Introduction to Decomposition Methods in Stochastic Optimization

V. Leclère

2016, December 13

Presentation Outline

- Decompositions of Mulstistage Stochastic Optimization
- 2 Dynamic Programming
- Spatial Decomposition

Mulstistage Stochastic Optimization: an Example

Objective function:

$$\mathbb{E}\left[\sum_{i=1}^{N}\sum_{t=0}^{T-1}L_{t}^{i}(\underbrace{\boldsymbol{x}_{t}^{i}}_{\text{state control noise}},\underbrace{\boldsymbol{w}_{t+1}}_{\text{noise}})\right]$$

Constraints:

dynamics:

$$\mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_{t+1}),$$

nonanticipativity:

$$u_t \leq \mathcal{F}_t$$
,

spatial coupling:

$$\mathbf{z}_t^{i+1} = g_t^i(\mathbf{x}_t^i, \mathbf{u}_t^i, \mathbf{w}_{t+1}^i).$$

Mulstistage Stochastic Optimization: an Example

Objective function:

$$\mathbb{E}\left[\sum_{i=1}^{N}\sum_{t=0}^{T-1}L_{t}^{i}(\underbrace{\mathbf{x}_{t}^{i}}_{\text{state control}},\underbrace{\mathbf{w}_{t+1}^{i}}_{\text{noise}})\right]$$

Constraints:

dynamics:

$$\mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_{t+1}),$$

nonanticipativity:

$$u_t \leq \mathcal{F}_t$$
,

spatial coupling:

$$\mathbf{z}_t^{i+1} = g_t^i(\mathbf{x}_t^i, \mathbf{u}_t^i, \mathbf{w}_{t+1}^i).$$

Couplings for Stochastic Problems

$$\min \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_{t}^{i}(\boldsymbol{x}_{t}^{i}, \boldsymbol{u}_{t}^{i}, \boldsymbol{w}_{t+1})$$

Couplings for Stochastic Problems: in Time

$$\min \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_{t}^{i}(\boldsymbol{x}_{t}^{i}, \boldsymbol{u}_{t}^{i}, \boldsymbol{w}_{t+1})$$

s.t.
$$\mathbf{x}_{t+1}^i = f_t^i(\mathbf{x}_t^i, \mathbf{u}_t^i, \mathbf{w}_{t+1}^i)$$

Couplings for Stochastic Problems: in Uncertainty

$$\min \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_{t}^{i}(\boldsymbol{x}_{t}^{i}, \boldsymbol{u}_{t}^{i}, \boldsymbol{w}_{t+1})$$

s.t.
$$\mathbf{x}_{t+1}^{i} = f_{t}^{i}(\mathbf{x}_{t}^{i}, \mathbf{u}_{t}^{i}, \mathbf{w}_{t+1})$$

$$\boldsymbol{u}_t^i \preceq \mathcal{F}_t = \sigma(\boldsymbol{w}_1, \dots, \boldsymbol{w}_t)$$

Couplings for Stochastic Problems: in Space

$$\min \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_{t}^{i}(\boldsymbol{x}_{t}^{i}, \boldsymbol{u}_{t}^{i}, \boldsymbol{w}_{t+1})$$

s.t.
$$\mathbf{x}_{t+1}^{i} = f_{t}^{i}(\mathbf{x}_{t}^{i}, \mathbf{u}_{t}^{i}, \mathbf{w}_{t+1})$$

$$\mathbf{u}_t^i \preceq \mathcal{F}_t = \sigma(\mathbf{w}_1, \dots, \mathbf{w}_t)$$

$$\sum_{i} \Theta_t^i(\boldsymbol{x}_t^i, \boldsymbol{u}_t^i) = 0$$

Couplings for Stochastic Problems: a Complex Problem

$$\min \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_{t}^{i}(\boldsymbol{x}_{t}^{i}, \boldsymbol{u}_{t}^{i}, \boldsymbol{w}_{t+1})$$

s.t.
$$\mathbf{x}_{t+1}^{i} = f_{t}^{i}(\mathbf{x}_{t}^{i}, \mathbf{u}_{t}^{i}, \mathbf{w}_{t+1})$$

$$\boldsymbol{u}_t^i \preceq \mathcal{F}_t = \sigma(\boldsymbol{w}_1, \dots, \boldsymbol{w}_t)$$

$$\sum_i \Theta_t^i(\boldsymbol{x}_t^i, \boldsymbol{u}_t^i) = 0$$

Decompositions for Stochastic Problems: in Time

$$\min \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_{t}^{i}(\boldsymbol{x}_{t}^{i}, \boldsymbol{u}_{t}^{i}, \boldsymbol{w}_{t+1})$$

s.t.
$$\mathbf{x}_{t+1}^{i} = f_{t}^{i}(\mathbf{x}_{t}^{i}, \mathbf{u}_{t}^{i}, \mathbf{w}_{t+1})$$

$$\mathbf{u}_t^i \preceq \mathcal{F}_t = \sigma(\mathbf{w}_1, \dots, \mathbf{w}_t)$$

$$\sum_i \Theta_t^i(\boldsymbol{x}_t^i, \boldsymbol{u}_t^i) = 0$$

Dynamic Programming Bellman (56)

Decompositions for Stochastic Problems: in Uncertainty

$$\min \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_{t}^{i}(\boldsymbol{x}_{t}^{i}, \boldsymbol{u}_{t}^{i}, \boldsymbol{w}_{t+1})$$

s.t.
$$\mathbf{x}_{t+1}^i = f_t^i(\mathbf{x}_t^i, \mathbf{u}_t^i, \mathbf{w}_{t+1})$$

$$\mathbf{u}_t^i \preceq \mathcal{F}_t = \sigma(\mathbf{w}_1, \dots, \mathbf{w}_t)$$

$$\sum_i \Theta_t^i(\boldsymbol{x}_t^i, \boldsymbol{u}_t^i) = 0$$

Progressive Hedging

Rockafellar - Wets (91)

Decompositions for Stochastic Problems: in Space

$$\min \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_{t}^{i}(\boldsymbol{x}_{t}^{i}, \boldsymbol{u}_{t}^{i}, \boldsymbol{w}_{t+1})$$

s.t.
$$\mathbf{x}_{t+1}^i = f_t^i(\mathbf{x}_t^i, \mathbf{u}_t^i, \mathbf{w}_{t+1})$$

$$oldsymbol{u}_t^i \preceq \mathcal{F}_t = \sigmaig(oldsymbol{w}_1, \dots, oldsymbol{w}_tig)$$

$$\sum_i \Theta_t^i(\boldsymbol{x}_t^i, \boldsymbol{u}_t^i) = 0$$

Dual Approximate

Dynamic Programming

Presentation Outline

- Decompositions of Mulstistage Stochastic Optimization
- 2 Dynamic Programming
- Spatial Decomposition

Optimization Problem

We want to solve the following optimization problem

min
$$\mathbb{E}\left[\sum_{t=0}^{T-1} L_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{w}_{t+1}) + K(\boldsymbol{x}_T)\right]$$
 (1a)

s.t.
$$\mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_{t+1}), \quad \mathbf{x}_0 = x_0$$
 (1b)

$$\boldsymbol{u}_t \in U_t(\boldsymbol{x}_t) \tag{1c}$$

$$\sigma(\boldsymbol{u}_t) \subset \sigma(\boldsymbol{w}_0, \cdots, \boldsymbol{w}_t) \tag{1d}$$

Dynamic Programming Principle

Assume that the noises \mathbf{w}_t are independent and exogeneous.

Then, there exists an optimal solution, called a strategy, of the form $\mathbf{u}_t = \pi_t(\mathbf{x}_t)$, given by

$$\pi_t(x) = \mathop{\arg\min}_{u \in U_t(x)} \mathbb{E} \left[\underbrace{L_t(x, u, \mathbf{w}_{t+1})}_{\text{current cost}} + \underbrace{V_{t+1} \circ f_t(x, u, \mathbf{w}_{t+1})}_{\text{future costs}} \right],$$

where (Dynamic Programming Equation)

$$\begin{cases} V_{T}(x) = K(x) \\ V_{t}(x) = \min_{u \in U_{t}(x)} \mathbb{E} \left[L_{t}(x, u, \boldsymbol{w}_{t+1}) + V_{t+1} \circ \underbrace{f_{t}(x, u, \boldsymbol{w}_{t+1})}_{"\boldsymbol{X}_{t+1}"} \right] \end{cases}$$

Dynamic Programming Principle

Assume that the noises \mathbf{w}_t are independent and exogeneous.

Then, there exists an optimal solution, called a strategy, of the form $\mathbf{u}_t = \pi_t(\mathbf{x}_t)$, given by

$$\pi_t(x) = \underset{u \in U_t(x)}{\arg\min} \mathbb{E} \left[\underbrace{L_t(x, u, \mathbf{w}_{t+1})}_{\text{current cost}} + \underbrace{V_{t+1} \circ f_t(x, u, \mathbf{w}_{t+1})}_{\text{future costs}} \right],$$

where (Dynamic Programming Equation)

$$\begin{cases} V_{T}(x) = K(x) \\ V_{t}(x) = \min_{u \in U_{t}(x)} \mathbb{E} \left[L_{t}(x, u, \boldsymbol{w}_{t+1}) + V_{t+1} \circ \underbrace{f_{t}(x, u, \boldsymbol{w}_{t+1})}_{"\boldsymbol{X}_{t+1}"} \right] \end{cases}$$

Interpretation of Bellman Value

The Bellman's value function $V_{t_0}(x)$ can be interpreted as the value of the problem starting at time t_0 from the state x. More precisely we have

$$V_{t_0}(\mathbf{x}) = \min \qquad \mathbb{E}\left[\sum_{t=t_0}^{T-1} L_t(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_{t+1}) + K(\mathbf{x}_T)\right]$$
(2a)

s.t.
$$\mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_{t+1}), \quad \mathbf{x}_{t_0} = \mathbf{x}$$
 (2b)

$$\boldsymbol{u}_t \in U_t(\boldsymbol{x}_t) \tag{2c}$$

$$\sigma(\mathbf{u}_t) \subset \sigma(\mathbf{w}_0, \cdots, \mathbf{w}_t) \tag{2d}$$

Dynamic Programming Algorithm: Discrete Case

```
Data: Problem parameters
Result: optimal control and value;
V_{\tau} \equiv K:
for t: T \to 0 do
     for x \in \mathbb{X}_t do
           V_t(x)=\infty;
           for u \in U_t(x) do
                 v_u = \mathbb{E} \left| L_t(x, u, \mathbf{w}_{t+1}) + V_{t+1} \circ f_t(x, u, \mathbf{w}_{t+1}) \right|;
                if v_u < V_t(x) then
            V_t(x) = v_u ;
\pi_t(x) = u ;
           end
     end
end
Number of flops: O(T \times |\mathbb{X}_t| \times |\mathbb{U}_t| \times |\mathbb{W}_t|).
```

3 curses of dimensionality

- **State**. If we consider 3 independent states each taking 10 values, then $|\mathbb{X}_t| = 10^3 = 1000$. In practice DP is not applicable for states of dimension more than 5.
- ② Decision. The decision are often vector decisions, that is a number of independent decision, hence leading to huge $|U_t(x)|$.
- Expectation. In practice random information came from large data set. Without a proper statistical treatment computing an expectation is costly. Monte-Carlo approach are costly too, and unprecise.

Dynamic Programming: continuous and convex case

- If the problem has continuous states and control the classical approach consists in discretizing.
- With further assumption on the problem (convexity, linearity) we can look at a dual approach:
 - Instead of discretizing and interpolating the Bellman function we choose to do a polyhedral approximation.
 - Indeed we choose a "smart state" in which we compute the value of the function and its marginal value (tangeant).
 - Knowing that the problem is convex and using the power of linear solver we can efficiently approximate the Bellman function.
- This approach is known as SDDP in the electricity community and widely used in practice.

Presentation Outline

- 1 Decompositions of Mulstistage Stochastic Optimization
- 2 Dynamic Programming
- Spatial Decomposition

- Satisfy a demand (over T time step) with N units of production at minimal cost.
- Price decomposition:
 - the coordinator sets a sequence of price λ_t ,
 - the units send their production planning u_t⁽ⁱ⁾,
 - the coordinator compares total production and demand and updates the price,
 - and so on...

- Satisfy a demand (over T time step) with N units of production at minimal cost.
- Price decomposition:
 - the coordinator sets a sequence of price λ_t ,
 - the units send their production planning
 u_t⁽ⁱ⁾
 - the coordinator compares total production and demand and updates the price,
 - and so on...

- Satisfy a demand (over T time step) with N units of production at minimal cost.
- Price decomposition:
 - the coordinator sets a sequence of price λ_t ,
 - the units send their production planning u_t⁽ⁱ⁾,
 - the coordinator compares total production and demand and updates the price,
 - and so on...

- Satisfy a demand (over T time step) with N units of production at minimal cost.
- Price decomposition:
 - the coordinator sets a sequence of price λ_t ,
 - the units send their production planning u_t⁽ⁱ⁾,
 - the coordinator compares total production and demand and updates the price,
 - and so on...

- Satisfy a demand (over T time step) with N units of production at minimal cost.
- Price decomposition:
 - the coordinator sets a sequence of price λ_t ,
 - the units send their production planning u_t⁽ⁱ⁾,
 - the coordinator compares total production and demand and updates the price,
 - and so on...

- Satisfy a demand (over T time step) with N units of production at minimal cost.
- Price decomposition:
 - the coordinator sets a sequence of price λ_t ,
 - the units send their production planning u_t⁽ⁱ⁾,
 - the coordinator compares total production and demand and updates the price,
 - and so on...

- Satisfy a demand (over T time step) with N units of production at minimal cost.
- Price decomposition:
 - the coordinator sets a sequence of price λ_t ,
 - the units send their production planning
 - the coordinator compares total production and demand and updates the price,
 - and so on...

Application to dam management

Primal Problem

$$\min_{\boldsymbol{x},\boldsymbol{u}} \sum_{i=1}^{N} \mathbb{E} \left[\sum_{t=0}^{T} L_{t}^{i}(\boldsymbol{x}_{t}^{i}, \boldsymbol{u}_{t}^{i}, \boldsymbol{w}_{t+1}) + K^{i}(\boldsymbol{x}_{T}^{i}) \right]
\forall i, \quad \boldsymbol{x}_{t+1}^{i} = f_{t}^{i}(\boldsymbol{x}_{t}^{i}, \boldsymbol{u}_{t}^{i}, \boldsymbol{w}_{t+1}), \quad \boldsymbol{x}_{0}^{i} = \boldsymbol{x}_{0}^{i},
\forall i, \quad \boldsymbol{u}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \boldsymbol{u}_{t}^{i} \leq \mathcal{F}_{t},
\sum_{i=1}^{N} \theta_{t}^{i}(\boldsymbol{u}_{t}^{i}) = 0$$

Solvable by DP with state (x_1, \ldots, x_N)

Primal Problem

$$\min_{\boldsymbol{x},\boldsymbol{u}} \sum_{i=1}^{N} \mathbb{E} \left[\sum_{t=0}^{T} L_{t}^{i}(\boldsymbol{x}_{t}^{i}, \boldsymbol{u}_{t}^{i}, \boldsymbol{w}_{t+1}) + K^{i}(\boldsymbol{x}_{T}^{i}) \right]$$

$$\forall i, \quad \boldsymbol{x}_{t+1}^{i} = f_{t}^{i}(\boldsymbol{x}_{t}^{i}, \boldsymbol{u}_{t}^{i}, \boldsymbol{w}_{t+1}), \quad \boldsymbol{x}_{0}^{i} = \boldsymbol{x}_{0}^{i},$$

$$\forall i, \quad \boldsymbol{u}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \boldsymbol{u}_{t}^{i} \preceq \mathcal{F}_{t},$$

$$\sum_{i=1}^{N} \theta_{t}^{i}(\boldsymbol{u}_{t}^{i}) = 0 \quad \rightsquigarrow \boldsymbol{\lambda}_{t} \quad \text{multiplier}$$

Solvable by DP with state (x_1, \ldots, x_N)

Primal Problem with Dualized Constraint

$$\min_{\boldsymbol{x},\boldsymbol{u}} \max_{\boldsymbol{\lambda}} \sum_{i=1}^{N} \mathbb{E} \left[\sum_{t=0}^{I} L_{t}^{i}(\boldsymbol{x}_{t}^{i}, \boldsymbol{u}_{t}^{i}, \boldsymbol{w}_{t+1}) + \left\langle \boldsymbol{\lambda}_{t}, \boldsymbol{\theta}_{t}^{i}(\boldsymbol{u}_{t}^{i}) \right\rangle + K^{i}(\boldsymbol{x}_{T}^{i}) \right]$$

$$\forall i, \quad \boldsymbol{x}_{t+1}^{i} = f_{t}^{i}(\boldsymbol{x}_{t}^{i}, \boldsymbol{u}_{t}^{i}, \boldsymbol{w}_{t+1}), \quad \boldsymbol{x}_{0}^{i} = \boldsymbol{x}_{0}^{i},$$

$$\forall i, \quad \boldsymbol{u}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \boldsymbol{u}_{t}^{i} \leq \mathcal{F}_{t},$$

Coupling constraint dualized \Longrightarrow all constraints are unit by unit

Dual Problem

$$\max_{\boldsymbol{\lambda}} \min_{\boldsymbol{x}, \boldsymbol{u}} \sum_{i=1}^{N} \mathbb{E} \left[\sum_{t=0}^{I} L_{t}^{i}(\boldsymbol{x}_{t}^{i}, \boldsymbol{u}_{t}^{i}, \boldsymbol{w}_{t+1}) + \left\langle \boldsymbol{\lambda}_{t}, \boldsymbol{\theta}_{t}^{i}(\boldsymbol{u}_{t}^{i}) \right\rangle + K^{i}(\boldsymbol{x}_{T}^{i}) \right]$$

$$\forall i, \quad \boldsymbol{x}_{t+1}^{i} = f_{t}^{i}(\boldsymbol{x}_{t}^{i}, \boldsymbol{u}_{t}^{i}, \boldsymbol{w}_{t+1}), \quad \boldsymbol{x}_{0}^{i} = \boldsymbol{x}_{0}^{i},$$

$$\forall i, \quad \boldsymbol{u}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \boldsymbol{u}_{t}^{i} \leq \mathcal{F}_{t},$$

Exchange operator min and max to obtain a new problem

Decomposed Dual Problem

$$\max_{\boldsymbol{\lambda}} \sum_{i=1}^{N} \min_{\boldsymbol{x}^{i}, \boldsymbol{u}^{i}} \mathbb{E} \left[\sum_{t=0}^{I} L_{t}^{i} (\boldsymbol{x}_{t}^{i}, \boldsymbol{u}_{t}^{i}, \boldsymbol{w}_{t+1}) + \left\langle \boldsymbol{\lambda}_{t}, \theta_{t}^{i} (\boldsymbol{u}_{t}^{i}) \right\rangle + K^{i} (\boldsymbol{x}_{T}^{i}) \right]$$

$$\boldsymbol{x}_{t+1}^{i} = f_{t}^{i} (\boldsymbol{x}_{t}^{i}, \boldsymbol{u}_{t}^{i}, \boldsymbol{w}_{t+1}), \quad \boldsymbol{x}_{0}^{i} = \boldsymbol{x}_{0}^{i},$$

$$\boldsymbol{u}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \boldsymbol{u}_{t}^{i} \preceq \mathcal{F}_{t},$$

For a given λ , minimum of sum is sum of minima

Inner Minimization Problem

$$\min_{\boldsymbol{x}^{i},\boldsymbol{u}^{i}} \mathbb{E} \left[\sum_{t=0}^{T} L_{t}^{i}(\boldsymbol{x}_{t}^{i},\boldsymbol{u}_{t}^{i},\boldsymbol{w}_{t+1}) + \left\langle \boldsymbol{\lambda}_{t},\theta_{t}^{i}(\boldsymbol{u}_{t}^{i}) \right\rangle + K^{i}(\boldsymbol{x}_{T}^{i}) \right] \\
\boldsymbol{x}_{t+1}^{i} = f_{t}^{i}(\boldsymbol{x}_{t}^{i},\boldsymbol{u}_{t}^{i},\boldsymbol{w}_{t+1}), \quad \boldsymbol{x}_{0}^{i} = \boldsymbol{x}_{0}^{i}, \\
\boldsymbol{u}_{t}^{i} \in \mathcal{U}_{t,i}^{ad}, \quad \boldsymbol{u}_{t}^{i} \leq \mathcal{F}_{t},$$

We have N smaller subproblems. Can they be solved by DP?

Inner Minimization Problem

$$\begin{aligned} \min_{\boldsymbol{x}^i, \boldsymbol{u}^i} & \mathbb{E} \bigg[\sum_{t=0}^I L_t^i \big(\boldsymbol{x}_t^i, \boldsymbol{u}_t^i, \boldsymbol{w}_{t+1} \big) + \big\langle \boldsymbol{\lambda}_t, \boldsymbol{\theta}_t^i \big(\boldsymbol{u}_t^i \big) \big\rangle + K^i \big(\boldsymbol{x}_T^i \big) \bigg] \\ & \boldsymbol{x}_{t+1}^i = f_t^i \big(\boldsymbol{x}_t^i, \boldsymbol{u}_t^i, \boldsymbol{w}_{t+1} \big), \quad \boldsymbol{x}_0^i = \boldsymbol{x}_0^i, \\ & \boldsymbol{u}_t^i \in \mathcal{U}_{t,i}^{ad}, \quad \boldsymbol{u}_t^i \preceq \mathcal{F}_t, \end{aligned}$$

No : λ is a time-dependent noise \rightsquigarrow state $(\mathbf{w}_1, \dots, \mathbf{w}_t)$

Stochastic spatial decomposition scheme

Main idea of DADP:

$$\lambda_t \rightsquigarrow \mu_t := \mathbb{E}(\lambda_t | y_t)$$

Main idea of DADP: $\lambda_t \rightsquigarrow \mu_t := \mathbb{E}(\lambda_t | y_t)$

Main problems:

- Subproblems not easily solvable by DP
- $\lambda^{(k)}$ live in a huge space

Advantages:

Subproblems solvable by DP with state $(\mathbf{x}_t^i, \mathbf{y}_t)$

December 13 2016

• $\mu^{(k)}$ live in a smaller space

Three Interpretations of DADP

DADP as an approximation of the optimal multiplier

$$\lambda_t \qquad \rightsquigarrow \qquad \mathbb{E}(\lambda_t|\mathbf{y}_t) \ .$$

DADP as a decision-rule approach in the dual

$$\max_{\pmb{\lambda}} \min_{\pmb{u}} L(\pmb{\lambda}, \pmb{u}) \qquad \leadsto \qquad \max_{\pmb{\lambda}_t \preceq \pmb{y}_t} \min_{\pmb{u}} L(\pmb{\lambda}, \pmb{u}) \; .$$

DADP as a constraint relaxation in the primal

$$\sum_{i=1}^n \theta_t^i \big(\boldsymbol{u}_t^i \big) = 0 \qquad \rightsquigarrow \qquad \mathbb{E} \bigg(\sum_{i=1}^n \theta_t^i \big(\boldsymbol{u}_t^i \big) \bigg| \boldsymbol{y}_t \bigg) = 0 \; .$$

Conclusion

- Large multistage stochastic program are numerically difficult.
- To tackle such problems one can use decomposition methods.
- If the number of stages is small enough, decomposition per scenario (like Progressive-Hedging) is numerically efficient, and use special deterministic methods.
- If the noises are time-independent Dynamic Programming equations are available.
 - If the state dimension is small enough direct discretized dynamic programming is available.
 - If dynamics is linear and cost are convex SDDP approach allow for larger states
 - Finally we can also spatially decompose problems, and with an approximation recover Dynamic Programming equations for the subproblems.