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N rigid spheres in R? (with d = 3, 2, or 1), radii (1;)1<;<n, mass 1 .

Q:{q: (q17q27"' 7qN) ~ |RdN}

Feasible set :
Qo=1{a€@,Dij(q) >0 Vi,j, 1<i<j<N}

where Dj;(q) = |q; — q; — (ri +75)
(Rk. : Obstacle treated in the same way: D;x(q) > 0)

N.B.: D;; may be negative, and it is smooth in a neighbourhood of

Qo (for finite size particles).



G;; = VD;; € Tg = R : gradient of the distance between spheres i and

q; — q;
Qj—q@'\’

G’L] :( 707_eij707'” 707e’ij707"')7 €ij — |



Cq : set of feasible directions at q € Qo,

Cq={veTg, Gijj-v>0 assoonas D;j(q) =0},

Outward normal cone to (Qy at q (polar cone of Cq):

Nq

Cq=1heTg, h-v<0 VveCly}

= {- Zﬂisz’j(Q) , i >0, Dij(q)ui; =0} (Farkas Lemma)
i<j

Iq = Pe_ + Py, (Moreau)



Find t — q(t) € Qo, u = ¢,

( du
- = f(a,t) + > AijGij

)\z'j S M+(I) ’ Supp(Aij) C {t y Dzy(q(t)) — 0}7

_|_ _ _
\ u = Pe,u,

Cq={veTyg, G;j-v>0 assoonas D;i(q) =0},
Extended collision model (with e € [0, 1]: restitution coefficient):

u" =u" —(1+e)Py,u,

d*q

Differential inclusion formulation : po)

+Ng > f



1D EXAMPLE

A= 97-57' -+ g]l]T,—I-oo[




1D problems : ()¢ defined as a connected component of the set of all

configurations q with no overlapping.

(2 (AHH A

In this case,

QO:{q:(QMH-aCJN)ERNa Qi+1_QiZTi+1+Ti}

is closed and convex, and Nq is with the subdifferential of the

indicatrix of ()g:

0 if qge@

Ng = al@o (q) with IQO (q) —
’ too if q¢ Qo

and hence q — Nq is a maximal monotone operator.

In general, Qg is prox-regular (see Federer [10], Edmont-Thibault [8]).



THEORETICAL ANALYSIS
Schatzmann [22], Ballard [1], Moreau, Buttazzo [5].

Only analiticity ensures uniqueness.

NUMERICAL SIMULATION

Molecular Dynamics: slight overlapping allowed, short-range
repulsive force with local damping (Glowinski [11], Luding [13],
Richefeu).

Contact Dynamics: (1) Prediction of the violated constraints, then
succession of single contact problems, with relaxation (Moreau and

coworkers in Montpellier [21])

(2) Linearization of the constraints, global handling of contacts
(Stewart [23], Maury [17]).



NUMERICAL SCHEME £ (q) = [, f(q,1).

1. Initialization

(q?mu(})z) — (QO,UO)-

2. Compute uZH as the solution to the constrained minimization

problem
1 2
min  =|lu—u? — Af" T (q?
w€Cn () 2‘ h h (qh)‘

with

Culay) = {u € Tq, Dij(ay) + hGyj(qy) - u > 0}.

\

~

3. Update the positions

apytt =qp + huptth



INTERPRETATION OF THE SCHEME
+1 +1
w, " = Fo,(qp)(up, + Aty (ay))
equivalent to say that
u; + hf;:“(q}f) — uZH € 8ICh(qZ)(uZ+1)-
where

0 if veK

dp(x) = {v,0(x)+(v,h) < p(z+h) Vh}, Ikx(v) = .
+oo if vé K




D3 <0

D3y <0
D2 <0

G

As a consequence, the scheme can be written
n—+1

h

n

Lt Ol gy (upth) 3 £ (af)




n+1 n

h
For any q € (o, Ng is the convex closure of half lines —R; G;; for

+0Ic,qp) (up ™) 28 a@y) (%)

indices verifying D;;(q) = 0, and 0I¢, (q)(u) can be written as the
same sum for indices ¢ and j such that

Dij ((]) + hGU -u = 0.

Left-hand side: Taylor expansion of D;;(q + hu)

— the set 8[Ch(qz)(u7,;’+1) can be seen as a prediction of N n+1.

h

To sum up : (%) is a semi-implicit time discretization of inclusion

du
— + N f(q).



Interpretation in terms of positions

forbidden

forbidden

forbidden



PROJECTION STEP (independent from the scheme itself)

1

Find u = arg min —

K 2

with B € M, on(R) (r = N(N — 1)/2 = number of constraints).

u—U]”, K={v, Bv<D}



Dual formulation: Find (u, A) € R x R saddle point of

1
L(v,p) = §\V—U\2 +(Bv—D,p),

Llu,p) < L(u,A) <L(v,A), ¥YWweTg, pekRl.

Equivalently:
[ u+BA =
§ Bu <
| (Bu—D,A) = 0.

with U predicted velocity, u actual velocity.

Uzawa algorithm:

AT =T (A4 (B(U - B*AF) - D))



Back to our problem:
U = U-?I;,L + hff?—'_l(q?};) , Bv= (_hGij 'V)z'<j , D= (Dij(q;:))z'<ja

so that uZH and )\”H ()\”+1)1§i<j§r are related by

n+1

u, u,
h

fﬂ—i—l qh + Z)\n—l—lGZ] qh

1<J

du
o —F+ 2 MGy

1<J



BEHAVIOUR OF UZAWA ALGORITHM

:




COST REDUCTION
Number of constraints r = N(N — 1)/2 can be reduced to O(IV).

Bucket sorting:
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NUMERICAL TESTS
Behaviour of the scheme in the case of huge time steps
Confrontation to a case of non-uniqueness

Many-body problem with large time steps

Stochastic forcing

Various animations



1D problem, spheres in a row, non elastic chock
Discrete version of pressureless gas models

See Brenier [4] (sticky particles) for punctual particles

Oip + Oz (pu) = 0,
Or(pu) + 0, (pu?) = 0.

or Berthelin [2] (sticky blocks) for finite size particule

Orp + Oz (pu)

O (pu) + 0z (pu®) + Oup
o

(1—=p)p

Y
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Non uniqueness

(counter example in the spirit of Schatzman [22], Ballard [1])

u(0)

~
N—"

q(
alt

supp(A

N—

+

u

= 0,

/Ot u(s) ds

M

Vt e 1,

{t, q(t) =0},

u- — Py,u”

vVt € 1,

where N, is {0} whenever ¢ > 0, and R~ as soon as ¢ = 0.

Force field

f(t) =

1 for tE(

—«  for tE(

1 1 1 )
Qk—i—l’ 2k—|—1 + 2k+2
s ke, k> —4.
1 1 1
2k+1 + 2k—|—2’ 2k )
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arge time steps in a many-body situation (every 3 time steps shots




STOCHASTIC FORCING

t
q(t)ZQO+/ u(s)ds € Qo VvVt el
0

du = f(q, t) dt + Z d)\ZJGZJ (q(t)) + odw

1<J

supp(dAi;) C {t, Dij(a(t)) = 0},
ut(t) = Po,u (t) Vtel,

Numerically:

1
uP™ =arg min  ~|u—u? — A () - Vhow" !
ucCp(q}) 2



1D problem

Unconstrained problem : primitive of the Brownian motion
t

q= [, w(s)ds.

{t, q(t) =0} has a.s. a single cluster point at 0,

Constrained problem :

du = odw+ dA
dq = udt
ut = Peou~

Almost surely: points of Z = {t, q(t) = 0} are left-hand cluster
points of Z itself, but for a countable infinity (take off instants).
N.B. : u is no longer in BV.

Analysis : see Bertoin [3]
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Capillary forces (with common radius r):

Fji = _Fz'j — YT (exp (—ADZ'J' -+ B) + O) €ij if Dz’j < Drupt-

—41-42



FURTHER EXPERIMENTS
Many-body simulations —50-52-54

Macroscopic bodies

Additional force : F = —Vq4V |

k o kg Qi+1 — i Qi—1 — Qi
V= Qi+1 — | — )" + ' '
2 Z (gt =0 2 Z Qit1 —qi| i1 — q]

o~ O

OO G

1 —1 i 1+1

—62-64



First-order evolution equation :

a crowd motion model (with Juliette Venel [16])
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Safe zone w

d
Evolution equation : d_(tl = Pe_ U(q) or = +Ng 2 U.

—70-72-73



CONVERGENCE OF THE SCHEME
Functional framework (I =|0,7T[, N spheres in R?)
q € Whl : set of dN vector-valued functions, abs. continuous over I.

u € BV: set of dN vector-valued functions with bounded variation

over I:
Ng
sup » _u(tn) — u(tn-1)| < oo,
Sen
where S = (tg,t1,...,tn) runs over the set of subdivisions of I.

p € M! = set of N(N — 1)/2 vector-valued bounded measures on I :

= (pij)i<i<j<n With p;; a continuous linear functional over Cy([)

Component-wise positive measures:

My = {p = (pijh<icjen € MY, (pij,0) 20 Vo e Co(I), ¢ >0} .



Condition on f : Carathéodory type (see Coddington [6])
JF ¢ LY(I) s.t. |f(q,t)| < F(t) Y(q,t) € Qo x I,
and f is uniformly Lipschitz with respect to q

Jk, |f(d',t) —f(q,)| <k|d —d| ae inl Vq,dq € Qo.

Rk: forces like f = —KVV(|q2 — q1]) with V(d) = K/d, are OK.



Discrete functions
Xp={an=(q):I—=Q, q€ (P})*, 1<i<N},
Vh:{uh:(ui):l—> To , uie(P%)d, 1§z’§N},
Ry ={py,="(wi): I = R, pjjePy, 1<i<j<N},
where r = N(N — 1)/2 is the number of constraints.

For any uy, € Vj, (resp. p;, € Rp) uj (resp. pj') denotes the constant
value in the subinterval [(n — 1)h,nh).

Similarly, q} denotes q(nh), for any q; € Xj,.



THEOREM (for a single contact)s

Let (qn, un, tn)n be a sequence of approximate solutions, with A — 0.
There exists a subsequence of time steps (still denoted by h), and

(q,u,\) € WhH! x BV x M}

such that
qn — g4 In Wl,l?
A, 2N in MY,

and (g, u, A) is a solution to the initial problem.



PROOF
1) The scheme produces feasible configurations only: q(t) € Qq.
2) The family (uy) is uniformly bounded, i.e.,

1C , [up(t)| < Csx VE€[0,T], Vh>DO.

3) The fields u, have uniform bounded variation, i.e.,

N
ACar , var(up) = Z uf —ul ! < Cyar Vh.
n=1

4) The familly (uy) is relatively compact in L!(I). One can extract a
subsequence (still denoted qy,) such that q;, — q in W1, The limit
velocity u = q = lim qy, is in BV, and the limit motion q is feasible.

5) The sequence (\y,);, is bounded in L': up to a subsequence, it

converges weak-x to a vector-valued bounded measure A € Mfr



6) The pair (u, A) verifies the momentum equation.

7) Complementarity slackness condition (unformally AD = 0):
supp(A) C {t, D(q(t)) = 0}.

8) The initial condition is verified.

9) The jump equation ut = Pe_u~ is verified.



1) Feasibility (qx(t) € Qo Vh > 0,Vt).
Convexity of q — D,;(q) implies

Dij(ap™) = Dij(ay +hup™)
> Di;i(q}) + hGij(q)) -uptt  (since D;; is convex)
> 0.

2) Uniform boundedness of the velocity: due to the implicit character
of the scheme.

n+1
llh -
h

n

u mn mn mn
e A, (qp) (up™) > £ (ap)

Cr(qp) closed and convex = Operator [ +01c,,(qr) 1s a contraction.



3) Uniformly bounded variation of the velocity. Not trivial, as the
number of collisions (i.e. number of instants at which the velocity is
likely to be discontinuous) is not bounded, even for regular data.

Core of the proof: compactness argument (Brezis 1973).

THEOREM

du
— 4+ A t

with A : H — H maximal monotone operator , f € L'(I, H). If the
domain of A has a nonempty interior, then the solution u is BV.

Here: second order equation, but the time discretization scheme reads
n—+1 n
U, 4

h

+ 0lc, gy (up ™) > £ (qp)

which is basically

du
E + 8lg(q(t))u > f(q(t), t)



Key-point in the proof of Brezis theorem: fix an interior point in D(A).

— does there exist ug € Cp(qp(t)) ?

Steps 4, 5, 6, 7, and 8 straightforward.

Step 9 : ut = Pe_u™, given up, — uin L' (see [17]).



LUBRICATED CONTACT

Motivation

Body-body lubrication model : scheme I (see [14]).
Vanishing viscosity limit: scheme II (see [15, 12]).
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Apparent viscosities 2.0, 2.45, 1.62, and 6.54



Frup ~ —67T,ua,2%ey (See Brenner [7] or Kim [9])



Notations




F?Z — _F; = —k (Dw) {(C] - Cz) ezg} €i5

v J

which can be written
F! =[x (Dyj) e ®e] - (C] = CH), k(d) =p 1/d.
m; q; = ®; + Y  FI(C,CY).
JFi
Mag=®— Z G ® Gyl - q

1<J

The velocity u = q verifies the associated energy balance

d

1
7 ( Mu - u)—CI)-u+\I!(u,u):O,

with ® symmetric, nonnegative bilinear form.

(in its kernel: rigid motion of clusters)



Numerical strategy: decoupling of q and the distances.

qu:GPCJ'q7 qu:qu'ququ'q?

. D
— Dypq = Gypg- M™'® — M qu Gy M_leq
pq

1 _
—52 £ (Dij)(Gij - 1) (Gpg - M1 Gyy)
i3

One keeps D, implicit, the other distances explicit



1) Compute the distances (ODE).

2) Compute the matrix

A= Z .J 'LJ®GU]

1<J

3) Compute velocities and positions

un—i—l —u®

M - + AT = @
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ASYMPTOTIC ANALYSIS

Q\BT\ A

ge = _gq_s T f(t)v

q<€(0) — qO > 0 ) q<€(0) — UO’



THEOREM Let € > 0 and f € Llloc([R+) be given. Then the problem

admits a unique global solution ¢. € Wllo’zo([RJr).

PROOF. There exists a maximal solution defined on [0, 7|.

|2 1 t . . t
< P+ [ 1fllgel = Igel < [+ [ If1-
0 0

L " e
2 0 4e

¢. cannot blow up within a finite time

if 7 < 00, then necessarily g. goes to 0 as ¢t goes to 7~ . But

¢-(t) =u’ —¢ln (ng(ot)> + /Otf(s) ds,

so that g. — 0 implies ¢.(t) — 400, hence a contradiction.




ASYMPTOTIC BEHAVIOUR

Find ¢ € WhH(I) with ¢ € BV(I), ye€ BV(I), peM(I), such that
Gg=f+Xin M(I),

supp(A) € {t, q(t) = 0} ,

¢" = Pc,q"

y=-A, v<0, ¢>0, gy=0 ae. inl,

q(0) =¢" >0, ¢(0)=u",

R if ¢g>0,
with Cy =| RT if g=0andy™ =0,
{0} if g=0andy~ <O.




ALTERNATIVE FORMULATION (equivalent for a finite number of
contacts)

Find ¢ € WhHo(I), ~ € L*(I), such that

t

G+y=u=u"+ [ f(s)ds ae. inT,
0




NUMERICAL SCHEME

q" >0«

[ = R

gn—i—l — qn 4 hun—l—l 7

if gt <0

if gntt >0

q"

,.Yn

1 — 0 :
,yn—i—l — un—i—l

— q~n—|—1

=0,

Y

q

n

0 <

,yn—i—l — ,yn + hf(tn+1) :

+1
- urtt =0,
un—i—l — AN+l :
if 471 > K
qn‘l‘l — qn _|_ hun—l—l
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THEOREM Let ¢° > 0, u® € R, a time interval I =]0,T[ and f € L'(I)
be given. We denote by ¢. € W1°°(I) the unique solution in I, and

we set 7. = elng. . When ¢ goes to 0, there exists a subsequence,
still denoted by (g.), ¢ € Wh>(I), v € L*>(I), such that

¢ —— ¢ uniformly ,

Ve = 4 in L® weak —

and the couple (¢,~) is a solution to the limit problem.



Energy balance: (g.) in W10 (1)

One extracts a subsequence (still denoted by ¢.) such that ¢.
converges uniformly to some ¢ € W1, and ¢. converges to u = ¢ in
the weak-x sense.

Let 7. be defined as €Inq.. One has

t
q.€+7€:u0‘|'78+‘/ I
0

where 7Y = 7.(0) = eln¢" goes to 0 with «.

As a consequence, 7. converges weak-x in L>° towards v € L° such
that

. 0 ! 5 .
¢+v=u +/Of u(t)



Next step: ¢ = u in Iy = {t,q(t) > 0}.

We introduce, for any n > 0, the set I,(¢) = {t €]0,T], q(t) > n}.
As g. converges uniformly to g, I,,(q) C I,)/2(qc) for ¢ sufficiently

small.

As a consequence, 7. = €In g, goes uniformly to 0 on I,,(¢), thus g. cv

uniformly towards the unconstrained velocity « in I,,(q), for all n > 0.

The limit ¢ is therefore C! on Iy, with ¢ = @, and ~ is identically 0
on I().

On I§(q) = {t, q(t) = 0}, q is constant, so that ¢ = 0 almost
everywhere, thus v = u a.e.

Besides, as 7. is negative as soon as g. < 1, one has v < 0 on I§.



MODELLING ISSUES

Paradox: modeling of contacts with a highly viscous interstitial fluid
obtained as a vanishing viscosity limit.

T 0 T T T T T T T
0.025F | m = = modeéle de contact visqueux I ]
mélasse : u=100
miel : p=10
0.02 L huile de ricin : p=1 N
huile d’olive : p=0.1
sang : u=0.025
0.015 .
0.01r .
couche de
fluide visqueux
0.005 N
0 -
| | | | | | | | |




In real life: ruguous walls. Contact actually occurs at distance 0 > 0.
If the distance below which the models produces significant forces is
d. < 0, the model does not make sense.

A

)

Numerically: cut-off applied to v below some threshlod value.



MANY-BODY SITUATION

) Hij € M(I), supp(pij) C {t, Di;(a(t)) = 0},

ut = Peu,

I

|
bl
Q.

\ Vi

eq:{VETQ, Dij(q)ZO?Gij°V20, ’)/Z'j<0:>Gij°V:0},

Remark: tangential forces can be included.

—80-81-82-84-85-86-87-88



LINKS WITH MACROSCOPIC MODELS

Instantaneous saddle point problem:

’

u+B*\N = U

Bu < 0.

\

U velocity before the collision, u after the collision.
Rows of B: gradients —Gy;.

B expresses a unilateral incompressibility (divergence)
(saturated zones cannot be further compressed)

B* is a gradient like operator:

—B*A=) X\;Gyj.



Analogy with a unilateral Darcy-like problem

( (

Bu < 0. —-V.-u < 0.

\ \

Continuous problem on 2 with free outlet (p = 0 on 0€2):

B : L*(Q)?*— H 1,
.V

Bvq q.

One has ||B*q|| = ||Vq||r2 > Hq||H1(Q) (Poincaré inequality), so that

B is surjective

— the problem is well-posed (3! (u,p) s.t. ...).



Analogy (continued)

The Lagrange multiplier field minimizes

1
J(q) = 5 Vp — F|*

over all those fields in Hj (€) which are non negative a.e.



Turns out to be an obstacle problem, whose saddle point formulation

1S
)

~Ap—p = -V-F

—Pp < 0.

\

The underlying operator is a Laplacian.

Back to the granular situation:

2

u+B*\N = U

Bu < 0.

\

First remark: A is not unique in general.
Indeed (2D situation):

number of equations (=~ 2/N) > number of unknowns (= 31V)



Minimal set: 14 discs (28 primal DOFs), 29 contacts

In open (expandable) situations, uniqueness holds for the

homogeneous problem

BA=0, A\>0= \=0

which simply means that kerB* N (R, )" = {0}.
But in general B*\ = F' admits infinitely many solutions.

It suffices that there exists a solution A\ €]0, +-oc0]".



For the dry contact case: no consequence

For the lubricated case: huge consequences

Yij = —Aij
and -y;; conditions the take-off instant.

—— beside the non-uniqueness in time for non analytical data, the
evolution problem admits a continuum of solutions, as soon as

degeneracy occurs sometimes.

Degeneracy: many particles have more than 4 neighbours, in 2D,
more than 6 in 3D: generic situation for monodisperse packed

suspensions.



Analogy (continued).

B plays the role of the divergence.

— nature of BB* 7 (N.B. it conditions the computational cost)
For 1D problems : BB™ is exactly the discrete Laplacian.

In higher dimensions: depends on the structure
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Macroscopic models

Macroscopic pressureless gas model

Op+V-(pu) = 0,
di(pu) + V- (pu®@u)+Vp = 0
p < 1
(I-p)pp = 0
ut = Pe,u™

Well-posedness issues 7

Possibilities to integrate some structural parameter.



Macroscopic lubricated model

Asymptotic limit (7)

Otp + Oz (pu)
O¢(pu) + 05 (pu?) + Opp

Oy + O (yu)

v<0, p<1, v(1-p)
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