Data Driven Robust Optimization Exam 19/03/2018

The exam is made of two independant parts. If necessary, you can admit the results of previous questions. All documents authorized, all electronical device forbidden.

Some usefull recalls.

- 1. An SOCP constraint take the form $a^T x + b + ||c^T x + d|| \le 0$.
- 2. We have, for any $\alpha \ge 0$, $(\alpha f)^*(x) = \alpha f^*(x/\alpha)$.
- 3. Function $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is convex iff the perspective function $\varphi : \mathbb{R}^d \times \mathbb{R}^+_* \to \mathbb{R} \cup \{+\infty\}$ with $\varphi(x,t) = tf(x/t)$ is convex.
- 4. If $(g_i)_{i \in [\![1,d]\!]}$ are concave functions with $\bigcap_{i=1}^d ri(\operatorname{dom}(g_i) \neq \emptyset$ we have

$$\left(\sum_{i=1}^{d} g_{i}(\cdot)\right)_{\star}(v) = \sup_{(v^{i})_{i \in [1,d]}} \left\{ \sum_{i=1}^{d} (g_{i})_{\star}(v^{i}) \ \middle| \ \sum_{i=1}^{d} v^{i} = v \right\}$$

5. The value at risk of level ε is defined by

$$VaR_{\varepsilon}^{\mathbb{P}}(\boldsymbol{X}) := \inf \left\{ t \mid \mathbb{P}(\boldsymbol{X} \leq t) \geq 1 - \varepsilon \right\}$$

Entropy constrained optimization

1. Preliminary analysis

We are interested in the following averaged entropy contraint $f(u, x) := -\sum_{i=1}^{d} x_i u_i ln(u_i) - C \leq 0$, were all matrices C > 0. Where f is defined on $\mathbb{R}^d \times \mathbb{R}^d_+$.

- (a) (1 point) Let $f_i(u_i) = -u_i ln(u_i)$. Compute $(f_i)_{\star}(v_i) := \inf_{u_i \in \mathbb{R}} v_i u_i f_i(u_i)$
- (b) (1 point) Show that

$$f_{\star}(v,x) := \inf_{u} v^{T} u - f(u,x) = \sup_{(v^{i})_{i \in [1,d]}} \left\{ -e^{-1} \sum_{i=1}^{d} x_{i} e^{-v_{i}/x_{i}} + C \mid \sum_{i=1}^{d} v^{i} = v \right\}$$

2. Implementation

We are interested in the following problem

$$\min_{x \in \mathbb{R}^d_+} \quad c^T x \tag{1a}$$

s.t.
$$\mathbb{P}\left(-\sum_{i=1}^{d} x_i u_i ln(u_i) \le C\right) \ge 0.95$$
(1b)

$$Ax \le b$$
 (1c)

where \tilde{u} is a random variable. We have a sample of 100 realizations of \tilde{u} , where $\|\tilde{u}\|_{\infty} \leq 10$ with an empirical mean \bar{u} and variance Σ .

(a) (1 point) Show that $f_{\star}(v, x) \geq s$ is equivalent to

$$\begin{cases} \sum_{i=1}^{d} s_i \le e(C-s) \\ x_i e^{-v_i/x_i} \le s_i \\ \sum_{i=1}^{d} v_i = v \end{cases} \quad \forall i$$

- (b) (2 points) Leveraging the CS test, explicit a convex optimisation problem (P) whose solution is a feasible solution for Problem 1 with 90% confidence (in the sampling). Is it an SOCP problem ?
- 3. Constraint generation

We would like to simplify the constraint

$$x_i e^{-v_i/x_i} \le s_i$$

through a constraint generation approach.

- (a) (1 point) Show that $\varphi_i(v_i, x_i) = x_i e^{-v_i/x_i}$ (with domain $\mathbb{R} \times \mathbb{R}^+_*$) is convex, and compute its gradient.
- (b) (1 point) Construct, for $(v_i^0, x_i^0) \in \mathbb{R} \times \mathbb{R}^+_*$, an affine minorant of φ_i which is exact at (v_i^0, x_i^0) .
- (c) (2 points) Propose a constraint generation approach that (approximately) solves Problem (P) through a sequence of SOCP that you will explicit.
- 4. (1 point) How many sample are needed to ensure the same guarantee through a sampling approach ?

Another data-driven approach

We are interested in the following optimization problem

$$\min_{x \in \mathbb{R}^d} \left\{ c^T x \mid \mathbb{P}(f(\tilde{u}, x) \le 0) \ge 1 - \varepsilon \right\}$$

where f(u, x) is a function concave in u, and convex in x.

We assume that \tilde{u} is a gaussian variable of known variance. Let $S = u^1, \dots, u^N$ be N independent realization of \tilde{u} . We define the empirical mean $M_N = 1/N \sum_{i=1}^N u^i$.

5. 1D case

Assume that \tilde{u} is a real valued Gaussian random variable following a law $\mathcal{N}(\mu^*, \sigma^2)$ where μ^* is unknown.

- (a) (1 point) Under the sampling probability, what is the law of M_N ? Deduce a confidence region I(S) on μ such that $\mathbb{P}^*_S(\mu^* \in I(S)) = 0.95$ (choose the classical formulation minimizing size of I). Is it an asymptotic or an exact confidence region ?
- (b) (1 point) Compute $\sup_{\mathbb{P}\in I(S)} VaR_{\varepsilon}^{\mathbb{P}}(v^T\tilde{u})$
- (c) (2 points) Give a set of linear constraints (in addition to the the constraint on f_{\star}) that imply, with confidence 95%, a probabilistic guarantee of level ε .
- 6. In dimension d

 \tilde{u} is now Gaussian random vector of dimension d following a law $\mathcal{N}(\mu^*, \Sigma)$ where μ^* is unknown.

- (a) (2 points) Show that $\mathbb{P}_{S}^{*}(\mu^{*} \in M_{N} + z_{\alpha}/\sqrt{N}\Sigma^{1/2}B(0,1)) = 1 \alpha$ for a z_{α} defined from the quantile of a well known law, and B(0,1) being the ball in the euclidian norm of \mathbb{R}^{d} .
- (b) (3 points) For d = 5, deduce an SOCP formulation (in addition to the f_{\star} constraint) that imply a probabilistic guarantee of level $\varepsilon = 0.1$ with confidence 95%.