,
numerical simulations show that, for a model driven by a Brownian mptida not
useful to use different parameters for the increments of a singlerBaovcomponent.
Let A € R be a matrix with rank!’ < d. We definer, as the unique minimizer of
the strongly convex and continuous functiBf > 7 — v(Ar). The sample average
approximation ofy(Ar) is given byv,, (A7), where theZ*° function

RS .G, 102
vn(0) = =~ f2(Gyle "t
j=1

is strongly convex as soon #@$G,) # 0 for somej € {1,...,n} which holds a.s. for
n large enough by (0.1). The unique minimizgrof = — v, (A7) is characterized by
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the equalityV,v,,(At) = 0, which also writesv ,u,, () = 0, where

At|? = _Ar
| 2| + log (ZfQ(Gj)e AT G])
j=1

Yy ATG, fA(Gy)e AT Y
i1 [H(Gy)em AT

S ATGGE A (Gy)em AT

> [A(Gj)emAT G

(Z;‘L:1 A*ijQ(Gj)e—ArG?) (Z;‘L:1 A*ijz(Gj)e—ArGj)*
(221:1 ‘f2(Gj)6_AT~Gj)2

The lowest eigenvalue of the Hessian matiixu,, is always larger than the one of
A*A. Thereforer,, can easily and precisely be computed by a few iterations of New-
ton’s algorithm using the above explicit expressions/ef.,, andV2u,,. Notice that
the computation of the gradient and the Hessian, 0 not too time-consuming since
the pointsG;, at which the payoff functiorf is evaluated, remain constant during the
optimization procedure.

Convergence of, to 7, is a consequence of classical results concerning M-estimators.

Up(T) =

Votn(T) = A"AT —

V2u, (1) = A*A+

Proposition 0.5 1. Under(0.1), 7, andv, (AT, ) converge a.s. te, andv(Ar,).
2. Ifmoreovet/d € RY, E (f4(G)e %¢) < +oo, theny/n(r,—7,) £ Ny (0,B~'CB™Y)
whereB = A*V2u(Ar,)A andC = Cov (A*(AT* ~G) f?(G)e*Aﬂ-G*%) .
In [15], we obtain convergence éf,, (Ar,,) to the expectatiofi( f(G)) assuming that
f is continuous and satisfies some growth assumption (see Theoremdy. Mhen
d’ = 1, continuity may be replaced by a monotonicity assumption introduced in the
next definition.
Definition 0.6 We say that a functioh : R — R
« is A-nondecreasing (respl-nonincreasing) if

Vz € R, 7 € R — h(z + Ar) is nondecreasing (resp. nonincreasing),

« is A-monotonic if it is eitherA-nondecreasing ad-nonincreasing,
+ belongs toV,4 if h may be decomposed as the sum of tdvononotonic functions
hi andhs such that
IN>0, IB€[0,2), Vo € R, |hi(z)| < Al fori = 1,2.

Whend = 1, V; simply consists of functions with finite variation satisfying the pre-
vious growth assumption. The asymptotic propertied/Hf( Ar,,) stated in the next
theorem are proved in [15].
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Theorem 0.7 Assumg(0.1) and that f admits a decompositiofi = f1 + 1{g=1} fo
with

1. f, acontinuous function s.Y/M > O,E( sup |f1(G+ 9)|> < 400,
6] <M

2. fy € V4 defined above.

Then, for any deterministic integer-valued sequgngé,, going toco withn, M, (A7, )
converges a.s. tB(f(G)).
Assumg0.1), V0 € R?, E (f4(G)e %) < +oo and thatf admits a decomposition

f=fi+ fo+ Lgg=1y f3 with
1. f; aC! function s.t.

VM >0, E ( sup |f1(G+6)|+ sup |Vf1(G+9)> < 00,
lo|<M loj<M

2. dae ((\/d’z F8d —d')/4, 1] B e0,2),A >0,
o,y € R, | o) — foly)] < Al VI |5 — g,

3. f3 c V4.
Theny/n(M,(A,) — E(f(G))) % N (0,v(Ar,) — E2(f(G)))

In contrast to the estimatav/,, constructed using Robbins-Monro procedures in the
previous section, there is no martingale structureMQK A+, ). This explains why we
need some regularity assumptions on the funcgiorExcept ford’ = 1, asymptotic
normality with optimal asymptotic varianeg€ Ar,) — E(f(G)) requires more regu-

larity on f than a.s. convergence. Note th\é@ is increasing with?’, equals

1 for & = 1 and converges to asd’ — oc. Therefore the choica = 1 is always
possible forf,. So all the financial payoffs except the discontinuous ones (barrier o
digital options) satisfy the assumption made/fgrio ensure the asymptotic normality
of the adaptive estimatav/,, (A7, ). If Var(f(G)) > 0, then the previous results imply
that

Un (ATn) - MrQL (ATn) (

and one may easily derive confidence intervalsgof(G)).

The numerical experiments performed in [15] suggest that strongecgence and
asymptotic normality of\M,,(Ar,,) still hold under less restrictive assumptions pn
than those stated in the previous theorem.

M, (Am,) = E(f(G))) 5 N (0,1),

0.3 Stratified sampling

We are interested in the computationcef E(f(X)) whereX is anR¢-valued random
vector andf : R? — R a measurable function such thiatf?(X)) < oo. We suppose
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that (A4;)1<;<s is a partition ofR? into I stratasuch thaty; = P[X € A4;] is known
explicitly for ¢ € {1,...,I}. Up to removing some strata, we assume from now on
thatp; is positive for all; € {1,...,I}. The stratified Monte-Carlo estimator o{see
[12, p.209-235] and the references therein for a detailed presentatibased on the
equalityE(f(X)) = I_, pE(f(X")) whereX' denotes a random variable distributed
according to the conditional law of given X € A;. Indeed, when the variables;
can be simulated, it is possible to estimate each expectation in the right-hanisid
n; i.i.d drawings of X*. Letn = 25:1 n; be the total number of drawings (in all the
strata) and; = n; /n denote the proportion of drawings made in stratum

Thencis defined by

n; qin

SIS WEVERI 3 SIEH

where for eachi the X;i's, 1 < j < ny, are distributed likeX?, and all theX;i’s, for
1<i<1,1<j<n;aredrawn independently. This stratified sampling estimator can
be implemented for instance wheénis distributed according to the standard normal
lawonRY, A, = {x € R : 9, < fO.x <y} where—co=yo <y1 < ... <yr_1 <

yr = +oo andf € R is such thatd| = 1. Indeed, then one has = N(y;) — N(y;_1)

with N(.) denoting the cumulative distribution function of the one-dimensional nborma
law and wheriJ is uniformly distributed o0, 1] and independent fron¥, then

X + (NN (yi—1) + UN(y;) — N(yi-1))] — 0.X)0

follows the conditional law ofX giveny; 1 < 0.X < y,.
We haveE(¢) = ¢ and

~ ! ngo'z? 1 ! p?o—? 1 ! Pi0gi Di0; 2
Var(®) = Y- B2 = DS BT = TS (B ( L) (04
i=1 v i=1 1 i=1

wheres? = Var(f(X")) = Var(f(X)|X € A;) forall1 <i <.
In the sequel, we assumg, > 0 for at least one indeik,.
Let (X,),>1 bei.i.d. drawings ofX. The variance of the crude Monte Carlo estima-

tor 1 37 J(X;) of E(/(X)) is

2 I
va P HE(S <qu )) Zi;zwf-

For given strata, the stratified estimator achieves variance reductioraifdlcations
n; or equivalently the proportiong; are properly chosen. For instance, for the so-
called proportional allocation = p, the variance of the stratified estimator is equal
to the previous lower bound of the variance of the crude Monte Carlo éstirmfeor

the optimal aIIocatloan = pz L/ZJ 1pjoj, 1 <i < I, the lower-bound in (0.4) is

attained. Then ,
~ 1 2 def O
Var(c) = 5(Zpiai) =
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In general, when the conditional expectatidy (X)|X € A;) = E(f(X?)) are
unknown, then so are the conditional varianeés Therefore optimal allocation of
the drawings is not feasible at once. One can of course estimate thid@aaldvari-
ances and the optimal proportions by a first Monte Carlo algorithm and setond
Monte Carlo procedure with drawings independent from the first onentpate the
stratified estimator corresponding to these estimated proportions. Butetluse the
drawings made in the first Monte Carlo procedure also for the final otettipn of the
conditional expectations?

Instead of running two successive Monte Carlo procedures, onthitéito obtain
a first estimation of the;’s, using the first drawings of th&“'s made to compute the
stratified estimator. One could then estimate the optimal allocations beforagnak
further drawings allocated in the strata according to these estimated fioogoiOne
can next obtain another estimation of #hés, compute again the allocations and so
on. This is the principle of the adaptive allocation procedure proposetiOjand
described in the next section. Then, we will present the adaptive algopthposed
in [9] in order to optimize the strata themselves.

0.3.1 Adaptive optimal allocation

Let N* (resp. NF) denote the total number of random drawingis made in all the
strata (resp. in stratum) at the end of step of the following algorithm :

1. At stepl, allocate theV! first drawings in the strata proportionally to theand
estimateE(f(X%)) ando;, 1 <i < I,

2. At the beginning of step > 2, compute the vectofn,,...,n;) € R. obtained
by allocating theV* — N*~! new drawings

- either proportionally to the estimationss~'/>"/_, piaF~t of the ¢
available at the end of stép— 1,
- orin order to minimize the estimated variangg_, (p;57*)?/NF of the
stratified estimator after stépunder the constrainfs)._, N = N* andvi,
NF > NF~'. The explicit solution of this constrained optimization problem
is given in [10].
Then conver{n,,...,nr) to N/ by the following rounding procedure preserving
the sum mf = [>°_, ni) — | };i n;| and allocate:’ new drawings in stratum
i. Refine the estimatiort§ andz? of E(f(X*)) ando; using these new drawings.

In fact, one has to modify this algorithm in order to enforce at least oawidg
in each stratum at each step. Indeecﬁ}j}f: 0 whereass;, > 0, then no drawings

k X 1 .
are made after step= 1 in the stratumy, andNL% Z;\;"’Ol f(X0) = N%U Z;V;Ol (X3°)
does not converges K f (X)) whenk — +oc which prevents the stratified estimator
Zi’:l s Zjv;l f(X}) from converging tdE(f(X)). Choosing the sequen¢a’”);.>,
so thatN* > N*=1 4 T for all £ > 2, enforcing one drawing in each stratum at each
stepk, and allocating the remaininy* — N*~! — I drawings according the previous
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procedure permits to overcome this difficulty. Then< i < I, Vk > 1, N} > k and

the following result is proved in [10] by first checking that the propoﬂi% converge
a.s. to the optimal oneg ask — oo and then applying the central limit theorem for
martingales :

Theorem 0.8

Z”sz ) — E(f(X) | = 1.

’L

If, moreoverg;, > 0 for someiy € {1,...,I} andlimy_, ;o % =0, then

ZplZf X)) | —£= M (0,02)

— Z ] 1

witho? = (Y1, pia,;)Q the asymptotic variance for the optimal allocation.

Asaconsequencpz% (Zl 1 Nk ZJ V(XD = (f(X))) ﬁw\ﬂ(o,l) and
one may easily construct confidence intervalsHoy (X)). Numerical experiments
performed in [10] on the pricing of arithmetic average Asian options in tlael8
Scholes model show that adaptive allocation permits to divide the vari@teamed
with proportional allocation by a factor up 0.

Another stratified sampling algorithm in which the optimal proportions anddhe c
ditional expectations are estimated using the same drawings has beesqutop [4]
for quantile estimation. More precisely, for a total number of drawingskp vV, the
authors suggest to allocate the' with 0 < v < 1 first ones proportionally to the prob-
abilities of the strata and then use the estimation of the optimal proportions @dbtain
from these first drawings to allocate the— N7 remaining ones. Their stratified esti-
mator is also asymptotically normal with asymptotic variance equal to the dpiimea
In practice,N is finite and it seems better to take advantage of all the drawings and not
only the N7 first ones to modify adaptively the allocation between the strata.

0.3.2 Adaptive optimization of the strata for normal random vectas

Let us now consider the problem of optimally designing the strata when tieey a
parametrized in the following way : far < i < I, A; = {z e R : 0.z € [y;1,u:) }
where

—0=yy <Y1 < <yr—1 < yr =+ooandd € R?is s.t. |0 = 1.

In [9], we address a more general parametrization where the steatiefined by hy-
perrectangles but the present section is devoted to the particular casengfe strati-
fication direction.

Our aim is to approximate the parametgtsy, . . ., yr—1) defining the strata which

minimize the standard deviation = Zle p;o; obtained either by optimal allocation
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or with the adaptive allocation algorithm described above. This standaiatide o,
is equal to

1

> Vel yi) — ve(Lyi1)) (e (2 4:) — vo(£2,5i-1)) — (vo(frv:) — vo(f vim1))>-

i=1

wherevy(h,y) < E(h(X)1(5 x<y)) for y € R andh : R? — R such thath(X) is
integrable. According to the following Lemma proved in [9] it is possible tpress
the gradient oty (h, y) in terms of conditional expectations.

Lemma 0.9 Wherd. X admits a density, w.r.t. the Lebesgue measure on the real line
and under further technical regularity assumptions not precised here,

Iyve(h,y) = po(y)E(h(X)]0.X = y)
Vovg(h,y) = —pe(y)E(Xh(X)[0.X =y).

We suppose from now on that ~ A;(0, 1) is a standard normal random vector. Then
e—?/2/2

pe(y): NoT and

Vie{l,...,I}, E(h(X)|0.X =y) = E[h(X’ + (y — 6.X9)0)].
At each step: of the above optimal allocation algorithm, this enables us

1. to estimate the gradient ef, w.r.t. (yi1,...,y;—1) andé using the orthogonal
projections on the boundaries of the random drawikigsnade at this step in the
strata,

2. to perform a gradient descent step to update the stratification direntidvoand-
aries.

In practice, the differenceS* — N*~! should be large enough not to increase signifi-
cantly the computation time needed to calculate the crude Monte Carlo estidsitor.
consequence, the Monte Carlo estimator of the gradient is precise amptittnézation
of the strata parameters is rather a noisy gradient descent than asstalgorithm.
According to our numerical experiments, optimizing the directiomorks : the gra-
dient procedure converges to some limit and this ensures effectiiaga reduction.
On examples involving discontinuous payoffs such as barrier optioeggtimal di-
rection computed with our algorithm is significantly different and more iefficthan
the one derived analytically in [13] using some large deviations asymptdigser-
ical optimization of the strata boundaries was far less convincing. In\@]explain
this numerical observation by the following asymptotic analysis perfoiméte limit
I — oo. We parametrize the boundaries by a positive probability degsityR with
c.df.G(y) = [’ _g(z)dzand sey; = G~'(%) fori € {0,...,I}.

Theorem 0.10  « Letd > 2. Iffor h € {pg, po xE(f(X)|0.X =), pexE(f*(X)]|0.X =
M Jo 2 (y)dy < +oo, thenlim . 0. (I) = E ( Var( f(X)|9.X)).



16 B. Jourdain

« Whend = 1, and f is a locally bounded function on the real line with a locally
integrable distribution derivativg” such thatesssupdy%lf‘(y) < +oo, then

limy oo [0, (1) = <k [, 122 (3)dy.

The fact that, in the practical cage> 2, the limit does not depend agnmeans that
under optimal or adaptive allocation, the choice of the boundaries ottt $s not
important when the number of strata is large. So only the stratification dineg¢tio
should be optimized.

Note that the optimized directiaghcomputed by our algorithm can be used to design
Latin hypercube or Quasi Monte Carlo (see [12]) estimatofB(g{ X )). WhenX is
a standard normal random vector, for any orthogonal malrik R4, E(f(X)) =
E(f(OX)), but the convergence properties of Latin hypercube or QMC estimasers
sociated with the variablg(OX) crucially depend orO. Unfortunately, it is very
difficult to estimate these rates of convergence and adaptive optimizédtioe matrix
O seems unreachable. As Latin hypercube or QMC methods somehegtdorstrat-
ifying each canonical direction, choosing the first columrOoéqual tod should be
effective.
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