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An introductive regression problem

A LASSO problem, with n features and m datapoints reads

min
w∈Rn

‖ATw − y‖2 + λ‖w‖1

where

w ∈ Rn is the decision variable;

A ∈ Rn×m is the data matrix, each column being one data
point, and each line being a feature;

y ∈ Rm being the output value;

λ is a parameter enforcing sparsity of w .
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Why is sparsity desirable ?

Interpretation

gene identification for further research
important word of a document
portfolio selection / adjustement

Stability of the result

Memory storage of the solution, and computation gain

However, sparsity seems to come at the cost of harder optimization
problem. We are going to show that in some cases we can simplify
the problem.
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The L1 penalization

We would really like to penalized the cardinality of non-zeros
in the solution, but it leads to combinatorial problem.

Penalizing the L1 norm gives good numerical results, and is
computationally faster.

We can re-weight the L1 norm to be closer to the cardinality
penalization.

There are some theoretical results on the L1 penalization

“Robust uncertainty principles: Exact recovery from highly
incomplete Fourier information”, Emmanuel Candes, Justin
Romberg, and Terence Tao, 2006.
“Stable signal recovery from incomplete and inaccurate
measurements”, Emmanuel Candes, Justin Romberg, and
Terence Tao, 2006.
...
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Dual representation of norm

We start with a very simple remark

∀w ∈ Rn, ‖w‖p = max {αTw | ‖α‖p′ ≤ 1},

with
1

p
+

1

p′
= 1.

In particular

‖ATw − y‖2 + λ‖w‖1 = max
‖α‖2≤1
‖β‖∞≤λ

αT (ATw − y) + βTw
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Dual formulation of LASSO

The LASSO problem

min
w∈Rn

‖ATw − y‖2 + λ‖w‖1

is equivalent to

max
‖α‖2≤1
‖β‖∞≤λ

min
w∈Rn

(Aα + β)Tw − αT y

or

max
‖α‖2≤1

− αT y

s.t. |βi | ≤ λ, ∀i
aTi α + βi = 0, ∀i
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SAFE elimination for LASSO

Finally the dual LASSO problem reads

max
‖α‖2≤1

− αT y

s.t. |aTi α| ≤ λ, ∀i

In particular if

(T1) max
‖α‖2≤1

αTai = ‖ai‖2 < λ

then we can suppress the feature i from the regression.
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Improving SAFE with bounds

Assume that we know some bounds 0 ≤ γ < γ ≤ +∞ on the value
of the LASSO problem. Then we have the following elimination
test

max
‖α‖2≤1

γ≤−αT y≤γ

αTai < λ.

And we can obtain an explicit test of feature i only requiring the
computation of aTi y and ‖ai‖2. We can note that the lower bound
is the most significant.
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Improving SAFE with bounds

If XT
i y = 0, and

‖Xi‖2

√
‖y‖2

2 − γ2 < λ‖y‖2

then w ]
i = 0.

If |XT
i y |/‖Xi‖2 > ‖y‖2

2/γ, and

|XT
i y |γ +

√
‖y‖2

2‖Xi‖2
2 − |XT

i y |2
√

1− γ2 < λ‖y‖2
2,

then w ]
i = 0.

If |XT
i y |/‖Xi‖2 < ‖y‖2

2/γ̄, and√
‖y‖2

2 − |XT
i y |2

√
‖y‖2

2 − γ̄2 + |XT
i y |γ̄ < λ‖y‖2

2,

and√
‖y‖2

2 − |XT
i y |2

√
‖y‖2

2 − γ2 − |XT
i y |γ < λ‖y‖2

2,

then w ]
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Obtaining bounds

0 is always a lower bound, ‖y‖2 is always an upper bound.

An upper bound is given by any primal solution w .

A lower bound is given by any admissible dual solution α.

Assume that we have solved P(λ), and want to solve P(λ′).

If λ > λ′, optimal primal solution can be used to compute
upper bound, dual solution can be scaled to obtain lower
bound.
If λ < λ′, optimal primal solution can be used to compute
upper bound, optimal value gives a lower bound, optimal dual
solution can be scaled to obtain lower bound.
We can also exploit the fact that the value function (in
function of λ) is concave to obtain a lower bound.
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Low-rank approximation of data

Low rank approximation of data X = X̂ + ∆, with controlled
error ‖∆‖ ≤ ε. Example : partial SVD decomposition.

Worst case on the approximation :

min
w∈Rn

max
‖∆‖≤ε

‖(Â + ∆)Tw − y‖2 + λ‖w‖1

Equivalent to

min
w∈Rn

‖ÂTw − y‖2 + ε‖w‖2 + λ‖w‖1.

New SAFE test :
‖ai‖2 < λ− ε
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El Ghaoui, L., Viallon, V. and Rabbani, T. (2012).
Safe feature elimination for the lasso and sparse supervised
learning problems.
Pacific Journal of Optimization
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Generic Machine Learning problem

We consider a generic sparse supervised learning process

P(λ) = ϕ(λ) = min
v ,w

m∑
j=1

f (aTj w + bjv + cj) + λ‖w‖1,

where f is a l.s.c. convex loss function where aj ∈ Rn are
datapoints. They are column of the data matrix A whose lines are
xi .
The Fenchel conjugate of f is given by

f ∗(θ) = max
ξ
{θξ − f (ξ)}.

As f is l.s.c. convex we have

f (xj) = f ∗∗(xj) = max
θj
{θjxj − f ∗(θj)}.
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A dual formulation

Using the Fenchel representation as well as the dual representation
of the L1-norm, P(λ) reads

min
w ,v

m∑
j=1

max
θj
{θj(aTj w + bjv + cj)− f ∗(θi )}+ max

‖α‖∞≤λ
αTw

Rearranging variables yields

min
w ,v

max
θ,‖α‖∞≤λ

cT θ −
m∑
j=1

f ∗(θj)︸ ︷︷ ︸
G(θ)

+θTbv + (
m∑
j=1

θjaj + α)Tw

Interverting min and max, and minimizing over v and w gives

D(λ) : max
{
G (θ) | θTb = 0, ∀i , |xTi θ| ≤ λ

}
Leclère SAFE test June 2015 15 / 30
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SAFE - test

Due to optimality conditions if |θT xk | < λ then w ]
k = 0.

If we have a lower bound 0 ≤ γ ≤
∑

i f (ci ) on our optimization
problem, we deduce the following test

λ > T (γ, xk) := max {|θT xk | | G (θ) ≥ γ, θTb = 0} =⇒ w ]
k = 0

Note that T (γ, xk) = max{P(γ, xk),P(γ,−xk)}, where

P(γ, x) = max{θT x | G (θ) ≥ γ, θTb = 0}

Or again

P(γ, x) = min
µ≥0,ν

−γν + µ

m∑
j=1

f
(xj + µcj + νbj

µ

)
.
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Obtaining lower bound

A lower bound is given by any admissible point θ0 of the dual
problem D(λ), by γ = G (θ0).

In fact if we choose θ such that θTb = 0, and define
λ0 = ‖Xθ0‖∞. Then we need a scaling factor s, such that θ = sθ0

is an admissible point for D(λ). The best scaling factor is given by

s ∈ arg max{G (sθ0) | |s| ≤ λ

λ0
},

which is a one dimensional convex optimization problem.

Remark : this scaling procedure can be used to obtain lower
bounds from solution obtained from higher coefficients λ.
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A numerical experiment

We consider text data in a bag-of-word format where stop
words have been eliminated and without capitalization.

The data consists in the headlines from the New York Times
(1985 - 2007).

Number of features n = 159′943, number of documents
m = 3′241′260, about 90 non-zero per features.

Leclère SAFE test June 2015 18 / 30



SAFE elimination for LASSO
SAFE elimination in learning setting

SAFE elimination in constrained optimization

Machine Learning Setting
Safe Elimination in Machine Learning
Numerical results

Numerical results
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Re-allocation problem

Consider a problem of production where we have multiple unit
of production and need to satisfy an offer equal demand
equality.

On day D − 1 we have a prediction of the demand and define
a planning of production for day D.

On day D we have a new prediction of demand and have to
modify the planning of production.

Problem : find the best new planning with a small number of
modification.
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Re-allocation problem formulation

min
X (1)

m∑
j=1

c
(1)
j · X (1)

j

s.t. AX (1) = d new production = demand

LB ≤ HX (1) ≤ UB Bounds on new production

Y T (X (1) − X (0)) = 0 Modification iff Yj = 1

Y ∈ {0, 1}m
n∑

i=1

Yi ≤ n No more than n modifications
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Re-allocation problem relaxation I

We propose a L1 relaxation of the cardinality constraint on the L∞
norm of the modification.

min
X (1)

m∑
j=1

c
(1)
j · X (1)

j + λ

m∑
j=1

δj‖X
(1)
j − X

(0)
j ‖∞

s.t. AX (1) = d

LB ≤ HX (1) ≤ UB
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Re-allocation problem relaxation II

With a slight change of notation and simplification we obtain

min
X̃

c · X̃ + λ

m∑
j=1

‖X̃j‖∞

s.t.
m∑
j=1

Aj X̃j = b

X j ≤ X̃ ≤ X j ∀j

Dualizing the equality constraint we obtain

max
µ

−µ · b +
m∑
j=1

min
X j≤X̃j≤X j

(
cj + AT

j µ
)
· X̃j + λ‖X̃j‖∞,
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Test for the reoptimization problem

for any given multiplier µ(
cj + AT

j µ
)
· X̃j + λ‖X̃j‖∞ ≥

(
λ− ‖cj + AT

j µ‖1

)
‖X̃j‖∞.

Which leads to a first safe test (given that X̃ = 0 is admissible – or
without bound on X̃ )

(T1) ‖cj + AT
j µ‖1 ≤ λ =⇒ X ]

j (µ) = X
(0)
j .
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A generic idea

Consider the almost decomposable problem

min
x
{

m∑
j=1

fj(xj) + λ‖X‖1 |
m∑
j=1

gj(xj) = 0}

The dual problem reads

max
µ

m∑
j=1

min
xj

fj(xj) + µTgj(xj) + λ|xj |︸ ︷︷ ︸
Pj (λ,µ)

This problem can be solved by iteration over µ (classical
decomposition method).
For a given µ, if 0 is an optimal solution to Pj(λ, µ) then unit j is
not modified.
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A penalized version

Instead of dualizing the constraint we look at its penalized version

min
X̃

m∑
j=1

cTj X̃j + λ‖X̃j‖∞ + ε‖
m∑
i=1

Aj X̃j − b̃‖2

Dual formulation of the norm leads to

min
X̃

max
α,β

m∑
j=1

(
cTj X̃j + αT

j X̃j + βTAj X̃j

)
− βT b̃

s.t. ‖αj‖1 ≤ λ ∀j
‖β‖2 ≤ ε
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Obtaining a safe elimination test

Interverting max and min operators and minimizing over X̃j gives

max
α,β

− βT b̃

s.t. ‖αj‖1 ≤ λ ∀j
‖β‖2 ≤ ε
cj + αj + AT

j β = 0

Combining the constraints we see that

(T2) max
‖β‖2≤1

‖cj + εAT
j β‖1 < λ =⇒ X̃ ]

j = 0

then unit j is not modified.
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Practical safe elimination tests

(T2) max
‖β‖2≤1

‖cj + εAT
j β‖1 < λ =⇒ X̃ ]

j = 0

This test is hard to check, however we can derive the following
more restrictive test

(T3) ‖cj‖1 + ε‖
m∑

k=1

|ak |‖2 < λ =⇒ X̃ ]
i = 0,

where Aj = [a1 · · · am].
Furthermore if Aj is either diagonal or with positive coefficients
both tests are equivalent.
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Conclusion

In some cases sparsity is desirable.

One way of enforcing sparsity consists in penalizing the L1

norm, with good numerical results and some theoretical
results.

We can design specific methods for this type of
non-differentiable problem.

Safe test consists in knowing the optimal value of some
variable before solving the problem.

Reduce computation time.
Reduce memory size limits.

Leclère SAFE test June 2015 29 / 30



SAFE elimination for LASSO
SAFE elimination in learning setting

SAFE elimination in constrained optimization

Re-allocation problem formulation
Duality approach
Penalization

The end

Thank you for your attention !
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