
Mathematical and numerical study of some models

in multiscale simulation of materials

Abstract of the Habilitation thesis

defended by Frédéric Legoll on October 17th, 2011

The first part of the manuscript is concerned with various works in molecular simula-
tion. We consider systems composed of point particles (that typically represent atoms in
a molecular system), that interact through a potential energy. The degrees of freedom of
the system are the position and the momentum of each particle. The very large number
of degrees of freedom makes the problem challenging : many systems considered by the
applied community are composed of more than 105 atoms, and the largest systems that
can today be simulated contain a few tens of billions of atoms.

A first question is to sample the Boltzmann-Gibbs measure associated to the potential
energy of the system. Several methods have been proposed in the literature, based on
Markov chains, Markov processes (typically solutions of stochastic differential equations),
and ordinary differential equations. We briefly review these methods, and present our
results on the non-ergodicity of some deterministic methods (namely, the Nosé-Hoover
method). One has hence to be cautious when using this method to sample the Boltzmann-
Gibbs measure.

We next consider questions related to the construction of effective dynamics. Typically,
the potential energy has many local minima, separated by high barriers. However, it is
not always needed to know all the degrees of freedom of the system to know in which
conformation the system is. The knowledge of a function of the degrees of freedom is
often sufficient enough. Starting from the microscopic description of the system (where
the state is described by a vector X, the dimension of which is large) we then introduce
a macroscopic description, based on a function of the microscopic state, that we denote
here ξ(X). This function (that we assume to be scalar-valued) is our quantity of interest.
We propose a strategy to design a dynamics that approximates the dynamics t 7→ ξ(Xt)
of the quantity of interest, when the system, at the microscopic scale, evolves according to
the overdamped Langevin equation. Under a time scale separation assumption, we show
that the dynamics we propose is an accurate approximation of t 7→ ξ(Xt).

The works described above have been performed in a finite temperature setting. We
have also considered isolated systems, the evolution of which is given by Newton laws, that
we write as a Hamiltonian dynamical system. Simulating this dynamics is challenging, due
to the gap between the fast time scales present in the system (vibrations of some chemical
bonds occur with a typical period of the order of the femtosecond), and the slow time
scales, which are of the order of the microsecond or the millisecond. Such simulation times
are essentially out of reach if one uses a standard integrator, that would use time steps
of the order of the femtosecond. We have addressed this problem in a two-fold manner.
First, we have proposed numerical integrators for highly oscillatory Hamiltonian dynamics
(for which the time step is not limited by the fastest characteristic time scales), following
a homogenization (in time) approach. We have also proposed a variant of the parareal

scheme (that uses parallel computations to simulate a dynamics) that is better adapted
to the Hamiltonian framework than the original parareal algorithm.
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In the second part of the manuscript, considering solids described at the atomistic
scale, we derive coarse-grained models (written at the continuum scale) and couple these
two models. The fine scale model is similar to models considered in the first part of the ma-
nuscript, whereas the coarse-grained model is written at a much more macroscopic scale.
During the PhD, we have addressed this question in a variational setting (corresponding
to a vanishing temperature). The configuration we are after is a (sometimes unique) mi-
nimizer of some energy. We have then studied how to couple the atomistic model with the
corresponding continuum model. Recently, we have turned to a finite temperature setting,
in which macroscopic quantities of interest are averages of functions depending of the mi-
croscopic state of the system (the position of all the atoms) with respect to the Boltzmann
measure. In this setting, we have derived coarse-grained models, where the temperature is
a parameter, following thermodynamic limit approaches.

In the third part of the manuscript, we turn to materials modelled at the continuum
scale by (linear) elliptic partial differential equations. We consider random materials, the
properties of which oscillate at a fast scale. Random homogenization is a well developed
theory to handle such problems. However, even of such simple cases, the associated nu-
merical methods today available (such as methods to compute the homogenized matrix)
generally lead to very expensive computations. We address this problem from a numerical

viewpoint : we consider an equation that is simple from the theoretical viewpoint, and
wish to design more efficient numerical strategies. We have followed two directions. The
first one is concerned with variance reduction. In the setting we consider, even though
the exact homogenized matrix is deterministic, it turns out that, due to the numerical
procedure that is standardly used, one can only have access to a random approximation
of the homogenized matrix. We have proposed variance reduction techniques, to typically
obtain an approximation with a smaller confidence interval, in the framework of Monte
Carlo methods. A second direction consists in considering weakly stochastic materials. In-
deed, real materials are rarely periodic, but they are not always strongly random. The case
when the randomness comes as a small perturbation of a periodic model is thus relevant,
in practice, to model a large class of materials. We then show that, in this case, we can
compute, at the first orders, the homogenized matrix with a workload comparable to that
encountered in periodic homogenization, and hence much smaller than the one required
by generic stochastic homogenization.
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