
Vincent Leclère

Recherche Opérationelle
et Transport

June 4, 2021

ii

Contents

1 Introduction 1
1.1 Urban transportation network analysis 1
1.2 Game theory . 2
1.3 Exercises . 4

2 Shortest path problem 7
2.1 Graphs . 7
2.2 Dijkstra algorithm . 8
2.3 Dynamic Programming . 10
2.4 A‹ algorithm . 13
2.5 Exercises . 15

3 Wardrop Equilibrium 17
3.1 Definitions and social-optimum 17
3.2 Wardrop Equilibrium . 18
3.3 Exercises . 21

4 Numerical Methods 27
4.1 Some optimization algorithms . 27
4.2 Algorithm for computing User Equilibrium 31
4.3 Exercises . 34

A Recall on optimization 37
A.1 Convexity . 37
A.2 Optimality conditions . 38

B Partial solution to some exercises 43
B.1 Answers to Chapter 1 exercises 43
B.2 Answers to Chapter 2 exercises 44
B.3 Answers to Chapter 3 exercises 45
B.4 Answers to Chapter 4 exercises 48

iii

iv CONTENTS

CHAPTER 1

Introduction

1.1 Urban transportation network analysis

1.1.1 Transportation planning process

Among the many applications of operational reserch, we can quote its key po-
sition in the chain of transportation planning.

Transportation projects have several specificities that differentiate them from
others infrastructure projects:

• They have a very long lifespan;

• They are part of a network and cannot be thought alone;

• Thus, their effects can extented far from their immediate territories;

• They are rarely financially profitable, but play key roles in the operation
of a territory.

For all these reasons, upstream studies are crucial to really predict the im-
pacts of a transportation projects. Those studies combined territorial diagnos-
tic, trafic studies, environnemental studies, socioeconomics studies...

In complex urban systems, a common tool to evaluate changes in the trans-
portation systems is four steps modeling. Those models are built to recreate
a current situation of mobility in the territory (a year where a household sur-
vey has been made), and are then used to make predictions. They divide the
territory in zones, and linked them by one a several transportation networks
(typically, transit network and road network). They then follow four stages:

1. Trip generation: according to socioeconomics data, the number of trips
emitted and received by each zone are estimated;

2. Trip distribution: we calculate the number of trips between each pairs of
zone;

3. Modal split: how many trips are made by car, walking, public transit etc.

4. Traffic assignements, which the subject of this class.

1

2 CHAPTER 1. INTRODUCTION

1.2 Game theory

Game theory is a field at the frontier between mathematics and economy that
study the interaction between multiple players, each acting for his own gain but
whose action affects others as well.

We can define a few different type of games:

• Number of player

– 2 (most results)

– n ą 2 (hard, even with 3)

– an infinity.

• Objective

– zero-sum game (the sum of gains is 0, e.g. chess)

– cooperative : everybody share the same objective (e.g. pandemia)

– generic (e.g. Prisonner dilemna)

• Repeated or not

• Deterministic or stochastic

• ...

1.2.1 Nash Equilibrium, Pareto Optimum and Social Optimum

We start with a very well known example.

Example 1.1 (Prisonner’s Dilemna). Two guys got caught while dealing choco-
late. As he is missing concrete evidence the judge offer them a deal.

• If both deny their implication they will get 2 month each.

• If one speak, and the other deny their implication, the first will get 1 month
while the other will get 5 months.

• If both speak, they get 4 month each.

collaborate deny
collaborate (4,4) (1,5)

deny (5,1) (2,2)

Question : what is the equilibrium ?
We can see that if the other denies, it is better for me to collaborate, and if

the other collaborates, it is better for me to collaborate. Hence the equilibrium
consists in collaborating with the judge, which leads to the worst global case : a
total of 8 months.

In game theory we consider multiple agents a P A, each having a set of
possible action ua P Ua. Let denote U “ Ś

aPA Ua. Each agent earn a reward
ra : U Ñ R depending on his action, as well as others players actions.

1.3. EXERCISES 3

Definition 1.1. A Nash equilibrium is a set of actions such that no player can
unilaterally improve its pay-off by changing is action:

@a P A, @u1a P Ua, rapu
1
a, u´aq ď rapua, u´aq. (1.1)

Definition 1.2. A Pareto efficient solution is a set of action such that no other
set of actions can strictly improve at least one player’s pay-off without decreasing
at least another:

Da P A, rapũq ą rapuq ùñ Dã P A, rãpũq ă rãpuq (1.2)

Definition 1.3. A social optimum is a set of action minimizing the average
pay-off.

Let’s make a few interpretative remarks about those notions.

• To be followed a recommandation need to be a Nash Equilibrium. Oth-
erwise one player, assuming that the others follow the recommandation,
will have interest not to follow the recommandation.

• A decider (for all player) should always choose a Pareto efficient solution
: otherwise he could improve the gain of some player without impeding
any others.

• The social optimum is not always well defined as the ponderation is not al-
ways obvious, especially when players are of different types (e.g. consumer
and companies).

Exercise 1.1. • If possible, find social optimum, Nash equilibrium and Pareto
efficient solution of Prisonner’s Dilemma ?

• If possible, find social optimum, Nash equilibrium and Pareto efficient
solutions of Zero Sum games ?

1.2.2 Braess paradox

In road networks, people choose their means of transport (e.g. car versus public
transport), their time of departure, their itinerary. Each user chooses in its
own interest (mainly the shortest time / lowest cost). The time depends on the
congestion, which means on the choice of other users. Hence, we are in a game
framework : users interact with conflicting interest. As the number of people is
very high we consider that there is an infinite number of people, which means
that the choice of a single user does not affect the costs of others.

The generic case will be treated in Chapter 3, now we will just focus on a
very simple yet very interesting example, represented in Figure

Example 1.2. Consider a large group of person want to go from the same
origin o to the destination d, at the same time, with the same car. We look at
a very simple graph with two roads, each composed of two edges. The time on
each edges of the road is given as a function of the number of person taking the
given edge.

4 CHAPTER 1. INTRODUCTION

o

a

b

d

x

1

1

x

(a) Original graph

o

a

b

d

x

1

1

x

0

(b) Modified graph

Figure 1.1: Braess’s Paradox example

do

5` 2x

10` x

Figure 1.2: Exercise 1.2 graph. The cost of each arc is given as a function of x
the number of trip going through the arc.

1.3 Exercises

Solution to starred exercises can be found in Section B.1.

Exercise 1.2. 1. Consider the graph given in figure 1.2, with 1000 trips.
What is the equilibrium ? What is the social optimum ?

2. Same question with c1px1q “ 15p1`0.15p x1

1000 q
4q, c2px2q “ 20p1`0.15p x2

3000 q
4q

?

Exercise* 1.3. Consider a game where rewards (to be maximized) are given by
the following table where actions of player 1 correspond to the lines, actions of
player 2 to the columns, rewards being given in the order of player.

a b c
a (1,2) (4,3) (4,4)
b (2,6) (5,5) (2,6)
c (3,2) (2,1) (1,1)

1. Find the Nash equilibrium(s)

2. Find the social optimum(s)

3. Find the Pareto optimum(s)

Exercise* 1.4. Consider a game where rewards (to be maximized) are given by
the following table where actions of player 1 correspond to the lines, actions of

1.3. EXERCISES 5

player 2 to the columns, rewards being given in the order of player. For example,
if player 1 play a, and player 2 play c, then player 1 gains 0 and player 2 gains
1.

a b c d
a (1,-1) (0,0) (0,1) (-1,4)
b (-1,2) (2,3) (3,2) (-2,3)

1. Find the Nash equilibrium(s)

2. Find the social optimum(s)

3. Find the Pareto optimum(s)

Exercise* 1.5. Consider a game where rewards (to be maximized) are given by
the following table where actions of player 1 correspond to the lines, actions of
player 2 to the columns, rewards being given in the order of player. For example,
if player 1 play a, and player 2 play c, then player 1 gains 2 and player 2 gains
3.

a b c
a (7,1) (0,0) (2,3)
b (-1,2) (2,3) (3,2)
c (-1,4) (1,3) (1,7)

1. Find the Nash equilibrium(s)

2. Find the social optimum(s)

3. Find the Pareto optimum(s)

Exercise* 1.6. Consider a game where rewards (to be maximized) are given by
the following table where actions of player 1 correspond to the lines, actions of
player 2 to the columns, rewards being given in the order of player.

a b
a (-5,-5) (1,-1)
b (-1,1) (0,0)

1. Find the Nash equilibrium(s), social optimum(s) and Pareto optimum(s)

2. We now want to consider random strategies. More precisely we consider
that player one play a with probability p1 and player 2 play a with prob-
ability p2 (independently of the action of 1). We assume that each wants
to maximize its expected reward.

(a) For given p1 and p2 what is the expected reward of player 1 ?

(b) For a given p2 what are the set of p1 maximizing the expected reward
of player 1 ?

6 CHAPTER 1. INTRODUCTION

(c) Justify that, when looking for a Nash-Equilibrium, only 3 value of p1
and p2 should be considered, and give the reward matrix associated.

(d) What are the Nash Equilibrium(s) ? Is it better than in the original
deterministic version ?

CHAPTER 2

Shortest path problem

The shortest path problems are very standard optimization problems, incredi-
bly important in all parts of operations research, and especially for transport.
Roughly speaking, it consists in finding the fastest (or cheapest) way of going
from one point to another. Apart from obvious applications, a large number
of optimization problems can be seen as shortest path problems. For example
maintenance problems, or (deterministic) unit commitment problems (deciding
which unit should produce at what time to meet some demand) can be repre-
sented as shortest path problems.

In this chapter we first gives basic definitions over graphs, before detailing
three efficient algorithms that solve the shortest path problem.

2.1 Graphs

In this section we gives some definitions on graphs.

2.1.1 Directed graphs

A graph is one of the elementary and ubiquitous modelisation tools of Operation
Research. A directed graph pV,Eq is defined by

• A finite set of n vertices V

• A finite set of m edges each having an origin in V and a destination in
V . If there is no confusion possible we identify each edges e of E with the
pair origin-destination pu, vq P V 2.

A graph is said to be undirected if we do not distinguish between the origin and
the destination.

a

b c

d

e

(a) Directed graph

a

b c

d

e

(b) Undirected graph

Consider a directed graph pV,Eq.

7

8 CHAPTER 2. SHORTEST PATH PROBLEM

• If pu, vq P E, u is a predecessor of v, and v is a successor of u.

• The adjacency matrix of the graph is an application A : V ˆ V Ñ t0, 1u
such that Apu, vq “ 1 iff pu, vq P E.

• The incidence matrix of the graph is an application N : V ˆAÑ t´1, 0, 1u
such that Npu, pu, vqq “ ´1, Npv, pu, vqq “ 1 and N is null elsewhere.

• A path is a sequence of edges

ek
(

kPJ1,nK, such that the destination of one

edge is the origin of the next. The origin of the first edge is the origin
of the path, and the destination of the last edge is the destination of the
path.

• A (directed) graph is connected if for all u, v P V , there is a u-v-path.

• A cycle is a path where the destination vertex is the origin. A graph is
termed acyclic, if there is no cycle in it. Directed Acyclic Graphs (DAG)
have interesting properties has will be seen in § 2.3.1.

2.1.2 Weighted graphs

In order to speak of ”shortest” path, we need to define the length (or weight)
of a path.

• A weighted (directed) graph is a (directed) graph pV,Eq with a weight
function ` : E Ñ R.

• The weight of a s´ t´path p is sum of the weights of the edges contained
in the path :

`ppq :“
ÿ

ePp

`peq.

• An absorbing cycle is a cycle of strictly negative weight.

The shortest path problem from o P V to d P V consist of finding a path of
minimal weight with origin o and destination d.

Exercise 2.1. Let G be a connected directed graph containing an absorbing
cycle. What is the value of the shortest path problem for any pair of vertexes ?
Does a shortest path exists ?

2.2 Dijkstra algorithm

2.2.1 Generic label algorithm

An optimality condition

The methods we are going to present are based on a label function over the
vertices. This function should be understood as an estimate cost of the shortest
path cost between the origin and the current vertex.

2.2. DIJKSTRA ALGORITHM 9

Theorem 2.1. Suppose that there exists a function λ : V ÞÑ R Y t`8u, such
that

@pi, jq P E, λj ď λi ` `pi, jq. (2.1)

Then, if p is an s-t-path, we have `ppq ď λptq ´ λpsq1

In particular, if p is such that

@pi, jq P p, λj “ λi ` `pi, jq,

then p is a shortest path.

The condition 2.1 is a triangular inequality condition : the cost to reach j is
at least the cost to reach i plus the cost to go from i to j. Consequently the first
result consists simply in summing the inequality along edges in p, from which
we directly obtain the caracterisation of a shortest path.

An abstract algorithm

The generic label algorithm 1 consists in keeping a list of candidates vertices
U Ă V to visit, and updating a label function λ : V ÞÑ RY t`8u, that satisfies
the condition 2.1.

Data: Graph, weight, origin
U :“ tou ;
λpoq :“ 0 ;
@v ‰ o, λpvq “ `8 ;

while U ‰ H do
choose u P U ;
for v successor of u do

if λpvq ą λpuq ` `pu, vq then
λpvq :“ λpuq ` `pu, vq;
U :“ U Y tvu;

U :“ Uztuu ;

Algorithm 1: Generic label algorithm to find shortest path to any ver-
texes of G from o

We have the following properties of the label algorithm.

1. If λpuq ă 8 then λpuq is the cost of a o-u-path.

2. If u R U then

• either λpiq “ 8 (never visited)

• or
for all successor v of u, λpvq ď λpuq ` `pu, vq.

3. If the algorithm ends λpuq is the smallest cost to go from o to u.

4. Algorithm end iff there is no path starting at o and containing an absorbing
circuit.

The proof is left as exercise.

1with the convention 8´8 “ 8.

10 CHAPTER 2. SHORTEST PATH PROBLEM

2.2.2 Dijkstra’s algorithm

We assume in this section that all costs are non-negative.
Algorithm 1 is abstract in the sense that we do not specify how to choose, at

the beginning of any iteration, the vertex u P U to treat. Dijkstra’s algorithm 2
is a special case of Algorithm 1 where we select a vertex of minimum label.

U :“ tou ;
λpoq :“ 0 ;
@v ‰ o, λpvq “ `8 ;

while U ‰ H do
choose u P arg minu1PU λpu

1q ;
for v successor of u do

if λpvq ą λpuq ` `pu, vq then
λpvq :“ λpuq ` `pu, vq;
U :“ U Y tvu;

U :“ Uztuu ;

Algorithm 2: Dijkstra algorithm

An instance of Dijsktra is represented in Figure 2.2. Other can be found in
exercises.

The main interest of this method of selection is that each node will be
selected at most once in Dijkstra’s algorithm.

Theorem 2.2. Let G “ pV,Eq be a directed graph, o P V and a cost function
` : E Ñ R`.

When applying Dijkstra’s algorithm, each node is visited at most once. Once
a node v has been visited its label is constant accross iterations and equal to the
cost of shortest o-v-path.

In particular, a shortest path from o to any vertex v can be found in Opn2q,
where n “ |V |.

Proof. By induction we show that after a node v P V has been selected, the
label λkpvq is constant in k and equal to the shortest o-v-path cost.

The costs being non-negative it’s obvious for o. Let v be the current selected
node, and assume that the properties hold true for all previously selected node.
Thus λkpvq is minimal among all non-visited node, consequently, by triangular
inequality, any optimal o-v-path can only go through already selected nodes,
and by construction λkpvq is the cost of a shortest path.

Finally, there are at most n nodes to treat, and treating them consists in
comparing the costs of at most n arcs, which gives the Opn2q complexity.

Note that with specific implementation (e.g. in binary tree of nodes) we can
obtain a complexity in Opn`m logplogpmqqq.

2.3 Dynamic Programming

Dynamic Programming (DP) is also a label-like algorithm. Unfortunately it
does not exactly fall in the framework of Algorithm 1. As we will see, in DP,

2.3. DYNAMIC PROGRAMMING 11

s

t

a

b

c
d

e

f

2

1

3

2

1

5
3

6

7

3

1

2

3

(a) Graphs with non-negative costs

k s a b c d e f t
0 p0q 8 8 8 8 8 8 8

1 0 p3q 8 8 p3q 8 p5q 8

2 0 3 p5q 8 p3q 8 p5q 8

3 0 3 p4q 8 3 8 p5q 8

4 0 3 4 p5q 3 8 p5q 8

5 0 3 4 5 3 p8q p5q 8

6 0 3 4 5 3 p7q 5 p12q
7 0 3 4 5 3 7 5 p9q
8 0 3 4 5 3 7 5 9

(b) Dijkstra’s iterations

Figure 2.2: Each line of the table correspond to an iteration of Dijkstra’s algo-
rithm, giving for each vertex the current label λ. At iteration k, the number
in parenthesis determine the vertexes in U , and the number in bold determined
which vertex is selected.

instead of continously decreasing the label, we directly affect the cost of the
shortest o-v-path to the selected node v. In order to do that we need to select
the nodes in a specific topological order.

2.3.1 Topological Order

Definition 2.1. A topological ordering of a graph is an ordering (injective func-
tion from V to N) of the vertices such that the tail of every edge occurs earlier
in the ordering than the head of the edge.

Finding a topological ordering is necessary in a number of applications. For
example, in order to compile a software there is a number n of actions the
compiler has to perform, and a number m of precedence constraints (action i
as to be done before action j). This can be represented as a graph, each node
representing an action, and each edge a precedence constraint (the tail of the
edge has to be done before doing the head). A topological order over this graph

12 CHAPTER 2. SHORTEST PATH PROBLEM

is a sequence of task that satisfy the precedence constraints.
The following theorem characterize the graphs that admits a topological

ordering : Directed Acyclic Graphs (DAG).

Theorem 2.3. A directed graph is acyclic if and only if there exist a topological
ordering. A topological ordering can be found in Op|V | ` |A|q.

We give the sketch of the proof.

Proof. • If G has a topological ordering then it is acyclic. By contradiction
: consider a cycle, find the vertex with lowest ordering, it’s predecessor
can’t have a lower ordering.

• If G is a DAG, then it has a root node (with no incoming edges). By
contradiction : if there is no root node, you can take the predecessor at
most n times before constructing a cycle.

• If G is a DAG then G has a topological ordering. By induction: take a
root node, add it at the beginning of the ordering of the subgraph.

• Done in Op|V | ` |E|q (maintain countpvq : number of incoming edges, S:
set of remaining nodes with no incoming edges).

2.3.2 Forward Dynamic Programming algorithm

Dynamic Programming principle

The Dynamic Programming principle is simultaneously extremely simple and
very useful : a part of an optimal path is still optimal. More precisely, consider
a directed weigthed graph G “ pV,Eq, and a starting point o P V . Let λpvq be
the shortest o-v-path cost. Then, the Dynamic Programming Principle simply
read

λpvq “ min
pu,vqPE

pλpuq ` `pu, vqq (2.2)

Which can be understood as: there exist a predecessor u of v such that the
shortest path between o and v is given by the shortest path between o and u
adding the edge pu, vq.

A shortest path algorithm

Assume that the graph is connected and without cycle.

Data: Graph, cost function
λpsq :“ 0 ;
@v ‰ s, λpvq “ `8 ;

while Dv P V, λpvq “ 8 do
choose a vertex v such that all predecessors u have a finite label ;
λpvq :“ mintλpuq ` `pu, vq | pu, vq P Eu;

Algorithm 3: Bellman Forward algorithm

2.4. A‹ ALGORITHM 13

The while loop can be replaced by a for loop over the nodes in a topological
order.

Theorem 2.4. Let D “ pV,Eq be a directed graph without cycle, and w : AÑ R
a cost function. The shortest path from o to any vertex v P V can be computed
in Opn`mq.

Note that we do not require the costs to be positive for the Bellman-Forward
algorithm. In particular we can also compute the longest path.

2

10
3

4
2

3
6

5

3

s

t

a

b c

d

−2

(a) Acircuitic graph

s a c b d t
0 8 8 8 8 8

0 0` 3 8 8 8 8

0 3 mint0` 2, 10` 3u 8 8 8

0 3 2 mint0` 4, 3´ 2, 2` 2u 8 8

0 3 2 1 0` 3 8

0 3 2 1 3 4

(b) Bellman’s iterations

Figure 2.3: Each line of the table corresponds to an iteration of Bellman’s
algorithm, giving for each vertex the current label λ.

2.4 A‹ algorithm

Dijkstra’s algorithm is used in industry for a wide range of problems. However,
most of the times it is not implemented as presented in section 2.2. There are a
number of ways to improve the algorithm (like starting from both the starting
point and the end, or precomputing some itineraries, and so on). We present
here one of the most common way to improve Dijkstra’s algorithm, to turn it
into the so-called A‹ algorithm

2.4.1 The algorithm

The base idea consists in realizing that Dijkstra’s algorithm will compute the
shortest path from the starting point in any direction, and not particularly in

14 CHAPTER 2. SHORTEST PATH PROBLEM

the destination’s direction. Let’s say that you want the shortest path from Paris
to Marseille, you will probably obtain the shortest path to Lille, Bruxelles or
Strasbourg before obtaining Marseille’s. Thus we are going to add an ”heuristic”
that orient the algorithm toward its destination.

More precisely, To reach destination d from origin o in a weighted directed
graph we keep a label function λpnq, with

λpnq “ gpnq ` hpnq (2.3)

where gpnq is the cost of a o-n-path, and hpnq is an (user-given) heuristic of the
cost of a n-d-path. Then the algorithm reads as in Algorithm 4. Notice that
it is a specific implementation of the generic label algorithm 1, and the only
difference with Djikstra’s algorithm is that instead of selecting the node closest
to the origin, we select the node v with minimal λ where λ is an estimation of
the total path cost, not just minimal o-v-distance.

U :“ tsu ; λpsq :“ hpsq ; @v ‰ s, λpvq “ gpvq “ `8 ;
while U ‰ H do

choose u P arg minu1PU λpu
1q ;

for v successor of u do
if gpvq ą gpuq ` `pu, vq then

gpvq :“ gpuq ` `pu, vqu;
λpvq :“ gpvq ` hpvq;
U :“ U Y tvu;

U :“ Uztuu ;

Algorithm 4: A‹ algorithm

2.4.2 Heuristics and properties

Definition 2.2 (admissible heuristic). A heuristic is admissible if it underes-
timate the actual cost to get to the destination, i.e. if for all vertex v P V , hpvq
is lower or equal to the cost of a shortest path from v to d.

Example : in the case of a graph in R2 with a cost proportional to the
euclidean distance, an admissible heuristic is the euclidean distance between v
and t (the ”direct flight” distance). A‹ with an admissible heuristic yields the
shortest path.

Definition 2.3 (consistent heuristic). The heuristic h is consistent if it is
admissible and satisfies a triangle equality:

@pu, vq P E, hpuq ď `pu, vq ` hpvq. (2.4)

If h is consistent, A‹ can be implemented more efficiently. Roughly speaking,
no node needs to be processed more than once, and A‹ is equivalent to running
Dijkstra’s algorithm with the reduced cost ˜̀pu, vq “ `pu, vq ` hpvq ´ hpuq.

Exercise 2.2. 1. Show that h ” 0 is consistent, and in this case A‹ reduce
to Dijkstra.

2. Show that if h is exact (hpvq is the cost of the shortest v-d-path), then h
is consistent and A‹ only visit the shortest o-d-path.

2.5. EXERCISES 15

2.5 Exercises

Answer to starred exercises can be found in Section B.2

Exercise* 2.3. Consider the following non-oriented weighted graph.

a

b

c

d

e

f

4

2

5

81

10

2

6

3

(a) non-oriented graph

a

b

c

d

e

f

4

2

5

81

10

2

6

3

(b) oriented graph

1. Why can Dijkstra’s algorithm be used to find a shortest path on this graph
(Figure 1) ?

2. Use Dijkstra’s algorithm to find the shortest path between node a and node
f . The results can be presented in a table of the labels where each column
corresponds to a node of the graph, and each line to an iteration of the
Dijkstra algorithm. Give the shortest path and its cost.

3. Can we find a topological order for this graph (Figure 2.4a) ? for the next
one (Figure 2.4b) ?

4. Find the shortest a-f -path for the graph in Figure 2.

Exercise* 2.4. Consider the following weighted graph.

a

b

c

d

e

f

2

5

1

3

2

1 4

5

1

1. Use Dijkstra’s algorithm to find the cost of the shortest path between node a
and node f . The results can be presented in a table of the labels where each
column corresponds to a node of the graph, and each line to an iteration
of the Dijkstra algorithm.

2. Find a topological ordering for the graph. Use the topological ordering to
compute the cost of the shortest path from a to every nodes by Dynamic
Programming.

16 CHAPTER 2. SHORTEST PATH PROBLEM

a

b

c

d

e

f

2

5

1

3 4

2

10

1

3. Give the shortest path from a to f .

Exercise* 2.5. Consider the following weighted graph.

1. Use Dijkstra’s algorithm to find the cost of the shortest path between node a
and node f . The results can be presented in a table of the labels where each
column corresponds to a node of the graph, and each line to an iteration
of the Dijkstra algorithm. Note the order in which the nodes are treated.

2. We have the following heuristic h giving an estimate of the distance be-
tween a given node and f .

a b c d e f
20 4 7 6 0 0

Apply the A˚ algorithm using this heuristic. Note the order of nodes
treated. Comment.

CHAPTER 3

Wardrop Equilibrium

3.1 Definitions and social-optimum

3.1.1 Notations

Consider a (finite) directed graph G “ pV,Eq. We consider K origin-destination
vertex pairs

ok, dk
(

kPJ1,KK, such that there exists at least one path from ok to

dk. Let denotes:

• rk the intensity of the flow of user entering in ok and exiting in dk;

• Pk the set of all simple (i.e. without cycle) path form ok to dk, and by

P “ ŤK
k“1 Pk ;

• fp the flux of user taking path p P P;

• f “

fp
(

pPP the vector of path-flux;

• xe “
ř

pQe fp the flux of user taking the edge e P E;

• x “

xe
(

ePE
the vector of edge-flux;

• `e : R Ñ R` the cost incurred by a given user to take edge e, if the
edge-intensity is xe;

• Lepxeq :“
şxe

0
`epuqdu.

3.1.2 First formulation

Minimizing the total cost of the system is an optimization problem that reads

min
x,f

ÿ

ePE

xe`epxeq (3.1a)

s.t. rk “
ÿ

pPPk

fp k P J1,KK (3.1b)

xe “
ÿ

pQe

fp e P E (3.1c)

fp ě 0 p P P (3.1d)

Where constraint (3.1b) ensure that the flux going from ok to dk is spread among
the different possible paths. Constraint (3.1c) is the definition of xe as the sum
of the users taking the different path containing edge e.

17

18 CHAPTER 3. WARDROP EQUILIBRIUM

3.1.3 Reformulations

We can write the total cost, or system cost, in different ways using

xepfq :“
ÿ

pQe

fp @e P E, (3.2)

and xpfq “ txe | e P Eu
The total loss is given in function of arc-intensity, by

Cpxq “
ÿ

ePE

xe`epxeq,

where xe is the number of people using edge e.
To write the system cost in function of the path-intensity f we need first to

define the cost along a path `ppfq, for a given flow f given by

`ppfq “
ÿ

ePp

`e
`

ÿ

p1Qe

fp1

loomoon

xepfq

˘

.

Thus the system cost in function of the flow f is given by

Cpfq “
ÿ

pPP
fp`ppfq “

ÿ

ePE

xe`epxepfqq “ Cpxpfqq.

3.2 Wardrop Equilibrium

3.2.1 Equilibrium Definition

John Wardrop defined a traffic equilibrium as follows. ”Under equilibrium con-
ditions traffic arranges itself in congested networks such that all used routes
between an O-D pair have equal and minimum costs, while all unused routes
have greater or equal costs.”

A mathematical definition reads as follows.

Definition 3.1. A user flow f is a User Equilibrium if

@k P J1,KK, @pp, p1q P P2
k , fp ą 0 ùñ `ppfq ď `p1pfq.

3.2.2 Equilibrium as optimality conditions

We are going to show that a user-equilibrium f is defined as a vector satisfying
the KKT conditions of a certain optimization problem.

Let define a new edge-loss function by

Lepxeq :“

ż xe

0

`epuqdu.

The Wardrop potential is defined (for edge intensity) as

W pfq “W pxpfqq “
ÿ

ePE

Lepxepfqq.

3.2. WARDROP EQUILIBRIUM 19

Theorem 3.1. A flow f is a user equilibrium if and only if it satisfies the first
order conditions of the following optimization problem

min
x,f

W pxq (3.3a)

s.t. rk “
ÿ

pPPk

fp k P J1,KK (3.3b)

xe “
ÿ

pQe

fp e P E (3.3c)

fp ě 0 p P P (3.3d)

Proof. Let write Problem (3.3) only in path-intensity variables.

min
f

ÿ

ePE

Le

´

ÿ

pQe

fp

¯

(3.4a)

s.t. rk “
ÿ

pPPk

fp k P J1,KK (3.4b)

fp ě 0 p P P (3.4c)

with Lagrangian

Lpf, λ, µq :“W pfq `
K
ÿ

k“1

λk

´

rk ´
ÿ

pPPk

fp

¯

`
ÿ

pPP
µpfp.

Now note that we have

BW

Bfp
pfq “

B

Bfp

ˆ

ÿ

ePE

Lep
ÿ

p1Qe

fp1q

˙

“
ÿ

ePp

B

Bxe
Lepxepfqq

“
ÿ

ePp

`epxepfqq “ `ppfq,

and the constraints of Problem (3.4) are qualified. Consequently its first-
order KKT conditions reads

$

’

’

’

’

&

’

’

’

’

%

BLpf,λ,µq
Bfp

“ `ppfq ´ λk ` µp “ 0 @p P Pk,@k P J1,KK
BLpf,λ,µq
Bλk

“ rk ´
ř

pPPk
fp “ 0 @k P J1,KK

µp “ 0 or fp “ 0 @p P P
µp ď 0, fp ě 0 @p P P

From which we deduce that, f satisfies the KKT conditions iff for all origin-
destination pair k P J1,KK, and all path p P Pk we have

#

`ppfq “ λk if fp ą 0

`ppfq ě λk if fp “ 0
(3.5)

In other words, if the path p P Pk is used, then its cost is λk, and all other
path p1 P Pi have a greater or equal cost, which is the definition of a User
Equilibrium.

20 CHAPTER 3. WARDROP EQUILIBRIUM

Note that if the edge-loss `e is constant, then W “ C, and equilibrium and
system optimum are the same.

3.2.3 Convex case

If the loss functions (in edge-intensity) are non-decreasing then the Wardrop
potential W is convex. Hence we have a stronger version of Theorem (3.1):

Theorem 3.2. Assume that the loss function `e is non-decreasing for all e P E.
Then there exists at least one user equilibrium, and a flow f is a user equilibrium
if and only if it solves Problem (3.3).

Proof. For e P E, if `e is non-decreasing, then Le is convex, hence
ř

ePE Lep¨q is
convex, and by composition with a linear mapping x ÞÑW pxq is convex as well.
Thus Problem (3.4) is convex, with qualified constraint.

Consequently f is an equilibrium iff it satisfies KKT conditions of Prob-
lem (3.4), iff it solves Problem (3.4), iff it solves Problem (3.3) (x being deduced
from the constraints).

We end with another characterization of the equilibrium in the convex case.
This characterization states that the flow minimizes the total cost with travel
cost frozen at the equilibrium flow.

First, we need to define the system cost of a flow f 1 for a given flow f , as

Cf pf 1q :“
ÿ

ePE

xepf
1q`e

`

xepfq
˘

.

Theorem 3.3. Assume that the cost functions `e are continuous and non-
decreasing. Then, fUE is a user equilibrium iff

@f P F ad, Cf
UE

pfUEq ď Cf
UE

pfq,

where F ad is the set of admissible flows.

Proof. We are in the convex case, hence fUE is an optimal solution of Prob-
lem (3.4) iff

∇W pfUEq ¨ pf ´ fUEq ě 0, @f P F ad

which is equivalent to

ÿ

pPP

BW

Bfp
pfUEq

looooomooooon

`ppfUEq

fp ě
ÿ

pPP

BW

Bfp
pfUEq

looooomooooon

`ppfUEq

fUEp , @f P F ad

which can be written

Cf
UE

pfUEq ď Cf
UE

pfq, @f P F ad.

3.3. EXERCISES 21

3.2.4 Price of anarchy

Definition 3.2. Consider increasing loss functions `e. Let fUE be a user equi-
librium, and fSO be a system optimum (i.e. a solution of Problem (3.1)). Then
the price of anarchy of our network is given by

PoA :“
CpfUEq

CpfSOq
ě 1.

Theorem 3.4. Let `e be the affine function xe ÞÑ bexe ` ce, with be, ce ě 0.
Then the price of anarchy is lower than 4{3, and the bound is tight.

Proof. Let f be a feasible flow, and fUE be the user equilibrium. For ease of
notation we fix xUE “ xpfUEq, and x “ xpfq. By Theorem 3.3 we have

CpfUEq ď Cf
UE

pfq

“
ÿ

ePE

`

bex
UE
e ` ce

˘

xe

ď
ÿ

ePE

”

`

bexe ` ce
˘

xe `
1

4
be
`

xUEe
˘2
ı

as pxe ´ x
UE
e {2q2 ě 0

ď Cpfq `
1

4

ÿ

ePE

`

bex
UE
e ` ce

˘

xUEe as cex
UE
e ě 0

“ Cpfq `
1

4
Cf

UE

pfUEq

Hence we have 3{4CpfUEq ď Cpfq. Minimizing over admissible flow f ends the
proof.

The Braess paradox example show that the bound is tight.

3.3 Exercises

Answer to starred exercises can be found in Section B.3

Exercise 3.1.

do

xN

1

Figure 3.1: Pigou example

On a graph with two nodes: one origin, one destination, a total flow of 1, a
fixed cost of 1 on one edge, and a cost of xN on the other, where N P N and x
is the intensity of the flow using this edge (see Figure 3.1).

1. Compute the system optimum for a given N .

2. Compute the user equilibrium for a given N .

22 CHAPTER 3. WARDROP EQUILIBRIUM

3. Compute the price of anarchy on this network when N Ñ8.

Exercise* 3.2. Consider a (finite) directed, strongly connected, graph G “

pV,Eq. We consider K origin-destination vertex pair

ok, dk
(

kPJ1,KK, such that

there exists at least one path from ok to dk.
We want to find bounds on the price of anarchy, assuming that, for each arc

e, `e : R` Ñ R` is non-decreasing, and that we have

x`epxq ď γLepxq, @x P R`

1. Recall which optimization problems solves the social optimum xSO and
the user equilibrium xUE. We will denote W pxq the objectif function of
the user equilibrium problem and Cpxq the objective function of the social
optimum problem.

2. Let x be a feasable vector of arc-intensity. Show that W pxq ď Cpxq ď
γW pxq.

3. Show that the price of anarchy CpxUEq{CpxSOq is lower than γ.

4. If the cost per arc `e are polynomial of order at most p with non-negative
coefficient, find a bound on the price of anarchy. Is this bound sharp ?

Exercise* 3.3. Consider a (finite) directed, strongly connected, graph G “

pV,Eq. We consider K origin-destination vertex pair

ok, dk
(

kPJ1,KK. We de-

note by pG, `, rq the congestion game with rate rk from ok to dk. We want to
compare the cost of the user equilibrium of pG, `, rq, denoted fUE,r, with the
cost of the social optimum fSO,2r of pG, `, 2rq, that is the same game with twice
the inflows. Accordingly we denote xUE,r “ xpfUE,rq, and xSO,2r “ xpfSO,2rq.
Finally, edge-loss `e are assumed to be non-negative and non-decreasing.

We construct new loss functions ¯̀
epxq given by

¯̀
epxq “

#

`epx
UE,rq if x ď xUE,r

`epxq else

Accordingly we denote ¯̀
ppfq “

ř

ePp
¯̀
epxepfqq and

Cpxq “
ÿ

ePE

xe`epxeq and C̄pxq “
ÿ

ePE

xe ¯̀
epxeq.

1. Justify that for all k P J1,KK, there exists λk P R` such that for all path
p P Pk,

fUE,rp ą 0 ñ `ppf
UE,rq “ λk.

2. Show that, for any x P R|E|` , Cpxq ď C̄pxq, and that CpxUE,rq “ C̄pxUE,rq.

3. Show that, for any x P R|E|` , xep¯̀epxeq ´ `epxeqq ď xUE,re `epx
UE,r
e q.

4. Deduce that, C̄pxSO,2rq ´ CpxSO,2rq ď CpxUE,rq.

5. On the other hand, show that, for every path p P Pk, ¯̀
ppf

SO,2rq ě λk.

6. Write C and C̄ as function of f instead of x (we keep the same notation).

3.3. EXERCISES 23

7. Deduce that, C̄pfSO,2rq ě 2CpfUE,rq.

8. Finally, show that, CpfUE,rq ď CpfSO,2rq. Give an interpretation of this
result.

Exercise* 3.4. The price of anarchy of a class C of cost functions is the highest
price of anarchy obtained by choosing any (finite) graph, with any rate (i.e.
input/output flow) and any cost function in the class.

We will assume that C contains the constant functions. Moreover we assume
that C contains only non-decreasing functions.

1. What is the price of anarchy if C is the class of non-decreasing affine
functions?

2. What is the price of anarchy if C is the class of non-decreasing polynomial
functions?

A Pigou network is a network with two nodes: one origin o, one destination
d, and two arcs linking o to d, and a flow rate between o and d of r ą 0. The
cost function of the first arc is c P C, and the cost function of the second arc is
constant equal to cprq.

3. What is the user equilibrium, social optimum and price of anarchy of a
Pigou network with given rate r ą 0? (The result is not a closed formula
but contains a max or a min).

4. Deduce a lower bound of the price of anarchy of the class C.

5. Show that this lower bound is exact for the class of affine non-decreasing
functions.

Exercise* 3.5. Consider a (finite) directed, strongly connected, graph G “

pV,Eq. We consider K origin-destination vertex pair

ok, dk
(

kPJ1,KK. We de-

note by pG, `, rq the congestion game with inflow vector r.

• rk is the intensity of the flow of users entering in ok and exiting in dk;

• Pk is the set of all simple (i.e. without cycle) paths from ok to dk, and by

P “ ŤK
k“1 Pk ;

• fp the number of users taking path p P P per hour (intensity);

• f “

fp
(

pPP the vector of path intensity;

• xe “
ř

pQe
fp the flux of user taking the edge e P E;

• x “

xe
(

ePE
the vector of edge intensity;

• xpfq is the vector of edge-intensity induced by the path intensity f ;

• `e : R Ñ R` the cost incurred by a given user to take edge e, if the
edge-intensity is xe;

• Lepxeq :“
şxe

0
`epuqdu.

24 CHAPTER 3. WARDROP EQUILIBRIUM

o

a

b

d

gδpxq

1´ ε

1´ ε

gδpxq

0

2

Figure 3.2: A graph example

We say that an admissible flow fε, for ε P r0, 1r is a ε-Nash Equilibrium
if

@k P J1,KK, @p1, p2 P Pk, fεp1 ą 0 ùñ `p1pf
εq ď p1` εq`p2pf

εq.

We want to compare the cost of a given ε-equilibrium of pG, `, rq, denoted
fε,r, with the cost of the social optimum fSO,2r of pG, `, 2rq, that is the same
game with twice the inflows. Accordingly we denote xε,r “ xpfε,rq, and xSO,2r “
xpfSO,2rq. Finally, edge-loss `e are assumed to be non-negative and non-decreasing.

Both parts are largely independent.

Part I : an example

We consider, for ε P r0, 1r, the congestion game pG, `, rq given in Figure 3.2 with
the unique origin destination pair o´d. Here, gδ is a continuous non-decreasing
function with value 0 on s ´ 8, 1´ δs and value 1` ε on r1,`8r.

1. Show that a flow fε,1 getting 1 through o Ñ a Ñ b Ñ d, and 0 on other
paths, is a ε-Nash Equilibrium of pG, `, 1q.

2. Construct an admissible flow of pG, `, 2q of cost 4δ ` 2p1´ εqp1´ δq.

3. Show that the social optimum of pG, `, 2q can be found by solving an uni-
dimensional optimization problem, and propose an adapted optimization
algorithm.

Part II : bounding the cost of ε-Nash Equilibrium

We construct new loss functions ¯̀
epxq given by

¯̀
epxq “

#

`epx
ε,rq if x ď xε,r

`epxq else

Accordingly we denote ¯̀
ppfq “

ř

ePp
¯̀
epxepfqq and

Cpxq “
ÿ

ePE

xe`epxeq and C̄pxq “
ÿ

ePE

xe ¯̀
epxeq.

For k P J1,KK, denote λkpxq the minimum cost of an ok-dk-path with costs given
by edge-intensity vector x.

3.3. EXERCISES 25

1. Give an interpretation of an ε-Nash Equilibrium. What happens if ε “ 0
?

2. Show that Cpxε,rq ď p1` εq
řK
k“1 rkλkpx

ε,rq.

3. Show that, for any x P R|E|` , xep¯̀epxeq ´ `epxeqq ď xε,re `epx
ε,r
e q.

4. Deduce that, C̄pxSO,2rq ´ CpxSO,2rq ď Cpxε,rq.

5. Show that, for all p P Pk, ¯̀
ppf

SO,2rq ě λkpx
ε,rq.

6. Show that
ÿ

pPP

¯̀
ppf

SO,2rqfSO,2rp ě
2

1` ε
Cpxε,rq

7. Find a constant Kε such that Cpxε,rq ď KεCpx
SO,2rq.

8. Using part I show that this bound is tight.

26 CHAPTER 3. WARDROP EQUILIBRIUM

CHAPTER 4

Numerical Methods

4.1 Some optimization algorithms

Consider the unconstrained optimization problem

min
xPRn

fpxq. (4.1)

A descent direction algorithm is an algorithm that constructs a sequence of
points pxpkqqkPN, that are recursively defined with:

xpk`1q “ xpkq ` tpkqdpkq (4.2)

where

• xp0q is the initial point,

• dpkq P Rn is the descent direction,

• tpkq is the step length.

For a differentiable objective function f , dpkq will be a descent direction iff
∇fpxpkqq ¨ dpkq ď 0, which can be seen from a first order development:

fpxpkq ` tpkqdpkqq “ fpxpkqq ` t
@

∇fpxpkqq , dpkq
D

` optq.

The most classical descent direction is dpkq “ ´∇fpxpkqq, which correspond to
the gradient algorithm.

The step-size tpkq can be:

• fixed tpkq “ tp0q, for all iteration,

• optimal tpkq P arg mintě0 fpx
pkq ` tdpkqq,

• a ”good” step, following some rules (e.g Armijo’s rules).

In the remain of this section we will first give algorithm for finding optimal
step size, and then present a new algorithm for constrained optimization.

4.1.1 Unidimensional optimization

Here we assume that the objective function J : R Ñ R is strictly convex1 and
we propose algorithms that find the minimum over ra, bs. We start with two
interval reduction algorithms, that constructs intervals raplq, bplqs containing the
optimal solution t˚. We note Ll “ bplq ´ aplq the length of the interval, and the
speed of the algorithm is given by the speed at which Ll goes toward 0.

1extension to simple convexity, or even lesser conditions is straightforward.

27

28 CHAPTER 4. NUMERICAL METHODS

Bisection method

We assume that J is differentiable over ra, bs. Note that, for c P ra, bs, t˚ ă c iff
J 1pcq ą 0. From this simple remark we construct the bisection method.

Data: objective function J , interval ra, bs, error ε
Result: interval raplq, bplqs containing t˚ such that bplq ´ aplq ă ε
ap0q “ a; bp0q “ b;

while bplq ´ aplq ą ε do

cplq “ bplq`aplq

2 ;

if J 1pcplqq ą 0 then

apl`1q “ aplq ;
bpl`1q “ cplq ;

else if J 1pcplqq ă 0 then

apl`1q “ cplq ;
bpl`1q “ bplq ;

else

return interval raplq, bplqs

l “ l ` 1

Algorithm 5: Bisection algorithm

Note that Ll “ bplq ´ aplq “ L0

2l
.

Golden section method

The bisection method is simple and fast but requires computing the gradient
at each iteration. The golden section method does not require any gradient
computation.

Consider a ă t1 ă t2 ă b, we are looking for t˚ “ arg mintPra,bs Jptq Note
that

• if Jpt1q ă Jpt2q, then t˚ P ra, t2s ;

• if Jpt1q ą Jpt2q, then t˚ P rt1, bs ;

• if Jpt1q “ Jpt2q, then t˚ P rt1, t2s .

Hence, at each iteration the interval raplq, bplqs is updated into raplq, t
plq
2 s or

rt
plq
1 , bplqs. We now want to know how to choose t

plq
1 and t

plq
2 . To minimize the

worst case complexity we want equity between both possibility, hence bplq ´

t
plq
1 “ t

plq
2 ´ aplq. Now assume that Jpt

plq
1 q ă Jpt

plq
2 q. Hence apl`1q “ aplq, and

bpl`1q “ t2. We would like to reuse the computation of Jpt
plq
1 q by defining

t
pk`1q
1 “ t

plq
2 .

In order to satisfy this constraint we need to have
#

L2 ` L1 “ L
L2

L “ L1

L2
“: R

(4.3)

where L “ bplq ´ aplq, L1 “ t
plq
1 ´ aplq and L2 “ t

plq
2 ´ aplq. This implies

1`R “
1

R
(4.4)

4.1. SOME OPTIMIZATION ALGORITHMS 29

and thus

R “

?
5´ 1

2
. (4.5)

Finally, in order to satisfy equity and reusability it is enough to set

t
plq
1 “ aplq ` p1´Rqpbplq ´ aplqq

t
plq
1 “ aplq `Rpbplq ´ aplqq

The same happens for the Jpt
plq
1 q ą Jpt

plq
2 q case. Thus the golden section

algorithm reads

Data: objective function J , interval ra, bs, error ε
Result: interval raplq, bplqs containing t˚ such that bplq ´ aplq ă ε
ap0q “ a, bp0q “ b;

t
p0q
1 “ a` p1´Rqb, t

p0q
2 “ a`Rb;

J1 “ Jpt
p0q
1 q, J2 “ Jpt

p0q
2 q;

while bplq ´ aplq ą ε do
if J1 ă J2 then

apl`1q “ aplq ;

bpl`1q “ t
plq
2 ;

t
pl`1q
1 “ apl`1q ` p1´Rqbpl`1q;

t
pl`1q
2 “ t

p

1lq ;
J2 “ J1;

J1 “ Jpt
pl`1q
1 q;

else

apl`1q “ t
plq
1 ;

bpl`1q “ bplq ;

t
pl`1q
1 “ t

plq
2 ;

t
pl`1q
2 “ apl`1q `Rbpl`1q ;
J1 “ J2;

J2 “ Jpt
pl`1q
2 q;

l “ l ` 1

Algorithm 6: Golden section algorithm

Note that Ll “ RlL0.

Curve fitting methods

Another approach consists in fitting a polynomial to J and finding its minimum.
There are different ways to do that.

One of them consists in keeping three points t1 ă t2 ă t3 such that Jpt1q ą
Jpt2q ă Jpt3q, then fit a polynomial P pkq to these points, find the minimum of
P pkq and update one of the three points.

Another one, if J is twice-differentiable (with non-null second order deriva-
tive) is to determine tpk`1q as the minimum of the second order Taylor’s of J at

30 CHAPTER 4. NUMERICAL METHODS

tpkq :

tpl`1q ´ tplq “ arg min
t

Jptplqq ` J 1ptplqqt`
t2

2
J2ptplqq

“
`

J2ptplqq
˘´1

J 1ptplqq

This is the well known, and very efficient, Newton method.

4.1.2 Conditional Gradient Algorithm

Figure 4.1: Conditional gradient algorithm2

The conditional gradient algorithm, also known as Frank-Wolfe algorithm,
or convex combination method, address an optimization problem with convex
objective function f and compact polyhedral constraint set X, i.e.

min
xPXĂRn

fpxq (4.6)

where

X “

x P Rn | Ax ď b, Ãx “ b̃
(

(4.7)

It is a descent algorithm, where we first look for an admissible descent di-
rection dpkq, and then look for the optimal step.

As f is convex, we know that for any point xpkq,

fpyq ě fpxpkqq `∇fpxpkqq ¨ py ´ xpkqq. (4.8)

The conditional gradient method consists in choosing the descent direction
that minimize the linearization of f over X. More precisely, at step k we solve

ypkq P arg min
yPX

fpxpkqq `∇fpxpkqq ¨ py ´ xpkqq. (4.9)

Note that:

• Problem (4.9) is linear, hence easy to solve.

2illustration by S.Stutz and M.Jaggi

4.2. ALGORITHM FOR COMPUTING USER EQUILIBRIUM 31

• By the convexity inequality (4.8), the value of Problem (4.9) is a lower
bound to our problem (4.6).

• As ypkq P X, dpkq “ ypkq ´ xpkq is a feasable direction, in the sense that we
can move infinitesimally from xpkq in the direction dpkq.

• More precisely, for all t P r0, 1s, xpkq ` tdpkq P X.

• Furthermore, if ypkq is obtained through the simplex method it is an ex-
treme point of X, which means that, for t ą 1, xpkq ` tdpkq R X.

• Finally, if ypkq “ xpkq then they are equal to an optimal solution of Prob-
lem (4.6).

• We also have ypkq P arg minxPX ∇fpxpkqq ¨ y, the lower-bound being ob-
tained easily.

Finally, the conditional gradient algorithm goes as follow.

Data: objective function f , constraints, initial point xp0q, precision ε
Result: ε-optimal solution xpkq, upperbound fpxpkqq, lowerbound f
f “ ´8 ;
k “ 0 ;

while fpxpkqq ´ f ą ε do

solve the LP minyPX fpx
pkqq `∇fpxpkqq ¨ py ´ xpkqq ;

let ypkq be an optimal solution, and f the optimal value ;

set dpkq “ ypkq ´ xpkq ;

solve tpkq P arg min
tPr0,1s

f
´

xpkq ` tdpkq
¯

;

update xpk`1q “ xpkq ` tpkqdpkq ;
k “ k ` 1;

4.2 Algorithm for computing User Equilibrium

4.2.1 Heuristics algorithms

All-or-nothing approach

A very simple heuristic consists in:

1. Set k “ 0.

2. Assume initial cost per edge `
pkq
e “ `epx

ref
e q.

3. For each origin-destination pair poi, diq find the shortest path associated
with `pkq.

4. Associate the full flow ri to this path, which form a flow of user f pkq.

5. Deducing the travel cost per edge is `
pk`1q
e “ `epf

pkqq.

6. Go to step 3.

This method is simple and requires only to compute the shortest path in a fixed
cost graph. However it is not converging as it can cycle.

32 CHAPTER 4. NUMERICAL METHODS

Smoothed all-or-nothing approach

The all-or-nothing method can be understood as follow: each day every user
choose the shortest path according to the traffice on the previous day. We can
smooth the approach by saying that only a fraction ρ of user is going to update
its path from one day to the next.

Hence the smoothed all-or-nothing approach reads

1. Set k “ 0.

2. Assume initial cost per arc `
pkq
e “ `epx

ref
e q.

3. For each pair origin destination poi, diq find the shortest path associated
with `pkq.

4. Associate the full flow ri to this path, which form a flow of user f̃ pkq.

5. Compute the new flow f pkq “ p1´ ρqf pk´1q ` ρf̃ pkq.

6. Deducing the travel cost per arc as `
pk`1q
e “ `epf

pkqq.

7. Go to step 3.

This method is better behaved.

Incremental loading

For more stability we can adapt the previous methods by modifying the flow
only for one origin-destination pair at a time.

4.2.2 Frank-Wolfe algorithm applied to the User-Equilibrium prob-
lem

Recall that, if the arc-cost functions are non-decreasing finding a user-equilibrium
is equivalent to solving

min
f

W pxpfqq (4.10a)

s.t. rk “
ÿ

pPPk

fp k P J1,KK (4.10b)

fp ě 0 p P P (4.10c)

where

W pfq “W pxpfqq “
ÿ

ePE

Lepxepfqq,

with

Lepxeq :“

ż xe

0

`epuqdu,

and

xepfq “
ÿ

pQe

fp.

4.2. ALGORITHM FOR COMPUTING USER EQUILIBRIUM 33

Note that the constraints in problem (4.10) are linear with convex objective
function. Let’s compute the linearization of the objective function. Consider an
admissible flow f pκq and a path p P Pi. We have

BW ˝ x

Bfp
pf pκqq “

B

Bfp

ˆ

ÿ

ePE

Lep
ÿ

p1Qe

f
pκq
p1 q

˙

“
ÿ

ePp

B

Bxe
Lepxepf

pκqqq

“
ÿ

ePp

`epxepf
pκqq “ `ppf

pκqq.

Hence, the linearized problem around f pkq reads

min

yp

(

pPP

ÿ

pPP
yp`ppf

pκqq (4.11a)

s.t rk “
ÿ

pPPk

yp k P J1,KK (4.11b)

yp ě 0 p P P (4.11c)

Note that this problem is an all-or-nothing iteration and can be solved po, dq-
pair by po, dq-pair by solving a shortest path problem. As the cost tka :“ `epf

pκqq

is non-negative we can use Djikstra’s algorithm to solve this problem.

Having found ypκq, we now have to solve

min
tPr0,1s

Jptq :“W
´

p1´ tqf pκq ` typκqq
¯

.

As J is convex, the bisection method seems adapted. We have

J 1ptq “ ∇W
´

p1´ tqf pκq ` typκq
¯

¨ pypκq ´ f pκqq

“
ÿ

pPP
pypκqp ´ f pκqp q`p

`

p1´ tqf pκq ` typκq
˘

hence the bisection method is readily implementable.

In the end, the Frank-Wolfe algorithm applied to the user-equilibrium prob-

34 CHAPTER 4. NUMERICAL METHODS

lem is a smoothed all-or-nothing approach, which reads:

Data: cost function `, constraints, initial flow f p0q

Result: equilibrium flow f pκq

W “ ´8 ;
κ “ 0 ;

compute starting travel time c
p0q
e “ `epxpf

pκqqq;

while W pxpκqq ´W ą ε do
foreach pair origin-destination poi, diq do

find a shortest path pi from oi to di for the loss cpκq ;

deduce an auxiliary flow ypκq by setting ri to pi ;

set descent direction dpκq “ ypκq ´ f pκq ;

find optimal step tpκq P arg min
tPr0,1s

W
´

xpκq ` tdpκq
¯

;

update f pk`1q “ f pκq ` tpκqdpκq ;
κ “ κ` 1;

4.3 Exercises

Answer to starred exercises can be found in Section B.4

Exercise* 4.1. We consider the problem

min
xPr´1,1s2

fpxq :“ px1 ´ 2q2 ` px2 ` 1q2.

We want to solve this problem through Frank-Wolfe algorithm (a.k.a Conditional
Gradient algorithm).

1. Will the Frank-Wolfe algorithm converge ?

2. Compute the gradient of J .

3. Assume that xp0q “ p0, 0q. Write and solve the linear problem that is part
of the first iteration of the Frank-Wolfe algorithm.

4. Write and solve the linear search problem that is part of the first iteration
of the Frank-Wolfe algorithm. Find the new point xp1q.

5. Write the linear problem part of the second iteration of the Frank-Wolfe
algorithm.

Exercise* 4.2. Consider the function fpx1, x2q “ 4x41´ 2x1`x
2
2´x2` 2, and

the set
X “

x P R2
` | 2x2 ` x1 ď 2

(

and x0 “ p0, 0q. A scheme of X representing the iteration and search direction
of the algorithm might be helpful.

1. Justify that X is polyhedral and find its extreme points.

2. Compute ∇f

4.3. EXERCISES 35

3. Justify that this problem can be solved by Frank-Wolfe (aka conditional
gradient) algorithm.

4. Find the descent direction d0 of the Frank-Wolfe algorithm starting from
x0.
(hint : use the extreme points of X).

5. Find the optimal step t0 of the first step of Frank-Wolfe algorithm. What
is the new point x1 ?

6. What is the upper and lower bound obtained along this first iteration ?

7. Find the descent direction d1 of the second step of Frank-Wolfe algorithm.

8. Write the unidimensional optimisation problem that would determine the
next optimal step t1 (do not solve it).

9. Compute the lower bound associated to the second step of the algorithm.

36 CHAPTER 4. NUMERICAL METHODS

APPENDIX A

Recall on optimization

A.1 Convexity

We recall a few simple results on convexity.

A.1.1 Generic results

A set C Ă Rn is convex iff

@x, y P C, @t P r0, 1s, tx` p1´ tqy P C.

Intersection of convex sets is convex. A closed convex set C is equal to the
intersection of all half-spaces containing it.

The epigraph of a function f : Rn Ñ RY t`8u is the set of point that lies
above the graph of f , i.e.

epipfq :“

px, tq P Rn ˆ R | t ě fpxq
(

.

The domain of a function f is the set of points where f does not take value
`8.

dompfq :“

x P Rn | fpxq ă `8
(

The function f is said to be convex iff its epigraph is convex, in other words iff

@x, y P dompfq, @t P r0, 1s, fptx` p1´ tqyq ď tfpxq ` p1´ tqfpyq.

The function f is said to be strictly convex iff

@x, y P dompfq, @t P p0, 1q, fptx` p1´ tqyq ă tfpxq ` p1´ tqfpyq.

A.1.2 Differentiable functions

We now assume that f is differentiable on its domain.
Recall that if f is defined on R, then f is convex iff f 1 is non-decreasing.

Generically f is convex iff

@x, y P dompfq, x∇fpyq ´∇fpxq, y ´ xy ě 0.

Assume further that f is twice differentiable on its domain. Recall that if f
is defined on R, then f is convex iff f2 is non-negative. Generically, f is convex
iff its hessian ∇2fpxq is semi-definite positive for every x P dompfq.

Finally, a convex function remains above all its tangeant. More precisely we
have the following Proposition.

37

38 APPENDIX A. RECALL ON OPTIMIZATION

minimum

inflection

maximum

local min.

local max.

Figure A.1: Example of critical points

Proposition A.1. Let f be a convex differentiable function, then for all x P
dompfq, we have

@y P Rn, fpyq ě x∇fpxq, y ´ xy. (A.1)

A.1.3 Some operation preserving convexity

Let E be a vector space. Assume that I is a set (not necessarily finite), and for
all i P I, Ci Ă E is convex, fi : C ÞÑ RY t`8u.

Then we have that

• XiPICi is convex,

• supiPI fip¨q is convex,

• řn
i“1 αifip¨q, with α ě 0 is convex,

• f ˝A is convex (where A is affine).

A.1.4 Why convexity is usefull ?

Convexity largely simplify any optimization problem. Indeed, if f is convex
then any local minimizer is global. If f is strictly convex, then there is at most
one minimizer of f .

A.2 Optimality conditions

A.2.1 A story of first order conditions

Let start with the unconstrained real case. Consider a differentiable function
f : RÑ R, and x7 a minimizer of f . Then, we know that f 1px7q “ 0. The first
order condition is thus to look for all point x P R satisfying

f 1pxq “ 0. (A.2)

Multiple points satisfies (A.2), see Figure A.1. Hence, satisfying a first
order condition is not enough to be a minimizer. For two reasons : first we
do not differentiate between minimum and maximum, second the condition is
only local. Nonetheless the condition is usefull as it drastically reduce the set
of points that can be minimum (from R to, generally, a few points).

A.2. OPTIMALITY CONDITIONS 39

The same thing happens for a differentiable function f : Rn Ñ R, except
that the first order condition now reads

∇fpxq “ 0. (A.3)

Also, in addition to being local minimizer / maximizer and inflexion points, an
x satisfying the first order condition can be a local minimizer along a variable
and a local maximizer along another.

The remain of this section extend this analysis to the constrained case.

A.2.2 Convex and differentiable optimization problem

Consider the following optimization problem.

min
xPRn

fpxq pP q (A.4a)

s.t. gipxq “ 0 @i P rnEs (A.4b)

hjpxq ď 0 @j P rnI s (A.4c)

Denote X the set of admissible solution

X :“

x P Rn | @i P rnEs, gipxq “ 0, @j P rnI s, hjpxq ď 0
(

.

We say that pP q is a convex optimization problem if f and X are convex. We
say that pP q is a convex differentiable optimization problem if f , and hj (for
j P rnI s) are convex differentiable and gi (for i P rnEs) are affine, in which case
X is convex.

A.2.3 Optimality conditions

Optimality condition in the convex case

In the convex differentiable case we also have the following necessary and suffi-
cient condition of optimality.

Theorem A.1. If pP q is a convex differentiable optimization problem, then
x7 P X is an optimal solution iff

@y P X, ∇fpxq ¨ py ´ xq ě 0.

KKT conditions

A convex optimization problem pP q satisfies the Slater condition if there exists
x0 P Rn such that

@i P rnEs, gipx0q “ 0, @j P rnI s, hjpx0q ă 0.

If the Slater condition is satisfied, then the constraints are qualified at any
x P X.

Let recall the Karush-Kuhn-Tucker first order conditions

Theorem A.2 (KKT). Let x7 be an optimal solution to a differentiable op-
timization problem pP q. If the constraints are qualified at x7 then there exists
optimal multipliers λ7 P RnE and µ7 P RnI satisfying

40 APPENDIX A. RECALL ON OPTIMIZATION

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

∇fpx7q `řn
i“1 λ

7

i∇gipx7q `
řnI

j“1 µ
7

i∇hjpx7q “ 0 first order condition

gpx7q “ 0 primal admissibility

hpx7q ď 0

µ ě 0 dual admissibility

µihipx
7q “ 0, @i P J1, nIK complementarity

The three last conditions are sometimes compactly written

0 ě gpx7q K µ ě 0.

The more complex constraint by far is the last one, also called complemen-
tarity condition. It state that, for any j P rnI s, µj or gjpx

7q is null. In other
words if the multiplier µj is non-null, then the constraint j is saturated (i.e.
the inequality is an equality). Reciprocately if constraint g is not saturated (i.e.
inequality is strict) then µj “ 0.

A.2.4 Lagrangian

A good way of writing down the KKT conditions is to rewrite Problem (A.4)
using the Lagrangian.

Before introducing the Lagrangian we start by reformulating Problem (A.4).
For any set X Ă Rn, define the indicator function

IXpxq “

#

0 if x P X

`8 otherwise

Note that, for any function f : Rn Ñ R and any set X Ă Rn, minimizing f
over X is equivalent to minimizing f ` IX . Indeed, if x P X, then fpxq “
f ` IXpxq ; and if x R X, f ` IXpxq “ `8 so x cannot be the minimum. Hence
Problem (A.4) can be written

min
xPRn

fpxq `
nE
ÿ

i“1

It0upgipxqq `
nI
ÿ

i“1

IR´phipxqq (A.5)

Obviously this is just a notational trick. To go further we use the following
remark:

sup
λPR

λx “ δt0upxq.

Indeed, if x ą 0, letting λ goes toward `8 yield `8, if x ă 0, letting λ goes
toward ´8 yield `8, while if x “ 0, λx “ 0 for any λ. Similarily,

sup
µPR`

µx “ δR´pxq.

Indeed, if x is non-positive, then the product is always non-positive, and the
best you can do is 0. Otherwise you can go to `8. Hence, we can write
Problem (A.5) as

min
xPRn

fpxq `
nE
ÿ

i“1

sup
λiPR

λigipxq `
nI
ÿ

j“1

sup
µjPR`

hjpxq (A.6)

A.2. OPTIMALITY CONDITIONS 41

´4
´2

2
4

´4
´2

2
4

´10

10

Figure A.2: p0, 0q is a saddle point of this function : minimum along the x axis,
maximum along the y axis

Now, define the Lagrangian associated to Problem (A.4) as

Lpx, λ, µq :“ fpxq `
nE
ÿ

i“1

λigipxq `
nI
ÿ

j“1

µihjpxq (A.7)

then Problem (A.4) is equivalent (without any assumption) to

min
x PRn

sup
λPRnE ,µPRnI

´

Lpx, λ, µq. (A.8)

Which means that, if all goes well (here convexity and qualification are re-
quired), an optimal solution x7 is part of a saddle point (see Figure A.2 of the
Lagrangian L : minimum in the space of x, maximum in λ, µ. Anyway, being
minimum or maximum the first order condition is the same. The KKT con-
dition can be recovered by simply differentiating the Lagrangian: BL{Bx “ 0
yields the first order condition. Add primal and dual admissibility conditions
and complementarity.

42 APPENDIX A. RECALL ON OPTIMIZATION

APPENDIX B

Partial solution to some exercises

Disclaimer : only elements of the solution are given. More details are
expected from students.

B.1 Answers to Chapter 1 exercises

Solution (to Exercise 1.3). 1. NE : pa, cq and pc, aq

2. SO : pb, bq

3. Pareto : pb, aq, pb, bq, pb, cq.

Solution (to Exercise 1.4). 1. (0.75pt) NE : pb, bq and pa, dq

2. (0.5pt) SO : pb, bq and pb, cq

3. (0.75pt) Pareto : pb, bq, pb, cq, pa, dq.

Solution (to Exercise 1.5). 1. NE : pb, bq

2. SO : pa, aq, pc, cq

3. Pareto : pa, aq, pa, cq, pb, bq, pb, cq pc, cq,

Solution (to Exercise 1.6). 1. (1.5pt) NE : (a,b), (b,a) ; OS and Pareto :
(a,b), (b,a), (b,b)

2. (a) (1pt) The reward obtained by 1 is ´5p1p2` p1p1´ p2q´ p2p1´ p1q “
´5p1p2 ` p1 ´ p2 “ p1p1´ 5p2q ´ p2

(b) (1.5pt) For p2 ą 1{5, the optimal p1 is 0. For p2 ă 1{5 the optimal
p1 is 1. For p2 “ 1{5, every p1 P r0, 1s is optimal.

(c) (2pt) By symmetry we have the same result for p2, hence we have

0 0.2 1
0 (0, 0) (-0.2, 0.2) (-1, 1)

0.2 (0.2, -0.2) (-0.2, -0.2) (-1.8, -0.2)
1 (1, -1) (-0.2, -1.8) (-5, -5)

(d) (1pt) The Nash Equilibrium is (0.2,0.2), with a social value of ´0.4
which is worse than 0. However it is symmetric.

43

44 APPENDIX B. PARTIAL SOLUTION TO SOME EXERCISES

B.2 Answers to Chapter 2 exercises

Solution (to Exercise 2.3). 1. We can consider that each arc is two opposite
directed arcs with positive costs. Hence, Djikstra algorithm applies.

2. We have (2 pt)

a b c d e f
p0q 8 8 8 8 8

0 p4q p2q 8 8 8

0 p3q 2 p10q p12q 8

0 3 2 p8q p12q 8

0 3 2 8 p10q p14q
0 3 2 8 10 p13q
0 3 2 8 10 13

Thus the shortest path is a´ c´ b´ d´ e´ f for a cost of 13.

3. No for Figure 1 graph is non-oriented. Yes for figure 2 : a-c-b-d-e-f.

4. Graph 2 is a subset of graph 1 dedoubled, and the shortest path in graph 1
is admissible in graph 2, hence it is still the shortest path.

Solution (to Exercise 2.4). 1. We have

a b c d e f
p0q 8 8 8 8 8

0 p2q p5q 8 8 8

0 2 p5q p3q 8 8

0 2 p4q 3 p7q p8q
0 2 4 3 p6q p8q
0 2 4 3 6 p7q
0 2 4 3 6 7

Hence the shortest path from a to f as cost 7.

2. topological ordering : a-b-d-c-e-f. By dynamic programming we have:

(a) λpbq “ 2

(b) λpdq “ 2` 1 “ 3

(c) λpcq “ min

3` 2, 3` 1
(

“ 4

(d) λpeq “ min

4` 2, 3` 4
(

“ 6

(e) λpfq “ min

6` 1, 3` 5
(

“ 7

3. Shortest path : a-b-d-c-e-f.

Solution (to Exercise 2.5). 1. We have

Hence the shortest path from a to f as cost 7. The nodes are treated in
the following order: a-b-d-c-e-f .

2. We compute the label λ in the following table Which gives the distance and
shortest path in only 4 iterations (a-b-e-f) instead of 6.

B.3. ANSWERS TO CHAPTER ?? EXERCISES 45

a b c d e f
p0q 8 8 8 8 8

0 p2q p5q 8 8 8

0 2 p5q p3q p6q 8

0 2 p5q 3 p6q p13q
0 2 5 3 p6q p13q
0 2 5 3 6 p7q
0 2 5 3 6 7

a b c d e f
p20q 8 8 8 8 8

20 p6q p12q 8 8 8

20 6 p12q p9q p6q 8

20 6 p12q p9q 6 p7q
20 6 p12q p9q 6 7

B.3 Answers to Chapter 3 exercises

Solution (to Exercise 3.2). 1. The user equilibrium and social optimum prob-
lem are of the following form

min
x,f

Jpxq (B.1)

s.t. rk “
ÿ

pPPk

fp k P J1,KK (B.2)

xa “
ÿ

pQe

fp e P E (B.3)

fp ě 0 p P P (B.4)

where Jpxq “ W pxq “
ř

ePE Lepxeq for the user equilibrium, and Jpxq “
Cpxq “

ř

ePE xa`epxeq for the social optimum.

2. As `a is non-decreasing and xe ě 0 we have xe`epxeq ě
şxe

0
`epuqdu “

Lepxeq. Furthermore, by assumption we have x`epxq ď γLepxq. Summing
over e P E gives the result.

3. We have

CpxUEq ď γW pxUEq ď γW pxSOq ď γCpxSOq.

4. If `a is a polynomial function of order at most p with non-negative coef-
ficient, then we have x`epxq ď pp ` 1qLepxq. Hence, the price of anarchy
is lower than p ` 1. For p “ 1 we have affine function in which case the
price of anarchy is at most 4{3 ă 2, so the bound is not sharp.

Solution (to Exercise 3.3). 1. fUE,r is a Wardrop equilibrium, thus by def-
inition the cost of all used path is the same.

2. As `e are non decreasing, ¯̀
e ě `e, multiplying by xe ě 0 and summing

gives the result. Equality is obvious.

46 APPENDIX B. PARTIAL SOLUTION TO SOME EXERCISES

3. ¯̀
epxeq ´ `epxeq is null if xe ě xUE,re , and equal to `epx

UE,r
e q ´ `epxeq ď

`epx
UE,r
e q otherwise. Multiplying by xe we have the result both for xe ě

xUE,re and for xe ď xUE,re .

4.

C̄pxSO,2rq ´ CpxSO,2rq “
ÿ

ePE

xSO,2re p¯̀epx
SO,2r
e q ´ `epx

SO,2r
e qq

ď
ÿ

ePE

xUE,re `epx
UE,r
e q

“ CpxUE,rq

5. Consider p P Pk. Then `ppf
UE,rq “ λk. Furthermore,

¯̀
ppf

SO,2rq “
ÿ

ePp

¯̀
epxepf

SO,2rqq ě
ÿ

ePp

`epx
UE,r
e q “ λk

where the inequality comes from monotonicity of `e, and definition of ¯̀
e.

6.
Cpxq “

ÿ

fPP
fp`ppfq and C̄pxq “

ÿ

fPP
fp ¯̀

ppfq.

7.

C̄pfSO,2rq “
K
ÿ

k“1

ÿ

pPPk

fSO,2rp
¯̀
ppf

SO,2rq

ě

K
ÿ

k“1

λk
ÿ

pPPk

fSO,2rp

“

K
ÿ

k“1

2λkr
k

“ 2CpfUE,rq

8. Combining previous results we have

2CpfUE,rq ď C̄pxSO,2rq ď CpxUE,rq ` CpxSO,2rq,

which give the result, that can be interpreted as ”optimizing flux cannot
allow more than twice the inflows rates without increasing global cost”.

Solution (to Exercise 3.4). 1. 4{3.

2. `8 using r “ 1 and xp, pÑ8.

3. • User equilibrium is given by x1 “ r, x2 “ 0, with total cost rcprq.

• Social optimum is given by min0ďxďr xcpxq ` pr ´ xqcprq

• Price of anarchy max0ďxďr rcprq{pxcpxq ` pr ´ xqcprqq.

4. Thus the price of anarchy of C is greater than

max
cPC,rą0

max
0ďxďr

rcprq

xcpxq ` pr ´ xqcprq
.

B.3. ANSWERS TO CHAPTER ?? EXERCISES 47

5. Choosing r “ 1 and cpxq “ x yield a lower bound of 4{3 which is exact.

Solution (to Exercise 3.5 Part I). 1. (1pt) There are 4 possible paths : o´d,
o´a´d, o´a´ b´d, o´ b´d. For fε,1 their cost is 2, 1` ε`1´ ε “ 2,
2` 2ε and 2. Thus fε,1 is an ε-Nash Equilibrium.

2. (1pt) We put δ on o´ d, 1´ δ{2 on o´ a´ d and 1´ δ{2 on o´ b´ d.

3. (2.5pts) The global cost is

2f1 ` pf2 ` f3qgδpf2 ` f3q ` p1´ εqf2 ` p1´ εqf3 ` gδpf3q

we can improve the cost of any admissible flow by shifting from path 3
to path 4 (as gδ is increasing), thus an optimal flow have f3 “ 0. By
monotonicity, an optimal solution have f2 “ f4, and as f1`f2`f3`f4 “ 2
we reduce the problem to

min
f4P r0,1s

2p2´ 2f4q ` 2f4gδpf4q

which can be further reduced to

min
f4P r1´δ,1s

2p2´ 2f4q ` 2f4gδpf4q

Solution (to Exercise 3.5 Part II). 1. (0.5pts) An ε-Nash equilibrium is a
flux such that each user can win at most ε by changing trajectory with
fixed cost. If ε “ 0 we recover the Wardrop equilibrium.

2. (1pt) fε,r is a ε-Nash equilibrium, thus for every p P Pk we have fε,rp `ppf
ε,rq ď

p1` εqfε,rp λkpxpf
ε,rqq, and summing over all p P P yields the result.

3. (1pt) ¯̀
epxeq ´ `epxeq is null if xe ě xε,re , and equal to `epx

ε,r
e q ´ `epxeq ď

`epx
ε,r
e q otherwise. Multiplying by xe we have the result both for xe ě xε,re

and for xe ď xε,re .

4. (1pt)

C̄pxSO,2rq ´ CpxSO,2rq “
ÿ

ePE

xSO,2re p¯̀epx
SO,2r
e q ´ `epx

SO,2r
e qq

ď
ÿ

ePE

xε,re `epx
ε,r
e q

“ Cpxε,rq

5. (1pt) We have ¯̀
pp0q ě λkpx

ε,rq, and as ¯̀
p is non-decreasing we get ¯̀

ppf
SO,2rq ě

λkpx
ε,rq.

6. (1.5pts)

ÿ

pPP

¯̀
ppf

SO,2rqfSO,2rp ě
ÿ

k

ÿ

pPPk

λkpx
ε,rqfSO,2rp by previous question

“
ÿ

k

λkpx
ε,rqrk

ě
2

1` ε
Cpfε,rq by question ??

48 APPENDIX B. PARTIAL SOLUTION TO SOME EXERCISES

7. (1.5pts) We have

CpxSO,2rq ě
ÿ

pPP

¯̀
ppf

SO,2rqfSO,2rp ´ Cpxε,rq

ě
2

1` ε
Cpxε,rq ´ Cpxε,rq

“
1´ ε

1` ε
Cpxε,rq

8. (1pt) In the example of part I we have Cpxε,1q “ 2`2ε, and an admissible
flow for the double rate with cost 2δ`p1´εqp1´ δq. Letting δ goes to zero
yields the result.

9. (1.5pts) Consider p P Pk. Then `ppf
UE,rq “ ck. Furthermore,

¯̀
ppf

SO,2rq “
ÿ

ePE

¯̀
epxepf

SO,2rqq ě
ÿ

ePE

`epx
UE,r
e q “ ck

where the inequality comes from monotonicity of `e, and definition of ¯̀
e.

10. (0.5pts)

Cpxq “
ÿ

fPP
fp`ppfq and C̄pxq “

ÿ

fPP
fp ¯̀

ppfq.

11. (2pts)

C̄pfSO,2rq “
K
ÿ

k“1

ÿ

pPPk

fSO,2rp
¯̀
ppf

SO,2rq

ě

K
ÿ

k“1

ck
ÿ

pPPk

fSO,2rp

“

K
ÿ

k“1

2ckr
k

“ 2CpfUE,rq

12. (1pts) Combining previous results we have

2CpfUE,rq ď C̄pxSO,2rq ď CpxUE,rq ` CpxSO,2rq,

which give the result, that can be interpreted as ”optimizing flux cannot
allow more than twice the inflows rates without increasing global cost”.

B.4 Answers to Chapter 4 exercises

Solution (to Exercise 4.1). 1. Objective function is (strongly) convex, con-
straints are polyhedral.

2. ∇Jpxq “ p2px1 ´ 2q, 2px2 ` 1qqJ

B.4. ANSWERS TO CHAPTER ?? EXERCISES 49

3. The linear problem is given by

min
yPr´1,1s2

´4y1 ` 2y2

with optimal solution p1,´1q.

4. The linear search problem is

min
tPr0,1s

pt´ 2q2 ` p´t` 1q2.

(1pt) The unconstrained problem has an optimal solution of t “ 3{2, hence
the optimal t is t “ 1, and we have (0.5pts) xp1q “ p1,´1q.

5. The new linear problem is given by

min
yPr´1,1s2

´2y1.

Solution (to Exercise 4.2). 1. p0, 0q, p0, 1q and p2, 0q

2. ∇fpxq “
ˆ

16x31 ´ 2
2x2 ´ 1

˙

3. ∇2fpxq “

ˆ

42x21 0
0 2

˙

ľ 0 hence f is convex, and X is polyhedral and

bounded.

4. minyPX ´2y1 ´ 1y2. ´2 ˚ 0 ´ 1 ˚ 1 ą ´2 ˚ 2 ´ 1 ˚ 0, hence the optimal
solution is y0 “ p2, 0q. And the optimal direction is d0 “ y0 ´ x0 “ p2, 0q.

5. (1pts) mintPr0,1s 2
6t4´22t. By derivating this objective function we obtain

that the optimal step is t0 “ 1{4, and x1 “ x0 ` t0d0 “ p1{2, 0q.

6. The upper bound is fpx1q “ 5{4. The lower bound is p∇pfqpx0qqT py0 ´
x0q ` fpx0q “ ´2.

7. To find the direction d1 we need to solve minyPX ∇pfqpx1qT y. The solution
being an extreme point of X that is neither p0, 0q nor p2, 0q, we have y1 “
p1, 0q. Thus d1 “ p1,´1{2q.

8. Finding the optimal step require to solve

min
tPr0,1s

4p1{2´ tq4 ´ 2p1{2´ tq ` t2 ´ t

9. The lower bound is given by

p∇pfqpx1qqT py1 ´ x1q ` fpx1q “ 0 ˚ p´1{2q ´ 1 ˚ 1` 5{4 “ 1{4

	Introduction
	Urban transportation network analysis
	Game theory
	Exercises

	Shortest path problem
	Graphs
	Dijkstra algorithm
	Dynamic Programming
	A algorithm
	Exercises

	Wardrop Equilibrium
	Definitions and social-optimum
	Wardrop Equilibrium
	Exercises

	Numerical Methods
	Some optimization algorithms
	Algorithm for computing User Equilibrium
	Exercises

	Recall on optimization
	Convexity
	Optimality conditions

	Partial solution to some exercises
	Answers to Chapter 1 exercises
	Answers to Chapter 2 exercises
	Answers to Chapter 3 exercises
	Answers to Chapter 4 exercises

