J.Ph. Chancelier1
On cherche ici à trouver numériquement
tel que
où
est une fonction strictement
croissante donnée et
un réel donné.
On suppose par ailleurs que la fonction
est donnée par :
Un algorithme stochastique pour trouver un zéro de
sera le suivant. On se donne
et une suite de variables
aléatoire
indépendantes et de même loi que
. On met à jour
l'estimation de
par :
Écrire une fonction Scilab qui mets en oeuvre cet algorithme.
La fonction dont on cherche à calculer le zéro sera passée en
argument. Faire tourner l'algorithme sur une fonction de votre
choix (, ou
, ...).
On regarde dans cette section le cas particulier où on cherche à
évaluer un quantile. Soit la fonction de répartition
d'une loi
. On suppose ici
continue.
Calculer un quantile d'ordre
de
consiste
à calculer
vérifiant :
On peut donc utiliser l'algorithme décrit dans la section précédente.
une autre méthode est aussi envisageable. Soient
tirages indépendants de loi
.
On peut les réordonner en ordre croissant
et
estimer le quantile d'ordre
par
avec
Mettre en oeuvre les deux algorithmes par exemple pour la loi normale
ou pour d'autres loi de votre choix (grand
). Pour l'algorithme sur la
fonction de répartition empirique on pourra utiliser dsearch
pour rajouter un élément dans un tableau déjà trié.
Faire une animation graphique montrant l'évolution des deux
algorithme aux cours des itérations. Pour certaines lois
donc la loi normale on peut calculer les quantiles dans Scilab
(cdfnor
). On pourra utiliser cela pour superpose sur les
courbes la solution
.
driver('X11') xset('pixmap',1) // on utilise un mémoire graphique pour dessiner for i=1:n ....... xset('wwpc') // efface la mémoire graphique // commande graphiques à introduire ici xset('wshow') // affiche le contenu de la mémoire graphique à l'écran. end
On suppose cette fois que l'on veut maximiser une fonction concave
. On pourrait utiliser des méthodes
d'optimisation déjà vue, par exemple une méthode de gradient sur
la fonction
mais cela demanderait à chaque itération
l'évaluation d'une espérance
.
On va donc plutôt utiliser un algorithme stochastique pour trouver
un zéro de
et plutôt que de calculer
explicitement le gradient on va l'évaluer par :
Mettre en oeuvre cet algorithme dans Scilab.