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An optimization problem

A standard optimization problem

min
u0

L(u0)

s.t. g(u0) ≤ 0

V. Leclère Stochastic Programming 25/11/2016 3 / 39
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An optimization problem with uncertainty

Adding uncertainty ξ in the mix

min
u0

L(u0, ξ)

s.t. g(u0, ξ) ≤ 0

Remarks:
ξ is unknown. Two main way of modelling it:

ξ ∈ Ξ with a known uncertainty set Ξ, and a pessimistic
approach. This is the robust optimization approach (RO).
ξ is a random variable with known probability law. This is the
Stochastic Programming approach (SP).

Cost is not well defined.
RO : maxξ∈Ξ L(u, ξ).
SP : E

[
L(u, ξ)

]
.

Constraints are not well defined.
RO : g(u, ξ) ≤ 0, ∀ξ ∈ Ξ.
SP : g(u, ξ) ≤ 0, P− a.s..
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Alternative cost functions I

When the cost L(u, ξ) is random it might be natural to want
to minimize its expectation E

[
L(u, ξ)

]
.

This is even justified if the same problem is solved a large
number of time (Law of Large Number).

In some cases the expectation is not really representative of
your risk attitude. Lets consider two examples:

Are you ready to pay $1000 to have one chance over ten to
win $10000 ?
You need to be at the airport in 1 hour or you miss your flight,
you have the choice between two mean of transport, one of
them take surely 50’, the other take 40’ four times out of five,
and 70’ one time out of five.
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Alternative cost functions II

Here are some cost functions you might consider

Probability of reaching a given level of cost : P(L(u, ξ) ≤ 0)

Value-at-Risk of costs V@Rα(L(u, ξ)), where for any real
valued random variable X ,

V@Rα(X ) := inf
t∈R

{
P(X ≥ t) ≤ α

}
.

In other word there is only a probability of α of obtaining a
cost worse than V@Rα(X ).

Average Value-at-Risk of costs AV@Rα(L(u, ξ)), which is the
expected cost over the α worst outcomes.
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Alternative constraints I

The natural extension of the deterministic constraint
g(u, ξ) ≤ 0 to g(u, ξ) ≤ 0 P− as can be extremely
conservative, and even often without any admissible solutions.

For example, if u is a level of production that need to be
greated than the demand. In a deterministic setting the
realized demand is equal to the forecast. In a stochastic
setting we add an error to the forecast. If the error is
unbouded (e.g. Gaussian) no control u is admissible.
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Alternative constraints II

Here are a few possible constraints

E
[
g(u, ξ)

]
≤ 0, for quality of service like constraint.

P(g(u, ξ) ≤ 0) ≥ 1− α for chance constraint. Chance
constraint is easy to present, but might lead to misconception
as nothing is said on the event where the constraint is not
satisfied.

AV@Rα(g(u, ξ)) ≤ 0
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One-Stage Problem

Assume that Ξ as a discrete distribution, with P
(
ξ = ξi

)
= pi > 0

for i ∈ J1, nK. Then, the one-stage problem

min
u0

E
[
L(u0, ξ)

]
s.t. g(u0, ξ) ≤ 0, P− a.s

can be written

min
u0

n∑
i=1

piL(u0, ξi )

s.t g(u0, ξi ) ≤ 0, ∀i ∈ J1, nK.
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Recourse Variable

In most problem we can make a correction u1 once the uncertainty
is known:

u0  ξ1  u1.

As the recourse control u1 is a function of ξ it is a random
variable. The two-stage optimization problem then reads

min
u0

E
[
L(u0, ξ,u1)

]
s.t. g(u0, ξ,u1) ≤ 0, P− a.s

σ(u1) ⊂ σ(ξ)
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Two-stage Problem

The extensive formulation of

min
u0

E
[
L(u0, ξ,u1)

]
s.t. g(u0, ξ,u1) ≤ 0, P− a.s

is

min
u0,{ui1}i∈J1,nK

n∑
i=1

piL(u0, ξi , u
i
1)

s.t g(u0, ξi , u
i
1) ≤ 0, ∀i ∈ J1, nK.
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Recourse assumptions

We say that we are in a complete recourse framework, if for all
u0, and all possible outcome ξ, every control u1 is admissible.

We say that we are in a relatively complete recourse
framework, if for all u0, and all possible outcome ξ, there
exists a control u1 that is admissible.

For a lot of algorithm relatively complete recourse is a
condition of convergence. It means that there is no induced
constraints.
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Multi-stage Problem

We can consider a multi-stage problems with successive
decisions and aleas

u0  ξ1  u1  ξ2  · · · uT .

If each each alea ξi has 10 possible realizations, then there are

1 control u0

10 control ui1
100 control ui2
...

In practice only two or three-stage problem can be solved by
Stochastic Programming approaches.

Remark : a stage is not necessarily a time-step.
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Two-stage framework : three information models

Consider the problem

min
u0,u1

E
[
L(u0, ξ,u1

]
Open-Loop approach : u0 and u1 are deterministic. In this
case both controls are choosen without any knowledge of the
alea ξ. The set of control is small, and an optimal control can
be found through specific method (e.g. Stochastic Gradient).

Two-Stage approach : u0 is deterministic and u1 is
measurable with respect to ξ. This is the problem tackled by
Stochastic Programming method.

Anticipative approach : u0 and u1 are measurable with
respect to ξ. This approach consists in solving one
deterministic problem per possible outcome of the alea, and
taking the expectation of the value of this problems.
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Comparing the models

By simple comparison of constraints we have

V anticipative ≤ V 2−stage ≤ VOL.

VOL can be approximated through specific methods (e.g.
Stochastic Gradient).
V 2−stage is obtained through Stochastic Programming specific
methods. There are two main approaches:

Lagrangian decomposition methods (like Progressive-Hedging
algorithm).
Benders decomposition methods (like L-shaped or
nested-decomposition methods).

V anticipative is difficult to compute exactly but can be
estimated through Monte-Carlo approach by drawing a
reasonable number of realizations of ξ, solving the
deterministic problem for each ξ and taking the means of the
values.
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Information structures in the multistage setting

Open-Loop Every decision (ut)t∈J0,T−1K is taken before any
noises (ξt)t∈J0,T−1K is known. We decide a planning,
and stick to it.

Decision Hazard Decision ut is taken knowing all past noises
ξ0, . . . , ξt , but not knowing ξt+1, . . . , ξT .

Hazard Decision Decision ut is taken knowing all past noises
ξ0, . . . , ξt , and the next noise ξt+1 but not knowing
ξt+2, . . . , ξT .

Anticipative Every decision (ut)t∈J0,T−1K is taken knowing the
whole scenario (ξt)t∈J0,T−1K. There is one
deterministic optimization problem by scenario.

With the same objective function this gives better and better value
as the solution use more and more information.
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Information structures: comments

Open-Loop This case can happen in practice (e.g. fixed
planning). There are specific methods to solve this
type of optimization problem (e.g. stochastic
gradient methods).

Decision Hazard The decision ut is taken at the beginning of
period [t, t + 1[. The decision is always
implementable, and might be conservative as it
doesnot leverage any prediction over the noise in
[t, t + 1[.

Hazard Decision The decision ut is taken at the end of period
[t, t + 1[. The modelization is optimistic as it
assumes perfect knowledge that might not be
available in practice.

Anticipative This problem is never realistic. However it is a lower
bound of the real problem that can be estimated
through Monte-Carlo and deterministic optimization.

Remark : other information structures might exists.
V. Leclère Stochastic Programming 25/11/2016 17 / 39
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Expected value of information

We call Expected value of information the difference of value
between the real information framework and an anticipative
solution (if you had a crystal ball)

EVPI = v2−stage − vanticipative .

We are now going to give a price to knowing on which scenario we
are.
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Two-stage Problem

Recall that the extensive formulation of

min
u0

E
[
L(u0, ξ,u1)

]
s.t. g(u0, ξ,u1) ≤ 0, P− a.s

is

min
u0,{ui1}i∈J1,nK

n∑
i=1

piL(u0, ξi , u
i
1)

s.t g(u0, ξi , u
i
1) ≤ 0, ∀i ∈ J1, nK.
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Rewriting non-anticipativity constraint

Which we can equivalently write

min
{ui0,ui1}i∈J1,nK

n∑
i=1

piL(ui0, ξi , u
i
1)

s.t g(ui0, ξi , u
i
1) ≤ 0, ∀i ∈ J1, nK

ui = uj , ∀i , ∀j ,

Or again

min
{ui0,ui1}i∈J1,nK

n∑
i=1

piL(ui0, ξi , u
i
1)

s.t g(ui0, ξi , u
i
1) ≤ 0, ∀i ∈ J1, nK

ui0 =
n∑

i=1

piu
j
0, ∀i
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Dualizing non-anticipativity constraint

Dualizing the non-anticipativity constraint we obtain

min
{ui0,ui1}i∈J1,nK

max
λ:
∑n

i=1 piλi=0

n∑
i=1

pi

[
L(u0, ξi , u

i
1) + λiu

i
0

]
s.t g(u0, ξi , u

i
1) ≤ 0, ∀i ∈ J1, nK

With dual

max
λ:
∑n

i=1 piλi=0

n∑
i=1

pi min
{ui0,ui1}i∈J1,nK

L(u0, ξi , u
i
1) + λiu

i
0

s.t g(u0, ξi , u
i
1) ≤ 0
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Open-Loop Feedback approach

Another road toward the multistage, that doesnot really rely
on a probabilistic vision of the world consists in:

consider a forecast of the futur noises
solve the deterministic problem
apply the first controls until you have more information on the
scenario (either because the forecast is not exact or because
you can refine the forecast)
resolve the deterministic problem with the new information
repeat

Open-Loop Feedback is easy to implement, but it is hard to
give theoretical guarantees.

Open-Loop Feedback doesnot take into account the fact that
we might need to modify the solution later on.
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Repeated Two-stage Stochastic Programming

Multi-stage stochastic program are numerically extremely
difficult to solve (without Markovian assumption).

Open-Loop Feedback control doesnot integrate the
stochasticity of the problem when designing a solution.

A mid-way approach consists at any step t to design a
two-stage program in order to determine the first stage
control ut to apply to the system. The recourse controls will
not be used.

Questions arise as to what should be first stage control and
what should be recourse variable.

In any cases this type of approach are only heuristics solution
to multi-stage approach.
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How to deal with continuous distributions ?

Recall that if ξ as finite support we rewrite the 2-stage problem

min
u0

E
[
L(u0, ξ,u1)

]
s.t. g(u0, ξ,u1) ≤ 0, P− a.s

as

min
u0,{ui1}i∈J1,nK

n∑
i=1

piL(u0, ξi , u
i
1)

s.t g(u0, ξi , u
i
1) ≤ 0, ∀i ∈ J1, nK.

If we consider a continuous distribution (e.g. a Gaussian), we
would need an infinite number of recourse variables to obtain an
extensive formulation.
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Simplest idea: sample ξ

First consider the one-stage problem

min
u∈Rn

E
[
L(u, ξ)

]
(P)

Draw a sample (ξ1, . . . , ξN) (in a i.i.d setting with law ξ).

Consider the empirical probability P̂N =
1

N

∑N
i=1 δξi .

Replace P by P̂N to obtain a finite-dimensional problem that
can be solved.

This means solving

min
u∈Rn

1

N

N∑
i=1

L(u, ξi ) (PN)

We denote by v̂N (resp. v∗) the value of (PN) (resp. (P)),
and Sn the set of optimal solutions (resp. S∗).
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Consistence of estimators and convergence results

Generically speaking the estimators of the minimum are biased

E
[
v̂N

]
≤ E

[
v̂N+1

]
≤ v∗

Under technical assumptions (compacity of admissible
solution, lower semicontinuity of costs, ...) we obtain:

Law of Large Number extension: v̂N → v∗ almost surely
(according to sampling probability).
Convergence of controls: D(SN ,S

∗)→ 0 almost surely.
Central Limit Theorem (S =

{
u∗
}

): (
√
N v̂N − v∗)→ Y u∗

where Yu∗ ∼ N (0, σ(L(u∗, ξ))).
Central Limit Theorem extension:

√
N(v̂N − v∗)→ infu Y u

where Yu ∼ N (0, σ(L(u, ξ))).

Good reference for precise results : Lectures on Stochastic
Programming (Dentcheva, Ruszczynski, Shapiro) chap. 5.
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Multi-stage SAA

2− stage problem are special cases of one-stage problem.

If there is relativaly complete recourse, above results apply
directly.

In the multi-stage case we have to generate a tree and not
simply scenario realizations.

Above results are still available, but the number N should be
the number of children at each time-step, thus the total
number of scenario is NT .
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A convex problem

We consider the following robust problem

min
x∈X

cT x

s.t. g(x , ξ) ≤ 0 P− a.s.

assuming that g(·, ξ) is convex.
The approach consists in drawing N independent sample of ξ,
denoted

{
ξi
}
i∈J1,nK, and solving the following relaxation

min
x∈X

cT x

s.t. g(x , ξi ) ≤ 0 ∀i ∈ J1, nK
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Solution confidence

We define the probability of violation for decision x ∈ Rn,

G (x) := P
(
g(x , ξ) > 0

)
.

For an independently drawn (from ξ) sample of size N, we
construct the SAA problem and denote x̂N the (assumed unique)
optimal solution.

Then, we have

E
[
G (x̂N)

]
≤ n

N + 1
.

Consequently, by Markov, if we want with probability at least

1− β, a solution x̂N with G (x̂N) ≤ ε, we need to choose
N ≥ n

εβ − 1. A subtler bound can be determined :

N ≥ 2

ε
ln(

1

β
) + 2n +

2n

ε
ln(

2

ε
).
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Extensions

Non-unique optimum of SAA can be dealt with through a
deterministic optimal solution selection.

Convex cost function can be dealt with through a re-writing
of constraints: minimizing c(x) is equivalent to minimizing z
under the constraint c(x) ≤ z .

We can also deal with the case where an SAA problem is
unbounded.
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Problem formulation

The problem we want to solve reads

min
x∈X

c(x)

s.t. P
(
g(x , ξ) ≤ 0

)
≥ 1− ε

The approach consists in drawing N independent sample of ξ,
denoted

{
ξi
}
i∈J1,nK and approximating the law of the random

variable ξ by a uniform law over the samples denoted PN .
The SAA problem consists in solving

min
x∈X

c(x)

s.t. PN

(
g(x , ξ) ≤ 0

)
≥ 1− ε
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SAA description

Let
{
ξi
}
i∈J1,NK be a sequence of i.i.d random samples of ξ. We

define

ĜN(x) :=
1

N

N∑
i=1

1{
g(x ,ξi )>0

} →N G (x) := P(g(x , ξ) > 0).

The SAA problem of level γ is defined as

min
x∈X

c(x)

s.t. ĜN(x) ≤ γ

Intuitively,

if γ ≤ ε then a feasible solution of the SAA is likely to be
feasible for the original problem;

if γ ≥ ε then the optimal value of the SAA is likely to be a
lower bound for the original problem.
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Notations and assumptions

We assume that

g(x , ·) is measurable, g(·, ξ) is continuous;

c is continuous, X is compact.

Then G and GN are lower-semicontinuous, and both problem have
optimal solution if feasible.

We denote by

X ](ε) (resp. X̂N(γ)) the set of optimal solution for the
original problem (resp. the SAA approximation).

v(ε) the value of the original problem, and v̂N(γ) the optimal
value of the SAA.
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Convergence theory

If γ = ε, we have v̂N(ε)→N v(ε) and X̂N(ε)→N X ](ε) with
probability one.

If γ > ε, P
(
v̂n(γ) ≤ v(ε)

)
→ 1 exponentially fast (e−κN , with

κ := (γ − ε)2/(2ε)).

Similarly, if γ < ε, the probability of an SAA-admissible
solution to be admissible for the true problem converges to 1
exponentially fast. We can deduce the a-priori sample size
required to obtain a feasible solution with high probability.

Under reasonable regularity assumption, γ = ε is the optimal
choice.
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Solution validation

Consider that we have a candidate solution x for the true problem.

To check the feasability, we consider ĜN(x) as an unbiased
estimator of G . It is then easy to obtain an asymptotic upper
bound (confidence β) on G :

ĜN(x) + Φ−1(β)

√
ĜN(x)(1− ĜN(x))/N,

to compare to ε.

To obtain a lower bound for the optimal cost it is enough to
solve a number of independent SAA approximation, and
taking the minimum of the SAA value. In fact depending on
the confidence β required of the lower bound, we can
determine the number and sizes of SAA problems, and take
the k-th smaller SAA-value instead of the smallest value see
[Ahmed2008] for more information.
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estimator of G . It is then easy to obtain an asymptotic upper
bound (confidence β) on G :
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MIP formulation

A MIP SAA formulation consists in drawing N sample of ξ and
solving

min
x∈X

c(x)

s.t. g(x , ξj) ≤ Mjzj ∀j ∈ J1,NK
N∑
j=1

zj ≤ γN

zj ∈
{

0, 1
}

∀j ∈ J1,NK

Where Mj is a large positive number such that

Mj ≥ maxx∈X g(x , ξj). Hence,
∑N

j=1 zj ≤ γN imply that the
constraint is satisfied on (1− γ)N sample.
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Applications ?

Generally speaking a MIP formulation is hard to solve.

If c is convex, X convex it is slightly better.

If c is linear, X is conic there exists academic algorithms.

If c is linear, X polyhhedral the problem is MILP and good
off-the-shelf solver are pretty efficient and allow for reasonable
problem.

In any case, knowing tight bounds greatly increase the solver
efficiency, and specific bounds can be obtained especially in the
separable case.
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Conclusion

Ignoring uncertainty in modelization can be really misleading.

Costs, constraints, optimal solution are more difficult to
represent in an uncertain framework.

Risk attitude is key and not easy to modelize.

Multistage stochastic optimization problem are really
challenging numerically.

Two main approaches (for exact solution):

Simplify the information structure to fit a 2 or 3-stage
Stochastic Programming framework;
Make Markovian assumption to use Dynamic Programming
approaches.
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