Data Driven Robust Optimization Exam

22/03/2020

The exam is made of two independant parts. If necessary, you can admit the results of previous questions.
Send your work (french or english) in pdf by tuesday 8:00 by mail to vincent.leclere@enpc.fr. Please make it easily readable (bonus point for latex). Contact me in case of difficulty.

Some usefull recalls.

1. An SOCP constraint take the form $a^{T} x+b+\left\|c^{T} x+d\right\|_{2} \leq 0$.
2. We have

$$
\begin{aligned}
& \sup _{\mathbb{Q} \in \mathbb{B}_{\varepsilon}\left(\hat{\mathbb{P}}_{N}\right)} \mathbb{E}_{\mathbb{Q}}[\ell(\boldsymbol{\xi})]=\quad \inf \quad \lambda \varepsilon+\frac{1}{N} \sum_{i=1}^{N} s_{i} \\
& \text { s.t. } \\
& {\left[-\ell_{k}\right]^{\star}\left(z_{i k}-\nu_{i k}\right)+\delta^{\star}\left(\nu_{i k}, \Xi\right)-\left\langle z_{i k}, \hat{\xi}_{i}\right\rangle \leq s_{i} \quad \forall i \in[N], \forall k \in[K] } \\
&\left\|z_{i k}\right\|_{\star} \leq \lambda
\end{aligned}
$$

where

- $\hat{\mathbb{P}}_{N}$ is the uniform measure on $\left\{\hat{\xi}_{i}\right\}_{i \in[N]}$, which are iid datapoints sampled from $\boldsymbol{\xi}$, such that $\operatorname{supp}(\boldsymbol{\xi}) \subset \Xi ;$
- $\mathbb{B}_{\varepsilon}\left(\hat{\mathbb{P}}_{N}\right)$ is the Wasserstein ball of radius ε, for norm $\|\cdot\|$, centered in $\hat{\mathbb{P}}_{N}$;
- $\ell:=\max _{k \in[K]} \ell_{k}$, where each $-\ell_{k}$ is a proper convex function

3. A random variable $\boldsymbol{\xi} \in \mathbb{R}^{m}$, is light-tailed under \mathbb{P} if there exists $a>1$ such that, $\mathbb{E}_{\mathbb{P}}\left[\|\boldsymbol{\xi}\|^{a}\right]<+\infty$.
4. If $\boldsymbol{\xi} \in \mathbb{R}^{m}, m \geq 3$, is light-tailed under \mathbb{P}, then we have, for $\varepsilon<1$,

$$
\mathbb{P}_{S}\left(d_{W}\left(\mathbb{P}, \hat{\mathbb{P}}_{N}\right) \geq \varepsilon\right) \leq c_{1} e^{-c_{2} N \varepsilon^{m}}
$$

1) Data-Driven SOCP constraint

Consider the following problem :

$$
\begin{align*}
\min _{x \in \mathbb{R}^{n}} & q^{\top} x \tag{1}\\
\text { s.t. } & \|A x+b\|_{2} \leq\left(c+\Delta_{c} u\right)^{\top} x+d \tag{2}\\
& \|x\|_{\infty} \leq 1 \tag{3}
\end{align*}
$$

where $u \in \mathbb{R}^{m}$ and $\Delta_{c} \in M_{n, m}(\mathbb{R})$.

1. (2 points) Let $f(u, x):=\|A x+b\|_{2}-\left(c+\Delta_{c} u\right)^{\top} x-d \leq 0$. Compute $f_{\star}(v, x):=\inf _{u \in \mathbb{R}^{m}} v^{\top} u-f(u, x)$.
2. (3 points) We assume that $u \in \mathbb{R}$ (i.e $m=1$), and that we have 100 independant realizations of \tilde{u}. Leveraging the CS test write an SOCP problem, with the same objective function (see section 8.1 of DDRO), whose solution satisfies (2) with probability 95% with confidence 90% in the data.
3. (2 points) We now assume that $\tilde{u} \geq 0$. Refine your previous SOCP using this assumption. What can you say about the relation between both SOCP ?

2) Chance constraint

Consider a random vector $\boldsymbol{\xi}$, of unknown law, taking values in $\mathbb{R}^{n}, n \geq 3$. We assume that we have an iid sample $\left\{\hat{\xi}_{i}\right\}_{i \in[N]}$. We assume that $\operatorname{supp}(\boldsymbol{\xi}) \subset \Xi$, with $\Xi=\left\{\xi \in \mathbb{R}^{m} \mid C \xi \leq d\right\}$ a polytope (bounded polyhedron).

Let $A=\left\{\xi \in \mathbb{R}^{m} \mid a_{k}^{\top} \xi<b_{k}, \forall k \in[K]\right\}$, such that $A \cap C \neq \emptyset$. We are interested in the following problem

$$
\bar{p}:=\sup _{\mathbb{Q} \in \mathbb{B}_{\varepsilon}\left(\hat{\mathbb{P}}_{N}\right)} \mathbb{Q}(\boldsymbol{\xi} \notin A)
$$

Define $\ell_{k}(\xi)= \begin{cases}1 & \text { if } a_{k}^{\top} \xi \geq b_{k} \\ -\infty & \text { otherwise. }\end{cases}$

1. (2 points) Show that $\mathbb{Q}(\boldsymbol{\xi} \in A)=\mathbb{E}_{\mathbb{Q}}(\ell(\boldsymbol{\xi}))$, for a function ℓ to be defined.
2. (1 point) Compute $\left[-\ell_{k}\right]^{\star}(z)$
3. (1 point) Compute $\delta^{\star}(z \mid \Xi)$
4. (2 points) Give a convex minimization problem with a finite number of constraints whose value is equal to \bar{p}.
5. (2 points) Specify the above problem in the case where the Wasserstein norm chosen is $\|\cdot\|=\|\cdot\|_{\infty}$. What is the simplest class of optimization problem it belongs to ?
6. (2 points) Same question for $\|\cdot\|=\|\cdot\|_{2}$. Is it numerically simpler, more complex or impossible to say, than the previous one?
7. (4 points) We are now interested in the following chance constrained problem

$$
\begin{array}{rll}
(C C P) & \min _{x \in \mathbb{R}^{n}} & f(x) \\
& \text { s.t. } & \mathbb{P}\left(a_{k}^{\top} \xi \leq x_{k}, \forall k \in[K]\right) \geq 1-\varepsilon
\end{array}
$$

\mathbb{P} is unknown, but we have iid realisations of $\boldsymbol{\xi}$ under \mathbb{P}. Give a robust formulation of ($C C P$) implying a probabilistic guarantee of level $1-\varepsilon$ with confidence $1-\alpha$.

