Data Driven Robust Optimization Exam

19/03/2018

The exam is made of two independant parts. If necessary, you can admit the results of previous questions. All documents authorized, all electronical device forbidden.

Some usefull recalls.

1. An SOCP constraint take the form $a^{T} x+b+\left\|c^{T} x+d\right\| \leq 0$.
2. If $\left(g_{i}\right)_{i \in \llbracket 1, d \rrbracket}$ are concave functions with $\cap_{i=1}^{d} r i\left(\operatorname{dom}\left(g_{i}\right) \neq \emptyset\right.$ we have

$$
\left(\sum_{i=1}^{d} g_{i}(\cdot)\right)_{\star}(v)=\sup _{\left(v^{i}\right)_{i \in \mathbb{I} 1, d \rrbracket}}\left\{\sum_{i=1}^{d}\left(g_{i}\right)_{\star}\left(v^{i}\right) \mid \sum_{i=1}^{d} v^{i}=v\right\}
$$

3. $\left\{w^{T} w \leq x y, x \geq 0, y \geq 0\right\}$ is equivalent to $\left\|\binom{2 w}{x-y}\right\| \leq x+y$.
4. The value at risk of level ε is defined by

$$
\operatorname{VaR}_{\varepsilon}^{\mathbb{P}}(\boldsymbol{X}):=\inf \{t \mid \mathbb{P}(\boldsymbol{X} \leq t) \geq 1-\varepsilon\}
$$

5. for $\varepsilon \in(0,0.5]$,

$$
\forall \tilde{u} \sim(\mu, \Sigma), \quad \mathbb{P}\left(\tilde{u}^{T} v \leq \alpha\right) \geq 1-\varepsilon \quad \Longleftrightarrow \quad \mu^{T} v \leq \alpha-\sqrt{\frac{1-\varepsilon}{\varepsilon}} \sqrt{v^{T} \Sigma v},
$$

where $\tilde{u} \sim(\mu, \Sigma)$ means that $\mathbb{E}[\tilde{u}]=\mu$ and $\operatorname{var}(\tilde{u})=\Sigma$.

A simple example

1. Robust quadratic constraints

We are interested in the following quadratic constraint $f(u, x):=-\sum_{i=1}^{d} \frac{1}{2} x_{i} u^{T} Q_{i} u \leq 0$, were all matrices Q_{i} are positive definite, where $u \in \mathbb{R}^{n_{u}}$ and $x \in \mathbb{R}_{+}^{n_{x}}$.
(a) (1 point) Let $f_{i}(u)=-\frac{1}{2} u^{T} Q_{i} u$. Compute $\left(f_{i}\right)_{\star}(v):=\inf _{u \in \mathbb{R}^{n_{u}}} v^{T} u-f_{i}(u)$
(b) (1 point) Show that

$$
f_{\star}(v, x):=\inf _{u} v^{T} u-f(u, x)=\sup _{\left(v^{i}\right)_{i \in \llbracket 1, d]}}\left\{\left.-\frac{1}{2} \sum_{i=1}^{d} \frac{\left(v^{i}\right)^{T} Q_{i}^{-1} v^{i}}{x_{i}} \right\rvert\, \sum_{i=1}^{d} v^{i}=v\right\}
$$

2. Application

We are interested in the following problem

$$
\begin{align*}
\min _{x \in \mathbb{R}_{+}^{2}} & c^{T} x \tag{1a}\\
\text { s.t. } & \tilde{z}=x_{1} \tilde{u}^{T} Q_{1} \tilde{u}+x_{2} \tilde{u}^{T} Q_{2} \tilde{u} \tag{1b}\\
& \mathbb{P}(\tilde{z} \geq 0) \geq 0.9 \tag{1c}\\
& A x \leq b \tag{1d}
\end{align*}
$$

where $Q_{i} \in M_{4}(\mathbb{R})$ are positive definite matrices, and \tilde{u} is a random variable that can take values in $\left\{a_{1}, a_{2}, a_{3}\right\}$. We have a sample of 100 realisations of \tilde{u}, given in the following table.

a_{1}	a_{2}	a_{3}
30	20	50

(a) (2 points) We set $f(\tilde{u}, x)=-\frac{1}{2} \sum_{i=1}^{2} x_{i} \tilde{u}^{T} Q_{i} \tilde{u}$. Show that $f_{\star}(v, x) \geq s$ is equivalent to

$$
\left\{\begin{array}{l}
\alpha_{1}+\alpha_{2} \leq 2 s \\
\alpha_{i} x_{i} \geq\left(v^{i}\right)^{T} Q_{i}^{-1} v^{i} \quad i=1,2 \\
v^{1}+v^{2}=v
\end{array}\right.
$$

(b) (1 point) Show that, in this problem, $f_{\star}(v, x) \geq s$ can be written as SOCP constraints.
(c) (4 points) Leveraging the χ^{2} test, explicit (giving numerical values to all possible parameters - see table at the end) a SOCP problem whose solution is a feasible solution for Problem 1 with 80% confidence (in the sampling). Precise the size of each variables, and the number of SOCP constraints and linear constraints.
(d) (1 point) How many sample are needed to ensure the same guarantee through a sampling approach ? What would actually happen ?

A new data-driven approach

We will now assume that $0<\varepsilon \leq 0.5$.
3. Estimated variance and covariance

We are interested in the following optimization problem

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{d}} & c^{T} x \\
\text { s.t. } & \mathbb{P}(f(\tilde{u}, x) \leq 0) \geq 1-\varepsilon
\end{aligned}
$$

where $f(u, x)$ is a function concave in u, and convex in x.
We define the following trust region

$$
\mathcal{P}^{C S}\left(\Gamma_{1}, \Gamma_{2}\right)=\left\{\mathbb{P} \quad\left|\quad\left\|\mathbb{E}^{\mathbb{P}}(\tilde{u})-\hat{\mu}\right\|_{2} \leq \Gamma_{1}, \quad\left\|\left|\operatorname{var}^{\mathbb{P}}(\tilde{u})-\hat{\Sigma}\right|\right\| \leq \Gamma_{2}\right\}\right.
$$

where $\operatorname{var}^{\mathbb{P}}$ is the variance operator, $\|\|A\|\|:=\sup _{\|x\|_{2} \leq 1}\|A x\|_{2}$ is the operator norm, and $\hat{\mu}$ (resp. $\hat{\Sigma}$) is an estimator of the expectation of \tilde{u} (resp. of the covariance matrix of \tilde{u}). We assume that Γ_{1} and Γ_{2} have be choosen such that $\mathbb{P}_{S}^{*}\left(\mathbb{P}^{*} \in \mathcal{P}^{C S}\left(\Gamma_{1}, \Gamma_{2}\right)\right) \geq 1-\alpha$.
(a) (2 points) We call $R(\mu, \Sigma)$ the set of probabilities such that $\mathbb{P} \in R(\mu, \Sigma)$ if and only if $\mathbb{E}^{\mathbb{P}}[\tilde{u}]=\mu$ and $\operatorname{var}^{\mathbb{P}}(\tilde{u})=\Sigma$. Show that

$$
\sup _{\mathbb{P} \in R(\mu, \Sigma)} \operatorname{Va} R_{\varepsilon}^{\mathbb{P}}\left(v^{T} \tilde{u}\right)=\mu^{T} v+\sqrt{\frac{1-\varepsilon}{\varepsilon}} \sqrt{v^{T} \Sigma v}
$$

(b) (1 point) Show that $\sup _{\|||A| \| \leq 1} w^{T} A w=w^{T} w$.
(c) (2 points) Show that

$$
\sup _{\mathbb{P} \in \mathcal{P}^{C S}\left(\Gamma_{1}, \Gamma_{2}\right)} \operatorname{Va} R_{\varepsilon}^{\mathbb{P}}\left(v^{T} \tilde{u}\right)=\hat{\mu}^{T} v+\Gamma_{1}\|v\|_{2}+\sqrt{\frac{1-\varepsilon}{\varepsilon}} \sqrt{v^{T}\left(\hat{\Sigma}+\Gamma_{2} I\right) v}
$$

(d) (2 points) Show that

$$
\mathcal{U}^{C S}:=\left\{\hat{\mu}+y+C^{T} w \quad \mid \quad \exists y, w \in \mathbb{R}^{d} \text { s.t. }\|y\|_{2} \leq \Gamma_{1}, \quad\|w\|_{2} \leq \sqrt{\frac{1-\varepsilon}{\varepsilon}}\right\}
$$

with $C^{T} C=\hat{\Sigma}+\Gamma_{2} I$ implies a probabilistic guarantee of level $1-\varepsilon$ for $f(\tilde{u}, x) \leq 0$ with confidence $1-\alpha$.
(e) (3 points) Give a data driven robust formulation, leveraging $\mathcal{P}^{C S}$ that guarantee $\mathbb{P}^{*}(f(\tilde{u}, x) \leq 0) \geq$ $1-\varepsilon$ with confidence $1-\alpha$. This formulation should be expressed as a set of linear and SOCP constraints and a linear inequality over the partial concave conjugate of f.
4. Estimated Variance and Covariance - extensions
(a) (3 points) Assume now that we know that $\tilde{u} \in U$ almost-surely, where $U:=\left\{u \in \mathbb{R}^{n_{u}} \mid D u \leq e\right\}$ is a non-empty polytope. Improve the data-driven SOCP formulation.
(b) (1 point) For given v, solve $\max _{u \in \mathcal{U} C S} v^{T} u$.
(c) (4 points) Forgetting the support constraint, instead of an SOCP representation we would like to use outer-linear approximation of the robust formulation. Give the pseudo-code of a constraint generation method.

CHI-SQUARED PERCENTAGE POINTS

$\nu 0.1 \% ~ 0.5 \% ~ 1.0 \% ~ 2.5 \% ~ 5.0 \% ~ 10.0 \% ~ 12.5 \% ~ 20.0 \% ~ 25.0 \% ~ 33.3 \% ~ 50.0 \% ~$

$$
\begin{array}{rrrlllllllll}
1 & 0.000 & 0.000 & 0.000 & 0.001 & 0.004 & 0.016 & 0.025 & 0.064 & 0.102 & 0.186 & 0.455 \\
2 & 0.002 & 0.010 & 0.020 & 0.051 & 0.103 & 0.211 & 0.267 & 0.446 & 0.575 & 0.811 & 1.386 \\
3 & 0.024 & 0.072 & 0.115 & 0.216 & 0.352 & 0.584 & 0.692 & 1.005 & 1.213 & 1.568 & 2.366 \\
4 & 0.091 & 0.207 & 0.297 & 0.484 & 0.711 & 1.064 & 1.219 & 1.649 & 1.923 & 2.378 & 3.357 \\
5 & 0.210 & 0.412 & 0.554 & 0.831 & 1.145 & 1.610 & 1.808 & 2.343 & 2.675 & 3.216 & 4.351 \\
6 & 0.381 & 0.676 & 0.872 & 1.237 & 1.635 & 2.204 & 2.441 & 3.070 & 3.455 & 4.074 & 5.348 \\
7 & 0.598 & 0.989 & 1.239 & 1.690 & 2.167 & 2.833 & 3.106 & 3.822 & 4.255 & 4.945 & 6.346 \\
8 & 0.857 & 1.344 & 1.646 & 2.180 & 2.733 & 3.490 & 3.797 & 4.594 & 5.071 & 5.826 & 7.344 \\
9 & 1.152 & 1.735 & 2.088 & 2.700 & 3.325 & 4.168 & 4.507 & 5.380 & 5.899 & 6.716 & 8.343 \\
10 & 1.479 & 2.156 & 2.558 & 3.247 & 3.940 & 4.865 & 5.234 & 6.179 & 6.737 & 7.612 & 9.342
\end{array}
$$

CHI-SQUARED PERCENTAGE POINTS

$$
\begin{array}{rrrrrrrrrrrrr}
\nu & 60.0 \% & 66.7 \% & 75.0 \% & 80.0 \% & 87.5 \% & 90.0 \% & 95.0 \% & 97.5 \% & 99.0 \% & 99.5 \% & 99.9 \% \\
1 & 0.708 & 0.936 & 1.323 & 1.642 & 2.354 & 2.706 & 3.841 & 5.024 & 6.635 & 7.879 & 10.828 \\
2 & 1.833 & 2.197 & 2.773 & 3.219 & 4.159 & 4.605 & 5.991 & 7.378 & 9.210 & 10.597 & 13.816 \\
3 & 2.946 & 3.405 & 4.108 & 4.642 & 5.739 & 6.251 & 7.815 & 9.348 & 11.345 & 12.838 & 16.266 \\
4 & 4.045 & 4.579 & 5.385 & 5.989 & 7.214 & 7.779 & 9.488 & 11.143 & 13.277 & 14.860 & 18.467 \\
5 & 5.132 & 5.730 & 6.626 & 7.289 & 8.625 & 9.236 & 11.070 & 12.833 & 15.086 & 16.750 & 20.515 \\
6 & 6.211 & 6.867 & 7.841 & 8.558 & 9.992 & 10.645 & 12.592 & 14.449 & 16.812 & 18.548 & 22.458 \\
7 & 7.283 & 7.992 & 9.037 & 9.803 & 11.326 & 12.017 & 14.067 & 16.013 & 18.475 & 20.278 & 24.322 \\
8 & 8.351 & 9.107 & 10.219 & 11.030 & 12.636 & 13.362 & 15.507 & 17.535 & 20.090 & 21.955 & 26.125 \\
9 & 9.414 & 10.215 & 11.389 & 12.242 & 13.926 & 14.684 & 16.919 & 19.023 & 21.666 & 23.589 & 27.877 \\
10 & 10.473 & 11.317 & 12.549 & 13.442 & 15.198 & 15.987 & 18.307 & 20.483 & 23.209 & 25.188 & 29.588
\end{array}
$$

