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Decompositions of Mulstistage Stochastic Optimization

Mulstistage Stochastic Optimization: an Example

Objective function:
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Decompositions of Mulstistage Stochastic Optimization

Mulstistage Stochastic Optimization: an Example

Objective function:

N T-1
I i i
[E § Lt ut Wt—H)}
i=1 t=0

state control noise

Constraints:
@ dynamics:
Xt+1 = ft(xn ui, Wt+1),
@ nonanticipativity:
us = Fy,
@ spatial coupling:
I+1 - gt( Xt Ui, Wlt'“—i-l)'
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Decompositions of Mulstistage Stochastic Optimization

Couplings for Stochastic Problems
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Decompositions of Mulstistage Stochastic Optimization

Couplings for Stochastic Problems: in Time
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Decompositions of Mulstistage Stochastic Optimization

Couplings for Stochastic Problems: in Uncertainty
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Decompositions of Mulstistage Stochastic Optimization

Couplings for Stochastic Problems: in Space

. Pgoi i
min E E g oLy (X}, uh, Wiiq)
w i t

i P(yi gl
St Xy = f;‘(xta ui, Wei1)

u’;jft:a(wl,...,wt)

uncertainty
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Decompositions of Mulstistage Stochastic Optimization

Couplings for Stochastic Problems: a Complex Problem

. Pgoi i
min E E g oLy (X}, uh, Wiiq)
w i t

i P(yi gl
St Xy = f;‘(xta ui, Wei1)

uncertainty
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Decompositions of Mulstistage Stochastic Optimization

Decompositions for Stochastic Problems: in Time

| ﬂ % min3 30 3wt wesn)
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pewd
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uncertainty Be”man (56)
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Decompositions of Mulstistage Stochastic Optimization

Decompositions for Stochastic Problems: in Uncertainty

min E ZZWWL;(X’UU’U Wii1)
w i t

unit
i (i gy
st xp g = f/(x}, U, wepr)

uij}—t:a(wl,...,wt)

Y Oi(x},u) =0

time Progressive Hedging
uncertainty Rockafellar - Wets (91)
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Decompositions of Mulstistage Stochastic Optimization

Decompositions for Stochastic Problems: in Space

. Pgoi i
min E E g oLy (X}, uh, Wiiq)
w i t

s.t. xi‘—&—l = f;j(xi’ ui‘v Wt+1)
u’; jft:a(wl,...,wt)

> Oi(x},ul) =0

Dual Approximate
Dynamic Programming

uncertainty
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Dynamic Programming

Presentation Outline
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Dynamic Programming

Optimization Problem

We want to solve the following optimization problem

T-1
min E[ Lt(xt, u;, wt+1) + K(xr)} (1a)
t=0
s.t. Xer1 = fe(Xe, U, Weg1), X0 = Xo (1b)
u; € Ut(Xt) (1C)
o(ug) Co(wo,- -, wy) (1d)
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Dynamic Programming

Dynamic Programming Principle

Assume that the noises w; are independent and exogeneous.
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Dynamic Programming

Dynamic Programming Principle

Assume that the noises w; are independent and exogeneous.

Then, there exists an optimal solution, called a strategy, of the
form u; = m; (xt), given by

me(x) = argminE [ Le(x, u,wep1) + Vg1 o fe(x, u, wepq) } ,
uEUt(X)

current cost future costs

where (Dynamic Programming Equation)

Vr(x) = K(x)
Vi(x) = GTTL‘/“(‘ )E Le(x,u,wey1) + Vt+10ft(X7 u, Wt+1)}
ueU(x N———

" Xt+1”
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Dynamic Programming

Interpretation of Bellman Value

The Bellman's value function V4, (x) can be interpreted as the
value of the problem starting at time ty from the state x. More
precisely we have

T-1

Vi, (x) = min E[Z Le(Xe, e, wep1) + K(xr)} (2a)
t=tp

s.t. Xty1 = fe(Xe, 0, Wein), X =x  (2b)

u; € Ut(Xt) (2C)

o(u) Co(wo,- -, wy) (2d)
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Dynamic Programming

Dynamic Programming Algorithm : Discrete Case

Data: Problem parameters
Result: optimal control and value;
VT =K )
fort: T —0do
for x € X; do
Vi(x) = oo;
for u € U;(x) do
v, =E [Lt(Xa uwe)+ Vi o ft(Xv u, Wt+1)};

if v, < Vi(x) then
Vi(x) = v, ;
me(x) =u;

end
end

end
end
Number of flops: O(T x |X¢| x |Ug| x [W,|).
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Dynamic Programming

3 curses of dimensionality

© State. If we consider 3 independent states each taking 10
values, then |X;| = 103 = 1000. In practice DP is not
applicable for states of dimension more than 5.

@ Decision. The decision are often vector decisions, that is a
number of independent decision, hence leading to huge
|Ue ().

© Expectation. In practice random information came from large
data set. Without a proper statistical treatment computing an
expectation is costly. Monte-Carlo approach are costly too,
and unprecise.
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Dynamic Programming

Dynamic Programming : continuous and convex case

@ If the problem has continuous states and control the classical
approach consists in discretizing.

e With further assumption on the problem (convexity, linearity)
we can look at a dual approach:

o Instead of discretizing and interpolating the Bellman function
we choose to do a polyhedral approximation.

o Indeed we choose a “smart state” in which we compute the
value of the function and its marginal value (tangeant).

e Knowing that the problem is convex and using the power of
linear solver we can efficiently approximate the Bellman
function.

@ This approach is known as SDDP in the electricity community
and widely used in practice.
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Dynamic Programming
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Dynamic Programming
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Dynamic Programming
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Dynamic Programming

Vincent Leclere Decomposition Methods in Stochastic Optimization December 13 2016 14 /21



Spatial Decomposition

Presentation Outline

© Spatial Decomposition
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Spatial Decomposition

Intuition of Spatial Decomposition

o Satisfy a demand
(over T time step)
with N units of production
at minimal cost.

@ Price decomposition:
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Spatial Decomposition

Intuition of Spatial Decomposition

o Satisfy a demand
(over T time step)
with N units of production
at minimal cost.

@ Price decomposition:

o the coordinator sets a
sequence of price A,
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Spatial Decomposition

Intuition of Spatial Decomposition

o Satisfy a demand
(over T time step)
with N units of production
at minimal cost.
@ Price decomposition:
e the coordinator sets a
sequence of price A,

o the units send their

production planning
()

u;",
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Spatial Decomposition

Intuition of Spatial Decomposition

o Satisfy a demand
(over T time step)
with N units of production
at minimal cost.

@ Price decomposition:

e the coordinator sets a
sequence of price A,

o the units send their
production planning
a0,

e the coordinator
compares total
production and demand

and updates the price,
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Spatial Decomposition

Intuition of Spatial Decomposition
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Spatial Decomposition

Application to dam management

DECOMPOSITION

W,
=
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Spatial Decomposition

Primal Problem

N T
r)r(n'p E [Z L (xi, u', wt+1) + Ki(xiT)
i=1 t=0

. i i i i
Vi, Xir1 = ft.‘(xt’ut’WtJrl)a X0 = X0»
Vi, upelU, u,=<F,

Solvable by DP with state (x1,...,xpn)
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Spatial Decomposition

Primal Problem

N T
r)r(n'p E [Z L (xi, u', wt+1) + Ki(xiT)
i=1 t=0

. i i i i
Vi, Xir1 = ft.‘(xt’ut’WtJrl)a X0 = X0»
Vi, upelU, u,=<F,

D 0i(up) =0 ~ X multiplier

Solvable by DP with state (x1,...,xpn)
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Spatial Decomposition

Primal Problem with Dualized Constraint

N T
r;r(ul? max Z E [Z Lf_;(xf_;, u', wer) + (A, H’t(u’t)> + K'(x)
’ i=1 t=0

. i g i i i
v Iy Xip1 = f;(xtvuta Wt+1)v Xo = Xp,
Vi, up €U, u, =T,

Coupling constraint dualized = all constraints are unit by unit
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Spatial Decomposition

Dual Problem

N T
max min E [Z Lff(xff, up, W) + (A, O’t(u;)> + Ki(x%)
i=1 t=0

. i [ i i
Vi, Xtr1 = ft(xt>ut7wt+1)v X0 = Xo>
Vi, up €U, u, =T

Exchange operator min and max to obtain a new problem
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Spatial Decomposition

Decomposed Dual Problem

x'u'

N T
max Z min E [Z L’;(x’;, ul, W) + <)\t,9£(ui)> + Ki(x5)
i=1 t=0

i il i i i
Xir1 = ft(xt’ u, Wt+1)a X0 = X0s

u’teblf,‘,?l, Ultjft,

For a given A\, minimum of sum is sum of minima
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Spatial Decomposition

Inner Minimization Problem

]
min 2| 3 L (ck h wie) + (A Oi(u) + K (x7)
t=0

i pigoi i i

Xiy1 = f (xp, Uy, Wey1),  Xo = X,
i

uteutlv utj]:tv

We have N smaller subproblems. Can they be solved by DP ?
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Spatial Decomposition

Inner Minimization Problem

]
min | 3 L (sl wein) + (i) + K(x7)

t=0
i _opifi i i i
Xt+1 = fy (Xt>Ut, Wii1), Xy = Xp,
i
ut/? utj]:h

No : A is a time-dependent noise ~+ state (w1, R wt)
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Spatial Decomposition

Stochastic spatial
decomposition scheme

Multiplier
Process A(tk)

Solving
subproblem N

Solvin
(k+1) _ 3 (k) (k) g
% =2 D subproblem 1

ACAY
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Spatial Decomposition

Main idea of DADP:
At~ Wy = ]E(At‘yt)

Multiplier
Process A(tk)

Solvin Solvin
(k+1) _ (k) (k) g g
At = Ay + oA subproblem 1 subproblem N

:

NG
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Spatial Decomposition

Main idea Of DADP Information Process
At ~ Uy = E<At‘yt> Yes1 = F(ye,wern)

I

Multiplier
Process A(tk)

Solvin Solvin
(k+1) _ (k) (k) g g
At = Ay + oA subproblem 1 subproblem N
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Spatial Decomposition

Main idea Of DADP Information Process
At ~ Uy = E<At‘yt> Yes1 = F(ye,wern)

I

Multiplier
function u(tk)(y)

Solvin Solvin
(k+1) _ (k) (k) g g
At = Ay + oA subproblem 1 subproblem N
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Spatial Decomposition

Main idea Of DADP Information Process
At ~ Uy = E<At‘yt> Yes1 = F(ye,wern)

I

Multiplier
function u(tk)(y)

Solving Solving
)\(tk+1) = A&“@ subproblem 1: subproblem N:
DP on (x{.y:) DP on (x{',y.)

0} ()
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Spatial Decomposition

Main idea of DADP:
At~ Wy = ]E(At‘yt)

Yit1 = ’F(.Vta W)

Information Process

I

Mult

function

iplier

1 (y)

Solving
subproblem 1:
DP on (x,y,)

subproblem N:

Solving
DP on (x{',y.)

w&

N
E< 0; (u}) yt:y> =07
i=1
aiy)
Vincent Leclere Decomposition Methods in Stochastic Optimization
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Spatial Decomposition

Main idea Of DADP Information Process
At ~ Uy = E<At‘yt> Yes1 = F(ye,wern)

I

Multiplier
function u(tk) (¥)

subproblem 1:
DP on (x¢,y:)

w&

N
E< 0i (u}) yt:y> =07?
i—1

subproblem N:
DP on (x},y,)

@“(-) + o8

Solving

Solving

‘ NGO
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Spatial Decomposition

Main idea of DADP: A, ~ g1, == E(A]y,)

Multiplier

function p Ek)

Multiplier
Process /\gk)

Solving
subproblem N

subproblem N subproblem 1

Solving
subproblem 1

Solving } { Solving

0} (u ) 03 ()

Main problems: Advantages:
@ Subproblems not easily @ Subproblems solvable by DP
solvable by DP with state (x’t,yt)
@ A Jive in a huge space @ 1.9 live in a smaller space
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Spatial Decomposition

Three Interpretations of DADP

@ DADP as an approximation of the optimal multiplier

At e E(Xely:) -

@ DADP as a decision-rule approach in the dual

mfx muin L()\, u) ~ Ar?ja;ft muin L()\, u) .

@ DADP as a constraint relaxation in the primal

OUACAEUIESI O SATA
i=1 i=1

.Vt>:0-
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Spatial Decomposition

Conclusion

@ Large multistage stochastic program are numerically difficult.
@ To tackle such problems one can use decomposition methods.

@ If the number of stages is small enough, decomposition per
scenario (like Progressive-Hedging) is numerically efficient,
and use special deterministic methods.

@ If the noises are time-independent Dynamic Programming
equations are available.

o If the state dimension is small enough direct discretized
dynamic programming is available.

o If dynamics is linear and cost are convex SDDP approach allow
for larger states

e Finally we can also spatially decompose problems, and with an
approximation recover Dynamic Programming equations for
the subproblems.
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