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Abstract. Some theoretical issues related to the problem of variance reduction
in numerical approaches for stochastic homogenization are examined. On some
simple, yet representative cases, it is demonstrated theoretically that a tech-
nique based on antithetic variables can indeed reduce the variance of the output
of the computation, and decrease the overall computational cost of such a mul-
tiscale problem. The theoretical considerations presented here are companion
to numerical experiments presented in [7, 16] that corroborate the theoretical
results enclosed.
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1. Introduction

The present article examines some theoretical questions related to variance
reduction techniques that can be successfully applied to some stochastic homog-
enization problems. It is a follow-up to an introductory article [16] where some
one-dimensional settings are considered theoretically and some two-dimensional
numerical experiments are presented. In particular because of space limitation,
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the present contribution is supplemented by another publication [7] presenting
numerical results on a broad set of test cases. More details, both theoretical
and numerical, will also be presented in [13].

The stochastic homogenization problem we consider here writes as follows.
We consider the elliptic boundary value problem{

− div
(
A

(x

ε
, ω

)
∇uε

)
= f in D,

uε = 0 on ∂D,
(1.1)

set on a domain D in Rd. Here, ε denotes a supposedly small, positive constant
that models the smallest possible scale present in the problem. The matrix A
is assumed random and stationary in a sense that will be made precise below.
Somewhat loosely stated, A typically models a material that has a periodic
pattern (with a basic unit cell Q) and for which, in each cell, some stationary
random structure is present. For ε small, it is almost impossible, practically, to
directly attack (1.1) with a numerical discretization. A useful practical approach
is to first transform (1.1) in the associated homogenized problem:{

− div(A�∇u�) = f in D,

u� = 0 on ∂D,
(1.2)

and next numerically solve the latter problem. The two-fold advantage of (1.2)
as compared to (1.1) is that it is deterministic and it does not involve the small
scale ε. This simplification comes at a price. The homogenized matrix A�

in (1.2) is given by an average of an integral involving the corrector function (a
solution to an (random) auxiliary problem, reminiscent of (1.1), and set at the
scale of the fine structure of the material). All this will be made precise below.

Now, practically computing the corrector function and the homogenized ma-
trix A� requires to generate several realizations of the material over a finite,
supposedly large volume at the microscale, and approach the matrix by some
empirical means. Although the theoretical value of A� is deterministic (and
this is the whole point and the definite success of homogenization theory to
obtain this), it is because of the numerical approximation process itself that
randomness again comes into the picture. Generating different configurations
of the material and then efficiently averaging over these realizations require to
understand how variance affects the result. This is the purpose of the present
article to investigate some theoretical questions in this direction. Before pro-
ceeding and for the sake of consistency, we now present in more details some
basic elements of stochastic homogenization, and situate the questions under
consideration in a more general existing literature.
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1.1. Homogenization theoretical setting

To begin with, we introduce the basic setting of stochastic homogenization
we will employ. We refer to [17] for a general, numerically oriented presentation,
and to [6,12,21] for classical textbooks. We also refer to [8,9,23] and the lecture
notes [2] for a presentation of our particular setting. Throughout this article,
(Ω,F , P) is a probability space and we denote by E(X) =

∫
Ω X(ω)dP(ω) the

expectation value of any random variable X ∈ L1(Ω, dP). We next fix d ∈ N∗

(the ambient physical dimension), and assume that the group (Zd, +) acts on Ω.
We denote by (τk)k∈Zd this action, and assume that it preserves the measure P,
that is, for all k ∈ Zd and all A ∈ F , P(τkA) = P(A). We assume that the
action τ is ergodic, that is, if A ∈ F is such that τkA = A for any k ∈ Zd,
then P(A) = 0 or 1. In addition, we define the following notion of stationarity
(see [8, 9]): any F ∈ L1

loc(R
d, L1(Ω)) is said to be stationary if, for all k ∈ Zd,

F (x + k, ω) = F (x, τkω), (1.3)

almost everywhere in x and almost surely. In this setting, the ergodic theo-
rem [22, 27] can be stated as follows: Let F ∈ L∞(Rd, L1(Ω)) be a stationary
random variable in the above sense. For k = (k1, k2, . . . , kd) ∈ Zd, we set
|k|∞ = sup1≤i≤d |ki|. Then

1
(2N + 1)d

∑
|k|∞≤N

F (x, τkω) −→
N→∞

E(F (x, ·)) in L∞(Rd), almost surely.

This implies that (denoting by Q the unit cube in Rd)

F
(x

ε
, ω

) ∗−⇀
ε→0

E

( ∫
Q

F (x, ·)dx
)

in L∞(Rd), almost surely.

Besides technicalities, the purpose of the above setting is simply to formalize
that, even though realizations may vary, the function F at point x ∈ Rd and the
function F at point x + k, k ∈ Zd, share the same law. In the homogenization
context we now turn to, this means that the local, microscopic environment
(encoded in the matrix A) is everywhere the same on average. From this,
homogenized, macroscopic properties will follow. In addition, and this is evident
reading the above setting, the microscopic environment considered has a relation
to an underlying periodic structure (thus the integer shifts k in (1.3)).

As briefly introduced above, we now wish to solve the multiscale random
elliptic problem (1.1). Let us formalize this. The domain D is an open, regular,
bounded subset of Rd. The right-hand side is an L2 function f on D. The
random symmetric matrix A is assumed stationary in the sense (1.3). We also
assume that A is bounded and that, in the sense of quadratic forms, A is positive
and almost surely bounded away from zero.
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In this specific setting, the homogenized matrix A�, that appears in the
homogenized problem (1.2) obtained in the limit of small ε, reads

A�
ij =

∫
Q

E
[(∇wej (x, ·) + ej

)T
A(x, ·)(∇wei (x, ·) + ei

)]
dx, (1.4)

where, for any vector p ∈ Rd, the corrector wp is the solution (unique up to
the addition of a random constant) in

{
w ∈ L2

loc(R
d, L2(Ω)), ∇w ∈ L2

unif(R
d,

L2(Ω))
}

to ⎧⎪⎪⎨⎪⎪⎩
− div

[
A(∇wp + p)

]
= 0 on R

d a.s.,

∇wp is stationary in the sense of (1.3),∫
Q E(∇wp) = 0.

(1.5)

We have used the notation L2
unif for the uniform L2 space, that is the space of

functions for which, say, the L2 norm on a ball of unit size is bounded above
independently from the center of the ball.

1.2. The questions we consider

Now that the theory has been briefly presented, we turn to practice. The
homogenized matrix A� needs to be computed, so that in a second step the
homogenized solution u� may be approximated. By classical results in homog-
enization theory, we know u� is a good approximation of uε, in a sense made
precise in the literature (see e.g. [12]). In practice, the matrix A� is approxi-
mated by the matrix[

A�
N

]
ij

(ω) =
1

|QN |
∫

QN

(
ei + ∇wN

ei
(y, ω)

)T
A(y, ω)

(
ej + ∇wN

ej
(y, ω)

)
dy, (1.6)

which is in turn obtained by solving the corrector problem on a truncated do-
main, say the cube QN ⊂ Rd of size (2N + 1)d centered at the origin:{

− div
(
A(·, ω)

(
p + ∇wN

p (·, ω)
))

= 0,

wN
p (·, ω) is QN -periodic.

(1.7)

As briefly explained above, although A� itself is a deterministic object, its prac-
tical approximation A�

N is random. It is only in the limit of infinitely large
domains QN that the deterministic value is attained. Our aim is to design a
numerical technique that, for finite N , allows to compute A�

N more effectively,
that is, with a smaller variance.

The issue of variance in stochastic homogenization is not new. It has seen
lately a definite revival, mainly motivated by numerical concerns. It is not our
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purpose here to review in details the important contributions existing in the
literature. We however wish to cite some results particularly relevant to our
own study:

• the original contribution [29] by Yurinski, where the convergence of some
truncated approximation of A� is established, along with an estimate of
the rate of convergence (in short, problem (1.5) is regularized and then A�

is approximated on a bounded domain),

• a similar study [11] by Bourgeat and Piatnitsky for a specific approxi-
mation more relevant to actual numerical practice (in short, both prob-
lem (1.5) and the integral in (1.4) are truncated as in (1.6)–(1.7)),

• the work [25] by Naddaf and Spencer on a discrete (“lattice-type”) approx-
imation of the differential operator present in the original problem (1.1),

• and the enterprise by Gloria and Otto (see [19] for homogenization prob-
lems set on random lattices and publications announced in preparation
for some problems for differential operators) to establish sharp estimates
of the convergence of the numerical approximation in terms of the size of
the truncation domain and other discretization parameters.

In all the above works, the convergence and the rate of convergence are studied.
We take here the problem from a slightly different perspective: we are interested
in basic practical issues. Can we improve the prefactor in the convergence of A�

N

to A� as N → +∞ (loosely stated, the variance in a Central Limit Theorem
type result)? Or, even more practically, can we reduce the confidence interval
for empirical means approximating E(A�

N )? And similar issues.
To better understand the issue of reducing variance in stochastic homoge-

nization, we consider a specific, well known variance reduction technique, the
technique of antithetic variables [24, page 27]. In the sequel of this article, we
consider two specific cases.

Our first setting (in Section 2) is a “genuinely” random setting (this ter-
minology will be clear when we introduce our second setting shortly below).
We consider a random matrix A constructed with independent, identically dis-
tributed random variables on the cells of our periodic lattice (although A does
not need to be constant on each cell and equal to these random variables; see
e.g. example (2.6) below). Since solving problem (1.5) and directly comput-
ing A� is out of reach practically, our numerical approach considers the trunca-
tions (1.6)–(1.7) on a finite domain QN , solved for a set of realizations of the
random matrix. Empirical means of the truncated homogenized matrix A�

N (ω)
are obtained, along with a (approximation of a) confidence interval involving
the variance. The consideration of antithetic variables allows to improve the
approximation. This is experimentally observed, and documented in [7, 13, 16].
We establish here theoretically that the variance of the homogenized objects is
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indeed diminished by the technique (we are, unfortunately, unable to explicitly
estimate the gain). In our study, the matrix A�

N , its eigenvalues, its trace and
determinant, and the eigenvalues of the elliptic operator associated to A�

N are
considered, but other objects could be studied: the eigenvectors, the differential
operator itself, the approximation of the homogenized solution u�, the residual
uε − u� (somewhat as a follow-up to the studies [4, 10]), etc.

Our second setting is a “weakly” random setting. By this we mean that the
random matrix A is a small perturbation of a deterministic, periodic matrix.
Consequently, the solution of the problem is only seeked at the first order in
the size of the perturbation. The setting has been introduced in [9] (and is
recalled in Section 3.1 below). Its practical interest is that the computation
comes down to a set of fully deterministic computations. So in practice, no
variance issue is relevant. We however consider this case pretending not to
exploit the simplification: we treat the problem stochastically and prove that
the technique of variance reduction still works. As we can compute everything
deterministically “in the backroom”, the setting, although clearly particular
and not general, is an appropriate test-bed to get some insight on some of the
generically relevant issues.

It is important to note that some of the results we establish are limited to the
technique of antithetic variables. Some others are not. They can therefore be
useful for other variance reduction techniques. This is the case for our estimates
of variance of the output of the computations in terms of the variance of the
original parameters (see e.g. estimate (3.14)).

Let us conclude this introduction mentioning that of course there exists
many other settings where similar questions can be asked. We treat here the
very specific case of a linear, elliptic second order equation in divergence form.
The coefficient is assumed to be constructed with independent, identically dis-
tributed random variables set on a simple underlying periodic structure. The
technique used for variance reduction is that of antithetic variables. Many
more difficult situations could be addressed: other types of stationary ergodic
coefficients, other types of equations, other techniques of truncations and reg-
ularizations of the original problems, other techniques for variance reduction,
other numerical approaches, . . .

Some of these issues (but clearly not all!) will be addressed in [7, 13].

2. A “fully” stochastic case

We consider in this section a “genuinely” random setting, in contrast to the
setting of Section 3, where randomness will come as a small perturbation of a
deterministic periodic setting.
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2.1. Mathematical setting and statement of our main result

In this section, we make the following two assumptions on the matrix A
of (1.1). First, we assume that, for any N , there exists an integer n (possibly
n = |QN |, but not necessarily) and a function A, defined on QN ×Rn, such that
the tensor A(x, ω) writes

∀x ∈ QN , A(x, ω) = A(
x, X1(ω), . . . , Xn(ω)

)
a.s., (2.1)

where {Xk(ω)}1≤k≤n are independent scalar random variables, which are all
distributed according to the uniform law U [0, 1]. In general, the function A, as
well as the number n of independent, identically distributed variables involved
in (2.1), depend on N , the size of QN , although this dependency is not made
explicit in (2.1).

Second, we assume that the function A in (2.1) is such that, for all x ∈ QN ,
and any vector ξ ∈ Rd, the map

(x1, . . . , xn) ∈ R
n �−→ ξTA(x, x1, . . . , xn)ξ (2.2)

is non-decreasing with respect to each of its arguments.
Before proceeding, we give a set of specific examples of matrices A that

satisfy the above assumptions. Consider a family (ak(ω))k∈Zd of independent,
identically distributed random variables, and set

A(x, ω) =
∑
k∈Zd

1Q+k(x)ak(ω) Id, (2.3)

where Q is the unit cube of Rd, centered at the origin, and Q + k is the cube Q
translated by the vector k ∈ Zd. We assume that there exist α > 0 and β < ∞
such that, for all k, 0 < α ≤ ak ≤ β < +∞ almost surely. Consequently, A
is uniformly coercive and bounded. Example (2.3) corresponds to a spherical
matrix A(x, ω) that is constant in each cube Q+k, with independent, identically
distributed values ak(ω).

Introduce now the cumulative distribution function P (x) = ν(−∞, x), where
ν is the common probability measure of all the ak, and next the non-decreasing
function f(x) = inf{y; P (x) ≥ y}. Then, for any random variable X(ω) uni-
formly distributed in [0, 1], the random variable f(X(ω)) is distributed according
to the measure ν. As a consequence, we can recast (2.3) in the form

A(x, ω) =
∑
k∈Zd

1Q+k(x)f(Xk(ω)) Id, (2.4)

where (Xk(ω))k∈Zd is a family of independent random variables that are all
uniformly distributed in [0, 1], and f is non-decreasing. This yields an example
falling in our framework (2.1)–(2.2).
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Remark 2.1. Consider the example when, in (2.3), the variables ak are all dis-
tributed according to a Bernoulli law of parameter r ∈ (0, 1), that is, a0 ∼ B(r),
P(a0 = α) = r and P(a0 = β) = 1 − r, for some 0 < α < β. In that case, the
function f mentioned above reads

f(x) = α + (β − α)1{r≤x≤1},

and we may write a0(ω) = f(X0(ω)) with X0 ∼ U([0, 1]).

Of course, example (2.3) can be readily extended to the case of non-spherical
matrices. Consider a function F , defined on [0, 1], such that, for each x ∈ [0, 1],
F (x) is a symmetric matrix. We also assume that F (x) is uniformly coercive
and bounded, and that, for any ξ ∈ Rd, the function x ∈ [0, 1] �→ ξT F (x)ξ is
non-decreasing. Then

A(x, ω) =
∑
k∈Zd

1Q+k(x)F (Xk(ω)) (2.5)

also satisfies our assumptions.
We eventually give an example of a matrix A satisfying our assumptions and

that, on each cell, is not equal to independent, identically distributed variables.
For this purpose, define positive coefficients κp for |p|∞ ≤ 1, and consider a
non-decreasing function f . We then set

A(x, ω) =
∑
k∈Zd

[
1Q+k(x)

∑
j∈Zd, |j−k|∞≤1

κj−kf(Xj(ω)) Id
]
, (2.6)

which clearly satisfies (2.1)–(2.2). In (2.6), it is immediately seen that the value
of A(x, ω) in the cell Q + k is a local average of the values f(Xj(ω)) Id, for
|j − k|∞ ≤ 1.

The main result of this section is the following:

Proposition 2.1. We assume (2.1)–(2.2). Let A�
N (ω) be the approximated

homogenized matrix, obtained by solving the corrector problem (1.7) on the
truncated domain QN ⊂ Rd. We define on QN the field

B(x, ω) := A(
x, 1 − X1(ω), . . . , 1 − Xn(ω)

)
, (2.7)

antithetic to A(·, ω) defined by (2.1). We associate to this field the corrector
problem (1.7) (replacing A by B), the solution of which is denoted by vN

p , and

the matrix B�
N (ω), defined from vN

p using (1.6). Set

Ã�
N (ω) :=

1
2
(A�

N (ω) + B�
N (ω)). (2.8)

Then
E
(
Ã�

N

)
= E(A�

N ), (2.9)
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and, for any ξ ∈ Rd,

Var
(
ξT Ã�

N ξ
) ≤ 1

2
Var

(
ξT A�

N ξ
)
. (2.10)

Otherwise stated, Ã�
N is a random variable which has the same expectation

as A�
N , and its variance is smaller than half of that of A�

N , in the sense of (2.10).

The practical consequences of this result for variance reduction techniques
are discussed below.

Taking ξ = ei in (2.10) implies that the variance of the diagonal coefficient[
Ã�

N

]
ii

is reduced by a factor two. Similar results can be obtained, first on the
eigenvalues of the matrix A�

N , and second on the eigenvalues of the (approxi-
mate) homogenized elliptic operator LA = − div[A�

N (ω)∇·]. This is the purpose
of the following two corollaries.

Corollary 2.1. We assume (2.1)–(2.2). Denote by {λk(A, ω)}1≤k≤d and
{λk(B, ω)}1≤k≤d the eigenvalues of A�

N (ω) and B�
N (ω) respectively, sorted in

non-decreasing order, where A�
N (ω) and B�

N (ω) are defined as in Proposition 2.1.
Define

λ̃k(ω) :=
1
2
[
λk(A, ω) + λk(B, ω)

]
.

Then, for all 1 ≤ k ≤ d,

E
(
λ̃k

)
= E(λk(A, ·)) and Var

(
λ̃k

) ≤ 1
2

Var(λk(A, ·)). (2.11)

Remark 2.2. The above corollary shows variance reduction for each eigenvalue of
the homogenized matrix. It is easily seen that the proof of this result carries over
to the case when the quantity of interest is a function F(λ1(A, ω), . . . , λd(A, ω))
of these eigenvalues, provided F is a real-valued function that is non-decreasing
with respect to each of its arguments. We indeed have

E
(
Z̃

)
= E(Z) and Var

(
Z̃

) ≤ 1
2

Var(Z),

where Z(ω) = F(λ1(A, ω), . . . , λd(A, ω)) and

Z̃(ω) =
1
2
[F(λ1(A, ω), . . . , λd(A, ω)) + F(λ1(B, ω), . . . , λd(B, ω))

]
.

Typical examples for such functions are

F(λ1(A, ω), . . . , λd(A, ω)) =
d∑

k=1

λk(A, ω) = Tr A�
N (ω),

F(λ1(A, ω), . . . , λd(A, ω)) =
d∏

k=1

λk(A, ω) = detA�
N (ω).
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Using the technique of antithetic variables, we hence achieve variance reduc-
tion for any diagonal coefficient of the matrix A�

N (ω), as well as for its trace and
its determinant, and for any quantity of the form ξT A�

Nξ, for any given vector
ξ ∈ Rd. Note however that our argument does not cover the case of the off-
diagonal coefficients of A�

N (ω), although numerical results on several test cases
indicate that the variance of these coefficients is also reduced by the present
method (see [7]).

Corollary 2.2. We assume (2.1)–(2.2). Let (λk(LA, ω), uk(LA, ω))k∈N be the
eigenelements of the operator LA = − div[A�

N (ω)∇·] with homogeneous Dirich-
let boundary conditions, i.e.

− div
[
A�

N (ω)∇uk(LA, ω)
]

= λk(LA, ω)uk(LA, ω)

with uk(LA, ω) ∈ H1
0 (D) and ‖uk(LA, ω)‖L2(D) = 1. We similarly consider the

eigenelements of LB = − div[B�
N (ω)∇·]:

− div
[
B�

N (ω)∇uk(LB, ω)
]

= λk(LB, ω)uk(LB, ω).

We assume that, almost surely, λk(LA, ω) and λk(LB, ω) are sorted in non-
decreasing order. Define

λ̃k(L, ω) :=
1
2
(λk(LA, ω) + λk(LB, ω)).

Then, for all k ∈ N,

E
(
λ̃k(L, ·)) = E(λk(LA, ·)) and Var

(
λ̃k(L, ·)) ≤ 1

2
Var(λk(LA, ·)). (2.12)

The proofs of the above results (Proposition 2.1 and Corollaries 2.1 and 2.2)
are given in Section 2.4. They are obtained combining some classical results on
variance reduction using antithetic variables [24, page 27] and some monotonic-
ity results from the theory of homogenization. For consistency, these results are
recalled in Sections 2.2 and 2.3, respectively.

The proof goes as follows. First, we recall that the technique of antithetic
variables reduces variance for the computation of E(f(X1, . . . , Xn)), when f
is a real-valued function, that is non-decreasing of each of its argument, and
X = (X1, . . . , Xn) is a vector of independent random variables. This is made
precise in Section 2.2. Second, we assume that the tensor field A(x, ω) of (1.1)
writes as a non-decreasing function (in the sense of symmetric positive ma-
trices) of independent random variables Xk(ω) (these are assumptions (2.1)
and (2.2)). Then, as recalled in Section 2.3, we use that the homogenization
process preserves the order of symmetric matrices to claim that A�

N (ω) is like-
wise a non-decreasing function of the random variables Xk(ω). Consequently,
we obtain variance reduction for A�

N . In the same vein, since the map that
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associates to a symmetric matrix its eigenvalues is non-decreasing, we obtain
variance reduction for the eigenvalues of A�

N . This argument is formalized in
Sections 2.2, 2.3 and 2.4.

Before proceeding, we briefly explain the usefulness of the above results for
variance reduction techniques. Assume we want to compute the expectation
of ξT A�

N (ω)ξ, for some fixed vector ξ ∈ Rd (similar arguments hold for the
computation of the expectation of any quantity considered above: the eigen-
values of the matrix A�

N (ω), its trace, its determinant, or the eigenvalues of
the associated elliptic operator). Following a classical Monte-Carlo method, we
estimate E(ξT A�

Nξ) by its empirical mean. To this end, we consider 2M inde-
pendent, identically distributed copies {Am(x, ω)}1≤m≤2M of the random field
A(x, ω) on QN . To each copy Am, we associate an approximate homogenized
matrix A�,m

N (ω), obtained using the solution to the corrector problem (1.7) in
the average (1.6). We next introduce the empirical mean

μ2M (ξT A�
Nξ)(ω) =

1
2M

2M∑
m=1

ξT A�,m
N (ω)ξ, (2.13)

and consider that, in practice, the mean E(ξT A�
Nξ) is equal to its estimator

μ2M (ξT A�
Nξ) within an approximate margin of error 1.96

√
Var(ξT A�

Nξ)/
√

2M .
Alternate to considering (2.13), we may consider

μM

(
ξT Ã�

Nξ
)
(ω) =

1
M

M∑
m=1

ξT Ã�,m
N (ω)ξ, (2.14)

where Ã�,m
N is defined by (2.8). Again, in practice, the mean E(ξT A�

N ξ) =
E
(
ξT Ã�

Nξ
)

is equal to μM

(
ξT Ã�

N ξ
)

within an approximate margin of error

1.96
√

Var(ξT Ã�
Nξ)/

√
M . Observe now that both estimators (2.13) and (2.14)

are of equal cost, since they require the same number 2M of corrector problems
to be solved. The accuracy of the latter is better if and only if Var

(
ξT Ã�

Nξ
) ≤

(1/2)Var(ξT A�
Nξ), which is exactly the bound (2.10) of Proposition 2.1.

We conclude this discussion by describing for illustration a typical numerical
result (see [7, 13, 16] for more comprehensive numerical experiments). We con-
sider the case (2.3), with (ak(ω))k∈Zd a family of independent random variables
that are all distributed according to a Bernoulli law of parameter r ∈ (0, 1):
P(a0 = α) = r and P(a0 = β) = 1 − r, for some 0 < α < β. As noted above,
this case falls in our framework (2.1)–(2.2). Following (2.7), we introduce the
antithetic field

B(x, ω) =
∑
k∈Zd

1Q+k(x)bk(ω) Id,

where the variable bk, antithetic to ak, is defined as follows. We recall from
Remark 2.1 that ak(ω) = α + (β − α)1{r≤Xk(ω)≤1}, with Xk ∼ U([0, 1]). We
then set bk(ω) = α + (β − α)1{0≤Xk(ω)≤1−r}.



42 X. Blanc, R. Costaouec, C. Le Bris and F. Legoll

Focusing, to fix the ideas, on the computation of E([A�
N ]11), we introduce

the effectivity ratio

R =
Var([A�

N ]11)

2Var([Ã�
N ]11)

,

where in practice the above variances are replaced by empirical variances. This
ratio quantifies the gain in computational time (at fixed accuracy). Results
are reported in Table 1, for Bernoulli variables of parameter α = 3, β = 20
and r = 1/2 (numerical tests have been performed using the finite elements
software FreeFem++, see http://www.freefem.org). On Figure 1, we plot the
estimated means (2.13) and (2.14) along with their confidence intervals. These
results indeed show the efficiency of the approach.

N 5 10 20 40 60 80 100
R 5.34 3.91 5.41 3.07 4.41 4.49 4.28

Table 1. Effectivity ratio R, in the case of a Bernoulli variable of parameter
α = 3, β = 20 and r = 1/2 (results extracted from [16]).
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Figure 1. Estimated means (with confidence intervals) for [A�
N ]11 (red) and

[Ã�
N ]11 (green), in the case of a Bernoulli variable of parameter α = 3, β = 20

and r = 1/2. Results are extracted from [16] (in each case, 2M = 100 corrector
problems have been solved).

Note that the above test case is a challenging one, as the ratio β/α is large.
When the normalized variance of the field is smaller, even larger effectivity
ratios R are obtained. Consider again the case (2.3), namely

A(x, ω) =
∑
k∈Zd

1Q+k(x)ak(ω) Id,
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where now (ak(ω))k∈Zd is a family of independent random variables that are
all uniformly distributed between α0 = 3 and β0 = 5. In that case, we obtain
effectivity ratios R of the order of 50, as shown in Table 2.

N 40 60 80 100
R 52.9 59.2 55.7 71.5

Table 2. Effectivity ratio R, in the case of a random variable uniformly dis-
tributed between α0 = 3 and β0 = 5 (results extracted from [7]).

2.2. Classical results on antithetic variables

We first recall the following lemma, and provide its proof for consistency.
This result is crucial for our proof of variance reduction using the technique of
antithetic variables.

Lemma 2.1 ( [24], page 27). Let f and g be two real-valued functions de-
fined on Rn, which are non-decreasing with respect to each of their arguments.
Consider X = (X1, . . . , Xn) a vector of random variables, which are all inde-
pendent from one another. Then

Cov(f(X), g(X)) ≥ 0. (2.15)

Proof. We prove the lemma by induction. Consider X and Y two independent
scalar random variables, identically distributed. Both functions f and g are
non-decreasing, so

(f(X) − f(Y ))(g(X) − g(Y )) ≥ 0.

We now take the expectation of the above inequality:

E(f(X)g(X)) + E(f(Y )g(Y )) ≥ E(f(Y )g(X)) + E(f(X)g(Y )).

As X and Y share the same law, and are independent, this yields

E(f(X)g(X)) ≥ E(f(X))E(g(X)),

and (2.15) follows for n = 1.
Assume now that, for some N , we have proved the result for any random

vector X of any dimension n ≤ N − 1. Let us now prove the result for a
vector X of dimension N . For any fixed xN , the functions (x1, . . . , xN−1) �→
f(x1, . . . , xN−1, xN ) and (x1, . . . , xN−1) �→ g(x1, . . . , xN−1, xN ) are non-decrea-
sing with respect to each of their arguments. It follows from the induction
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assumption that, for any xN ,

E
(
f(X1, . . . , XN−1, xN )g(X1, . . . , XN−1, xN )

)
(2.16)

≥ E
(
f(X1, . . . , XN−1, xN )

)
E
(
g(X1, . . . , XN−1, xN )

)
.

Introducing the conditional expectations

F (x) = E
(
f(X1, . . . , XN−1, XN) | XN = x

)
,

G(x) = E
(
g(X1, . . . , XN−1, XN) | XN = x

)
,

inequality (2.16) reads

E
(
f(X1, . . . , XN−1, XN )g(X1, . . . , XN−1, XN ) | XN = xN

) ≥ F (xN )G(xN ).

Integrating in xN with respect to the law of XN , we thus obtain

E(f(X)g(X)) ≥ E(F (XN )G(XN )). (2.17)

By construction, F and G are non-decreasing functions. The result for n = 1
applies, and yields

E(F (XN )G(XN )) ≥ E(F (XN ))E(G(XN )) = E(f(X))E(g(X)). (2.18)

Collecting (2.17) and (2.18), we conclude the proof. �

Remark 2.3. The proof clearly shows that the result also holds if, for each vari-
able, f and g are either both non-decreasing or both non-increasing.

The following result is a simple consequence of the above lemma.

Corollary 2.3. Let f be a function defined on Rn, which is non-decreasing
with respect to each of its arguments. Consider X = (X1, . . . , Xn) a vector of
random variables, which are all independent from one another, and distributed
according to the uniform law U [0, 1]. Then

Var
(1

2
(f(X) + f(1 − X))

)
≤ 1

2
Var(f(X)),

where we denote 1 − X = (1 − X1, . . . , 1 − Xn) ∈ Rn.

Proof. Choosing g(x1, . . . , xn) = −f(1−x1, . . . , 1−xn) in Lemma 2.1, we obtain
that

Cov(f(X), f(1 − X)) = Cov
(
f(X1, . . . , Xn), f(1 − X1, . . . , 1 − Xn)

) ≤ 0.

We next observe that

Var
(1

2
(f(X) + f(1 − X))

)
=

1
2

Var(f(X)) +
1
2

Cov(f(X), f(1 − X))

≤ 1
2

Var(f(X)),

where we have used that Var(f(X)) = Var(f(1 − X)). �
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Remark 2.4. In the proofs of Lemma 2.1 and Corollary 2.3, we have not used the
fact that the random variables Xi are independent from one another. Lemma 2.1
and Corollary 2.3 actually hold without this assumption. However, this assump-
tion will be needed in the sequel.

2.3. Monotonicity in periodic homogenization

We first recall a classical result of periodic homogenization, which is useful
in the sequel. We provide its proof for consistency.

Lemma 2.2 ( [28], page 12). Consider, for all x in Rd, a symmetric matrix
A(x) ∈ R

d×d. Assume that A is Q-periodic, uniformly coercive and bounded,
for Q a cube of Rd. We denote by A� the matrix obtained from A by homoge-
nization of the operator

Lε = − div
[
A

(x

ε

)
∇ ·

]
.

We now consider a matrix B(x) enjoying the same properties as A(x), and
such that

∀ξ ∈ R
d, ξT B(x)ξ ≥ ξT A(x)ξ a.e. on Q.

We correspondingly denote by B� the matrix obtained from B by homogeniza-
tion of Lε, replacing A by B. Then

∀ξ ∈ R
d, ξT B�ξ ≥ ξT A�ξ.

Proof. For any p ∈ Rd, let wp be the corrector function associated to the matrix
A(x), i.e. the function defined on R

d, Q-periodic, and solution to

− div(A(p + ∇wp)) = 0 on R
d.

By definition, wp ∈ H1
�(Q ) satisfies

∀θ ∈ H1
�(Q ),

∫
Q

∇θT A(x)(p + ∇wp) dx = 0, (2.19)

where H1
�(Q ) denotes the set of functions that belong to H1(Q ) and are Q-

periodic. On the other hand, by definition of the homogenized matrix A�,

pT A�p =
1

|Q |
∫
Q

(p + ∇wp)T A(x)(p + ∇wp).
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Similar assertions hold for the matrix B. Denoting by vp the corrector function
associated to that matrix, we have

pT B�p =
1

|Q |
∫
Q

(p + ∇vp)T B(x)(p + ∇vp)

≥ 1
|Q |

∫
Q

(p + ∇vp)T A(x)(p + ∇vp)

=
1

|Q |
∫
Q

(p + ∇wp + ∇(vp − wp))T A(x)(p + ∇wp + ∇(vp − wp))

=
1

|Q |
∫
Q

(p + ∇wp)T A(x)(p + ∇wp)

+
2

|Q |
∫
Q

(p + ∇wp)T A(x)∇(vp − wp)

+
1

|Q |
∫
Q

(∇(vp − wp))T A(x)∇(vp − wp).

Since A(x) is coercive, the third term is non-negative. Using (2.19), we see that
the second term vanishes. We are left with

pT B�p ≥ 1
|Q |

∫
Q

(p + ∇wp)T A(x)(p + ∇wp) = pT A�p.

This concludes the proof. �

We now recall the following elementary result on the monotonicity of eigen-
values of symmetric matrices. Consider two symmetric matrices A and B of
size d × d, such that ξT Bξ ≥ ξT Aξ for any ξ ∈ Rd. Then, for any 1 ≤ k ≤ d,
λk(B) ≥ λk(A), where λk(A) and λk(B) are the eigenvalues of A and B respec-
tively, sorted in non-decreasing order.

This result can be readily extended to the eigenvalues of the corresponding
elliptic operators, as stated in the following lemma:

Lemma 2.3. Consider two symmetric matrices A(x) and B(x), of size d × d,
defined on a bounded domain D ⊂ R

d. We assume that these two matrices are
uniformly coercive and bounded, and that

∀ξ ∈ R
d, ξT B(x)ξ ≥ ξT A(x)ξ a.e. on D. (2.20)
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Consider the eigenelements (λk(LA), uk(LA) )k∈N of the operator LA =
− div[A(x)∇·] with homogeneous Dirichlet boundary conditions, i.e.

− div
[
A(x)∇uk(LA)

]
= λk(LA)uk(LA),

with uk(LA) ∈ H1
0 (D) and ‖uk(LA)‖L2(D) = 1. We assume that λk(LA) are

sorted in non-decreasing order. Let (λk(LB), uk(LB))k∈N be the eigenelements
of LB. Then

∀k ∈ N, λk(LB) ≥ λk(LA). (2.21)

This result is an immediate consequence of the Courant–Fisher characteri-
zation of the eigenvalues.

2.4. Proof of Proposition 2.1 and Corollaries 2.1 and 2.2

Now that we have collected all the necessary ingredients, we may turn here
to the proof of our main results.

Proof of Proposition 2.1. As 1 − Xk(ω) and Xk(ω) share the same law, so do
the fields A(x, ω) and B(x, ω), on QN . Hence, the homogenized matrices A�

N (ω)
and B�

N (ω) have the same law, and we obtain (2.9).
We now prove (2.10). Let PN be the operator that associates to a given QN -

periodic tensor field A the effective tensor PN(A) obtained by periodic homog-
enization. Then, by construction, the approximation A�

N (ω) defined by (1.6)–
(1.7) is the effective matrix obtained by periodic homogenization of A|QN

(·, ω):

A�
N (ω) = PN

[
A|QN

(·, ω)
]

almost surely.

In the framework of our Assumption (2.1), we have

∀x ∈ QN , A(x, ω) = A(
x, X1(ω), . . . , Xn(ω)

)
,

where {Xk(ω)}1≤k≤n are independent scalar random variables that are all uni-
formly distributed in [0, 1]. Setting X(ω) = (X1(ω), . . . , Xn(ω)), we have

A�
N (ω) = PN [A(·, X(ω))] ∈ R

d×d. (2.22)

We now choose a vector ξ ∈ Rd, and introduce the function

f : R
n → R

x �→ ξTPN [A(·, x)]ξ.

By construction, we have

f(X(ω)) = ξT A�
N (ω)ξ (2.23)
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and, using the definition (2.8) of Ã�
N (ω), we have

1
2
(
f(X(ω)) + f(1 − X(ω))

)
=

1
2
ξT (A�

N (ω) + B�
N (ω))ξ = ξT Ã�

N (ω)ξ. (2.24)

We now show that f is non-decreasing with respect to each of its arguments.
We infer from Assumption (2.2) that, for any η ∈ R

d and any y ∈ QN , the
function x ∈ Rn �→ ηTA(y, x)η is non-decreasing with respect to each of its
arguments. In view of Lemma 2.2, we thus obtain that, for any η ∈ Rd, the
function x ∈ Rn �→ ηTPN(A(·, x))η is non-decreasing with respect to each of its
arguments. As a consequence, f is non-decreasing.

We are now in position to use Corollary 2.3, which yields

Var
(1

2
(f(X) + f(1 − X))

)
≤ 1

2
Var(f(X)).

Using (2.24) and (2.23), we obtain

Var
(
ξT Ã�

Nξ
)

= Var
[1
2
(f(X) + f(1 − X))

]
≤ 1

2
Var(f(X)) =

1
2

Var
(
ξT A�

Nξ
)
,

which concludes the proof of (2.10). �

Proof of Corollary 2.1. As shown in the proof of Proposition 2.1, A�
N (ω) and

B�
N (ω) share the same law, so their eigenvalues also share the same law, and we

thus obtain the first assertion in (2.11).
We now prove the second assertion. As in the proof of Proposition 2.1, we

make use of the operator PN that associates to any QN -periodic tensor field the
effective tensor obtained by periodic homogenization. Expression (2.22) holds.

We next fix some k, 1 ≤ k ≤ d, and consider the function

Λ : R
n → R

x �→ kth eigenvalue of the matrix PN [A(·, x)].

We clearly have

λk(A, ω) = Λ(X(ω)) and λk(B, ω) = Λ(1 − X(ω)), (2.25)

where λk(A, ω) and λk(B, ω) denote the kth eigenvalue (sorted increasingly)
of A�

N (ω) and B�
N (ω), respectively.

The function Λ is non-decreasing with respect to each of its arguments. It
is an immediate consequence of the proof of Proposition 2.1 and of the mono-
tonicity of eigenvalues of symmetric matrices recalled in Section 2.3.

Corollary 2.3 then yields

Var
(1

2
(Λ(X) + Λ(1 − X))

)
≤ 1

2
Var(Λ(X)).
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By definition of λ̃k, and using (2.25), we obtain

Var
(
λ̃k

)
= Var

(1
2
(λk(A, ·) + λk(B, ·))

)
= Var

(1
2
(Λ(X) + Λ(1 − X))

)
≤ 1

2
Var(Λ(X)) ≤ 1

2
Var(λk(A, ·)),

which concludes the proof of (2.11). �

The proof of Corollary 2.2 follows the same pattern as that of Corollary 2.1.

3. A “weakly” stochastic case

In this section, we assume that the matrix A in (1.1) is a perturbation of a
periodic matrix:

A(x, ω) = Aper(x) + ηA1(x, ω), (3.1)

where Aper is Q-periodic and δ-Hölder continuous (for some 0 < δ < 1), A1

is stationary in the sense (1.3), and η is a deterministic, supposedly small,
parameter. We assume that A, Aper and A1 are all symmetric and bounded
matrices, and that A and Aper are uniformly coercive. We also assume the
following special structure for A1:

A1(x, ω) =
∑
k∈Zd

1Q+k(x)Xk(ω) Id, (3.2)

where Id denotes the identity matrix and (Xk)k∈Zd is a sequence of (scalar)
independent, identically distributed random variables, satisfying, for some 0 <
α < ∞, the bound |Xk| ≤ α almost surely and for all k. Some extensions of the
above setting will be considered in Section 3.4 below.

Since, in view of (3.1), A is a perturbation of Aper, we may expand the
homogenized matrix A� in powers of η, as shown in [9]. Let us first recall this
expansion, at first order.

3.1. Main result

In [9], an expansion of the homogenized matrix (and of all the relevant
quantities, such as the corrector function) in terms of a series in powers of η is
shown to exist. The setting in [9] is slightly different from the present setting.
It is however straightforward to check that our arguments carry over to the
present case.

First, the corrector ∇wp, solution to (1.5), is easily proved to have an ex-
pansion in powers of η:

∇wp = ∇w0
p + η∇w1

p + . . . , (3.3)
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where w0
p is the unique (up to the addition of a constant) solution to{

− div
[
Aper(∇w0

p + p)
]

= 0,

w0
p is Q-periodic,

(3.4)

and w1
p is the unique (up to the addition of a random constant) solution to⎧⎪⎪⎨⎪⎪⎩

− div
[
Aper∇w1

p

]
= div

[
A1(∇w0

p + p)
]

a.s. on Rd,

∇w1
p is stationary,∫

Q E(∇w1
p) = 0.

(3.5)

Second, the homogenized matrix (1.4) satisfies

A� = A�
per + ηA�

1 + O(η2), (3.6)

where [
A�

per

]
ij

=
∫
Q

(∇w0
ei

+ ei)T Aper(∇w0
ej

+ ej), (3.7)

and [
A�

1

]
ij

=
∫
Q

E(∇w1
ei

)T Aper(∇w0
ej

+ ej) +
∫
Q

(∇w0
ei

+ ei)T AperE(∇w1
ej

)

+
∫
Q

(∇w0
ei

+ ei)T
E(A1)(∇w0

ej
+ ej). (3.8)

In essence, this specific setting does not give rise to any variance concerns,
for two reasons at least. First, as observed in [9], and as evident on (3.8),
the knowledge of w1

p := E(∇w1
p) is actually sufficient to compute A�

1. Taking
expectations in (3.5), we indeed see that w1

p is solution to the cell problem{
− div

[
Aper∇w1

p

]
= div

[
E(A1)(∇w0

p + p)
]

on Rd,

w1
p is Q-periodic,

(3.9)

which is much easier to solve than the corrector problem (1.5) or its truncated
version (1.7), since it is a deterministic problem set on a single cell. Hence,
as pointed out in the introduction, the determination of A� comes down, in
practice, to solving the deterministic problems (3.4) and (3.9).

Second, in practice, the exact corrector wp, which solves (1.5), is approxi-
mated by the solution wN

p to the truncated problem (1.7), which also has an
expansion in powers of η, as shown in [13–15]: similarly to (3.3), we have

∇wN
p = ∇w0

p + η∇w1,N
p + . . . ,
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where w1,N
p solves the truncated problem{

− div
[
Aper∇w1,N

p

]
= div

[
A1(∇w0

p + p)
]
,

w1,N
p is QN -periodic.

(3.10)

In turn, the approximate homogenized matrix (1.6) satisfies

A�
N (ω) = A�

per + ηA�
1,N (ω) + O(η2),

where[
A�

1,N

]
ij

(ω) =
1

|QN |
[ ∫

QN

∇w1,N
ei

(x, ω)T Aper(x)(∇w0
ej

(x) + ej) dx

+
∫

QN

(∇w0
ei

(x) + ei)T A1(x, ω)(∇w0
ej

(x) + ej) dx (3.11)

+
∫

QN

(∇w0
ei

(x) + ei)T Aper(x)∇w1,N
ej

(x, ω) dx

]
.

Observe now that the first term of (3.11) reads∫
QN

(∇w1,N
ei

)T Aper(∇w0
ej

+ ej) = −
∫

QN

w1,N
ei

div
[
Aper(∇w0

ej
+ ej)

]
+

∫
∂QN

w1,N
ei

[
Aper(∇w0

ej
+ ej)

] · n.

Using (3.4), we see that the first term of the right hand side vanishes. Since w1,N
ei

,
Aper and w0

ej
are QN -periodic, the second term vanishes as well. Hence (3.11)

reads[
A�

1,N

]
ij

(ω) =
1

|QN |
∫

QN

(∇w0
ei

(x) + ei)T A1(x, ω)(∇w0
ej

(x) + ej) dx. (3.12)

In the specific case (3.2), we thus have[
A�

1,N

]
ij

(ω) =
γij

|QN |
∑

|k|∞≤N

Xk(ω),

with γij =
∫

Q
(∇w0

ei
+ ei)T (∇w0

ej
+ ej). The variables Xk being independent

and identically distributed, we obtain that
[
A�

1,N

]
ij

converges almost surely to
γijE(X0), the rate of convergence being given by the central limit theorem. Of
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course, using (3.12), this argument is not restricted to the form (3.2) of A1, and
can be extended to more general cases.

Observe yet that the fact that the first and third terms of (3.11) vanish
strongly relies on the specific equation (and boundary conditions) used to build
a numerical approximation of the corrector, and may not be expected in a more
general setting.

As announced in the introduction, with a view to use (3.1)–(3.2) to test and
further understand our variance reduction approach, we pretend in this section
not to exploit the various simplifications, and we thus treat the problem entirely
stochastically. We make use of this opportunity to derive a series of technical
lemmas (see Lemmas 3.1 and 3.2) that we believe might be useful for a similar
study in a more general setting.

Our aim is to show that, for any fixed N , applying the variance reduction
strategy described in Section 2.1, we obtain a better estimate of the approxi-
mate homogenized matrix E(A�

N ) using empirical means, in the spirit of (2.13)
and (2.14). When the number of independent realizations M increases to +∞,
the rates at which the empirical means (2.13) and (2.14) converge to the expec-
tation are identical, but the prefactor is better in the latter case. In addition,
using the specificities of this setting, we are also able to analyze the convergence
of the approximation procedure when N goes to +∞.

The main result of this section is the following proposition.

Proposition 3.1. Let A be defined by (3.1), where Aper is periodic, Hölder
continuous, and A1 satisfies (3.2), with (Xk)k∈Zd a sequence of independent,
identically distributed scalar random variables. Assume in addition that A,
Aper and A1 are symmetric and bounded matrices, and that A and Aper are
uniformly coercive. For any N ∈ N and 1 ≤ i, j ≤ d, define

[
A�,exact

1,N

]
ij

(ω) =
1

|QN |
[ ∫

QN

∇w1
ei

(x, ω)T Aper(x)(∇w0
ej

(x) + ej) dx

+
∫

QN

(∇w0
ei

(x) + ei)T A1(x, ω)(∇w0
ej

(x) + ej) dx (3.13)

+
∫

QN

(∇w0
ei

(x) + ei)T Aper(x)∇w1
ej

(x, ω) dx

]
,

where w0 and w1 are solution to (3.4) and (3.5) respectively, and QN =
∪|k|∞≤N (Q + k) is the cube of size (2N + 1)d centered at the origin. Then,

there exist d2 coefficients Cij
N > 0, independent of (Xk)k∈Zd , such that

Var
([

A�,exact
1,N

]
ij

)
= Cij

N Var(X0). (3.14)
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In addition, we have

Cij
N ≤ C

|QN | , (3.15)

where C does not depend on i, j, and N , and only depends on Aper.

The estimate (3.14) above shows that reducing the variance of X0 (for in-
stance using the technique described in Proposition 2.1) reduces the variance
on A�,exact

1,N . This also gives a quantitative estimate of the variance reduction.
Note that, in the above Proposition, we have used the first order term w1

p in
the expansion of the exact corrector. If this term is replaced by the first order
term w1,N

p of the approximate corrector (solution to a truncated problem), then
we recover A�

1,N defined by (3.11).

Corollary 3.1. Under the assumptions of Proposition 3.1, we have that

lim
N→∞

A�,exact
1,N = A�

1 a.s.,

where A�
1 is defined by (3.8). Assume in addition that

lim
N→∞

|QN |2Var
([

A�,exact
1,N

]
ij

)
= +∞. (3.16)

Then,
([

A�,exact
1,N

]
ij
−[

A�
1

]
ij

)/√
Var

([
A�,exact

1,N

]
ij

)
is a random variable that con-

verges in law to a normal Gaussian random variable.

The proof of Proposition 3.1 (and of Corollary 3.1) is the purpose of Sec-
tion 3.3 below. It makes use of some preliminary results established in Sec-
tion 3.2. Section 3.4 presents some extensions.

3.2. Decomposition of ∇w1
p

In this section, we study the first order term in the expansion (3.3) of the
corrector function. Our purpose is to prove the following two lemmas.

Lemma 3.1. Let p ∈ Rd. The problem{
− div

[
Aper∇φp

]
= div

[
1Q(∇w0

p + p)
]
,

φp ∈ L2
loc(R

d), ∇φp ∈ (L2(Rd))d,
(3.17)

has a solution, which is unique up to the addition of a constant. Moreover, there
exists a constant C > 0 such that

∀x ∈ R
d with |x| ≥ 1, |∇φp(x)| ≤ C

|x|d , (3.18)

and

∀x ∈ R
d, |φp(x)| ≤ C

1 + |x|d−1
. (3.19)
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Lemma 3.2. Let p ∈ Rd, and let w1
p be defined by (3.5). Let w1

p be the unique
solution (up to the addition of a constant) to{

− div
[
Aper∇w1

p

]
= div

[
E(A1)(∇w0

p + p)
]
,

w1
p is Q-periodic.

(3.20)

Then, we have

∇w1
p(x, ω) = ∇w1

p(x) +
∑
k∈Zd

∇φp(x − k)(Xk(ω) − E(Xk)), (3.21)

and the sum in (3.21) is a convergent series in L2(Q × Ω).

Proof of Lemma 3.1. We first prove the existence of a solution to (3.17). The
argument is standard and we provide it here for consistency. To begin with,
we define a regularized version of the equation: given δ > 0, we consider the
problem {

− div
[
Aper∇φp,δ

]
+ δφp,δ = div

[
1Q(∇w0

p + p)
]
,

φp,δ ∈ H1(Rd).
(3.22)

Applying the Lax –Milgram lemma, it is clear that (3.22) has a unique solution
in H1(Rd). Next, multiplying the equation by φp,δ and integrating over Rd, we
find ∫

Rd

∇φT
p,δAper∇φp,δ + δ

∫
Rd

φ2
p,δ = −

∫
Q

∇φT
p,δ(∇w0

p + p),

hence, using Cauchy– Schwarz inequality and elementary calculus,∫
Rd

|∇φp,δ|2 ≤ C and
∫
Rd

φ2
p,δ ≤ C

δ
(3.23)

for some constant C > 0 independent of δ. One can thus define a sequence
δn → 0 such that

∇φp,δn −⇀ T ∈ (L2(Rd))d

as n → ∞, weakly in (L2(Rd))d. Hence, the equality ∂i∂jφp,δn = ∂j∂iφp,δn

passes to the limit in the sense of distributions and implies ∂iTj = ∂jTi. This
implies that T = ∇φp for some φp ∈ L2

loc(R
d), with ∇φp ∈ (L2(Rd))d. Moreover,

for any ξ ∈ D(Rd), we have∫
Rd

∇φT
p,δn

Aper∇ξ + δn

∫
Rd

φp,δnξ = −
∫
Q

∇ξT (∇w0
p + p).

Passing to the limit n → ∞ in this equation, we find that φp is a solution
to (3.17), in the appropriate functional spaces. This concludes the proof of
existence.
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Proving uniqueness (up to the addition of a constant) of the solution to (3.17)
amounts to proving that{

− div
[
Aper∇φ

]
= 0,

φ ∈ L2
loc(R

d), ∇φ ∈ (L2(Rd))d,
(3.24)

implies ∇φ ≡ 0. For this purpose, we consider χ ∈ C∞(Rd) such that χ = 1
in BR, χ = 0 in Bc

R+1, χ ≥ 0 on R
d and |∇χ| ≤ 1. Multiplying (3.24) by χφ,

we find that ∫
Rd

(∇φT Aper∇φ
)
χ +

∫
Rd

(∇χT Aper∇φ
)
φ = 0,

hence
mper

∫
BR

|∇φ|2 ≤ Mper

∫
BR+1\BR

|∇φ| |φ|,

where Mper = ‖Aper‖L∞ and mper > 0 is the coercivity constant of Aper. Next,
we point out that the above computations are also valid if we replace φ by
φ − φR, where φR is the constant

φR =
1

|BR+1 \ BR|
∫

BR+1\BR

φ.

Hence, using the Cauchy – Schwarz inequality,∫
BR

|∇φ|2 ≤ Mper

mper

( ∫
BR+1\BR

|∇φ|2
)1/2( ∫

BR+1\BR

(φ − φR)2
)1/2

.

We next make use of the Poincaré –Wirtinger inequality [18, page 164] on the
bounded domain BR+1 \ BR:

‖φ − φR‖L2(BR+1\BR) ≤ C‖∇φ‖L2(BR+1\BR),

for some constant C independent of R and φ. We thus obtain∫
BR

|∇φ|2 ≤ C
Mper

mper

∫
BR+1\BR

|∇φ|2.

As ∇φ ∈ (L2(Rd))d, we have that limR→∞
∫

BR+1\BR
|∇φ|2 = 0. The above

bound thus yields limR→∞
∫

BR
|∇φ|2 = 0. As a consequence,

∫
Rd |∇φ|2 = 0,

which implies ∇φ ≡ 0. This concludes the proof of uniqueness.
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It now remains to prove (3.18) and (3.19). Let G be the Green function
associated with the operator − div

[
Aper∇ · ], that is, the solution of

− divx

(
Aper(x)∇xG(x, y)

)
= δy(x), (3.25)

with G(·, y) ∈ W 1,p
loc (Rd) for any p < d/(d − 1) and ∇xG(·, y) ∈ Lp(Rd \ Br(y)),

for all p > d/(d − 1) and r > 0. Such a solution exists and is unique according
to [20, Theorem 1.1] (actually, the results of [20] are cited only for d ≥ 3, but
the existence proof there carries through to the case d = 2. The uniqueness may
be proved by standard arguments, as pointed out in [1]).

We then have

φp(x) =
∫
Rd

G(x, y) divy

[
1Q(y)(∇w0

p(y) + p)
]
dy

= −
∫
Q

∇yG(x, y)(∇w0
p(y) + p) dy. (3.26)

We now recall that, as Aper is Hölder continuous, the solution w0
p to (3.4) satisfies

w0
p ∈ W 1,∞(Q) (see [20, Lemma 3.1]). We also recall that, if d ≥ 3, according

to [20, Theorem 3.3] (see also [5, Sec. 2] and [3, Theorem 13]), G satisfies the
estimate:

∀|x − y| ≥ 1, |G(x, y)| ≤ C|x − y|2−d.

In addition (see [3, Theorem 13]), we have, in the case d = 2,

∀|x − y| ≥ 1, |G(x, y)| ≤ C(1 + log |x − y|).
We also recall (see [1]) that, for any d ≥ 2,

∀|x − y| ≥ 1, |∇xG(x, y)| + |∇yG(x, y)| ≤ C|x − y|1−d (3.27)

and
∀|x − y| ≥ 1, |∇x∇yG(x, y)| ≤ C|x − y|−d, (3.28)

for some constant C > 0.
Collecting (3.26) and (3.27), and as ∇w0

p ∈ L∞(Q), we obtain

∀x ∈ R
d, |φp(x)| ≤ C

∫
Q

|∇yG(x, y)| dy.

Recall now that, as G(·, y), the function G(x, ·) belongs to W 1,p
loc (Rd) for any

p < d/(d − 1). Thus ∇yG(x, ·) ∈ L1(Q) and φp is bounded on R
d. In addition,

we infer from (3.27) that, when |x| ≥ 1, |φp(x)| ≤ C/(1 + |x|d−1) for some
constant C. We thus obtain (3.19).
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We next infer from (3.26) that

∇φp(x) = −
∫
Q

∇x∇yG(x, y)(∇w0
p(y) + p) dy. (3.29)

Consider x with |x| ≥ 1 and y ∈ Q. As Q is the unit cube centered at the origin,
|x − y| is isolated from 0, and we can thus use (3.28). As ∇w0

p ∈ L∞(Q), we
deduce from (3.29) that, for all |x| ≥ 1,

|∇φp(x)| ≤ C

∫
Q

|x − y|−d dy ≤ C|x|−d

for two constants C and C. This gives (3.18), and concludes the proof of
Lemma 3.1. �

Proof of Lemma 3.2. We first point out that (3.20) admits a solution in H1
�(Q).

It is a simple consequence of the Lax – Milgram lemma. Next, we prove that the
sum in (3.21) is a convergent series in L2(Q×Ω). For this purpose, we compute
the norm of the remainder of the series, using the independence of the Xk:∥∥∥ ∑

|k|≥N+1

∇φp(· − k)(Xk − E(Xk))
∥∥∥2

L2(Q×Ω)

= Var(X0)
∑

|k|≥N+1

∫
Q+k

|∇φp|2,

which converges to 0 as N → ∞ since ∇φp ∈ (L2(Rd))d. Hence, the right-hand
side of (3.21) defines a function T ∈ (L2(Q×Ω))d. As ∂iTj = ∂jTi, there exists
a function w̃1

p such that

∇w̃1
p = T = ∇w1

p +
∑
k∈Zd

∇φp(x − k)(Xk(ω) − E(Xk)).

As w1
p is Q-periodic, we infer from the above equality that

∇w̃1
p is stationary and

∫
Q

E(∇w̃1
p) = 0. (3.30)

Next, we compute

Aper∇w̃1
p =

∑
k∈Zd

Aper∇φp(x − k)(Xk − E(Xk)) + Aper∇w1
p.
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Taking the divergence of this equation, we thus find that

− div
[
Aper∇w̃1

p

]
=

∑
k∈Zd

− div
[
Aper∇φp(x − k)

]
(Xk − E(Xk)) − div

[
Aper∇w1

p

]
=

∑
k∈Zd

div
[
1Q+k(∇w0

p + p)
]
(Xk − E(Xk)) + div

[∇w0
p + p

]
E(Xk)

= div
[
A1(∇w0

p + p)
]
. (3.31)

Collecting (3.30) and (3.31), we see that w̃1
p solves (3.5). As the solution to this

equation is unique up to the addition of a (possibly random) constant C(ω), we
obtain that w̃1

p = w1
p + C(ω), hence proving (3.21). �

3.3. Variance of A�,exact
1,N

We are now in position to prove Proposition 3.1. Let us briefly explain
the structure of the argument. Exploiting the fact that the randomness in
A(x, ω) only appears as a small perturbation, it turns out that A�,exact

1,N , which
is the first order correction of the homogenized matrix, depends linearly on the
random variables Xk(ω) involved in the matrix A(x, ω). This can be clearly
seen on (3.13), (3.2) and (3.21). As a consequence, it is possible to explicitly,
analytically, write how the random matrix A�,exact

1,N depends on the random
variables Xk. This explicit expression yields the relation between the variance
of A�,exact

1,N and that of Xk, namely (3.14) above.

Proof of Proposition 3.1. Using (3.13) and the expression (3.21) of ∇w1
p pro-

vided by Lemma 3.2, we have

[
A�,exact

1,N

]
ij

=
1

|QN |
∑

|k|≤N

[∫
Q

(∇w0
ei

+ ei)T (∇w0
ej

+ ej)Xk

+
∑
�∈Zd

∫
Q+k

∇φei (x − �)T Aper(x)(∇w0
ej

(x) + ej) dx(X� − E(X�))

+
∑
�∈Zd

∫
Q+k

(∇w0
ei

(x) + ei)T Aper(x)∇φej (x − �) dx(X� − E(X�))
]

+
1

|QN |
∫

QN

(∇w1
ei

)T Aper(∇w0
ej

+ ej)

+
1

|QN |
∫

QN

(∇w0
ei

+ ei)T Aper∇w1
ej

.
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Setting, for any 1 ≤ i, j ≤ d and m ∈ Zd,

γij =
∫
Q

(∇w0
ei

+ ei)T (∇w0
ej

+ ej), (3.32)

αij(m) =
∫
Q

∇φei(x − m)T Aper(x)(∇w0
ej

(x) + ej) dx, (3.33)

and using that, for any p ∈ Rd, the functions w0
p, w1

p and Aper are Q-periodic,
we obtain[

A�,exact
1,N

]
ij

=
1

|QN |
∑

|k|≤N

[
γijXk +

∑
�∈Zd

(
αij(�) + αji(�)

)(
X�+k − E(X�+k)

)]
+

1
|Q|

∫
Q

(∇w1
ei

)T Aper(∇w0
ej

+ ej)

+
1
|Q|

∫
Q

(∇w0
ei

+ ei)T Aper∇w1
ej

.

Introducing
βij(�) = αij(�) + αji(�), Yk = Xk − E(Xk), (3.34)

we next obtain, using (3.8), that

[
A�,exact

1,N

]
ij

=
[
A�

1

]
ij

+
1

|QN |
∑

|k|≤N

[
γijYk +

∑
�∈Zd

βij(�)Y�+k

]
. (3.35)

Note that

|βij(�)|2 ≤ 2
(
α2

ij(�) + α2
ji(�)

) ≤ 2‖Aper‖2
L∞C(w0)

∫
Q+�

(|∇φei |2 + |∇φej |2
)
,

(3.36)

where C(w0) = maxj ‖∇w0
ej

+ ej‖2
L2(Q). As ∇φp belongs to (L2(Rd))d for any

p ∈ Rd, we first deduce that, for any 1 ≤ i, j ≤ d,∑
�∈Zd

|βij(�)|2 < ∞. (3.37)

Furthermore, we have

E
(|βij(�)Yk+�|2

)
= Var(X0)|βij(�)|2.



60 X. Blanc, R. Costaouec, C. Le Bris and F. Legoll

Since Yk are independent, identically distributed random variables of zero mean,
we infer from (3.37) that the sum

∑
�∈Zd βij(�)Y�+k in (3.35) is convergent

in L2(Ω), for any k ∈ Zd, and any 1 ≤ i, j ≤ d.
As E(Yk) = 0, we infer from (3.35) that E(A�,exact

1,N ) = A�
1. Since A�

1, γij

and βij(�) are deterministic and the variables (Yk)k∈Zd are independent, identi-
cally distributed, and of mean zero, we deduce from (3.35) that

Var
([

A�,exact
1,N

]
ij

)
= Var(X0)

γ2
ij

|QN | +
1

|QN |2
∑

|k|≤N

∑
|k′|≤N

Cov
( ∑

�∈Zd

βij(�)Y�+k,
∑

�′∈Zd

βij(�′)Y�′+k′
)

+
2

|QN |2
∑

|k|≤N

∑
|k′|≤N

Cov
(
γijYk′ ,

∑
�∈Zd

βij(�)Y�+k

)
,

= Var(X0)
γ2

ij

|QN | +
1

|QN |2
∑

|k|≤N

∑
|k′|≤N

∑
�∈Zd

βij(�)βij(� + k − k′)Var(X0)

+
2γij

|QN |2
∑

|k|≤N

∑
|k′|≤N

βij(k′ − k)Var(X0)

= Cij
N Var(X0),

where

Cij
N =

γ2
ij

|QN | +
1

|QN |2
∑

|k|≤N

∑
|k′|≤N

∑
�∈Zd

βij(�)βij(� + k − k′)

+
2γij

|QN |2
∑

|k|≤N

∑
|k′|≤N

βij(k′ − k). (3.38)

Note that the sum
∑

�∈Zd βij(�)βij(� + k − k′) is finite. This is a simple conse-
quence of the Cauchy – Schwarz inequality and (3.37). Hence Cij

N is finite and
we thus have proved (3.14).

We next prove (3.15). For this purpose, we examine each term of the right-
hand side of (3.38) separately. It is clear that the first one satisfies (3.15). The
second one writes

1
|QN |2

∑
�∈Zd

∑
|k|≤N

∑
|k′|≤N

βij(� + k′)βij(� + k) =
∑
�∈Zd

[ 1
|QN |

∑
|k|≤N

βij(k + �)
]2

.

(3.39)
We first consider the large values of �, namely |�| ≥ 2N . As |k| ≤ N , we have
|� + k| ≥ N . Using (3.18) and (3.36), we deduce |βij(k + �)| ≤ C|k + �|−d for
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some constant C independent of � and k. Hence, we have∑
|�|≥2N

( 1
|QN |

∑
|k|≤N

βij(k + �)
)2

(3.40)

≤
∑

|�|≥2N

( 1
|QN |

∑
|k|≤N

C

|k + �|d
)2

≤
∑

|�|≥2N

C2

(|�| − N)2d
≤

∑
|�|≥2N

22dC2

|�|2d
≤ C′

Nd
,

for some constant C′ independent of N . Here, we have used the fact that if
|�| ≥ 2N, then |�| − N ≥ |�|/2.

Next, we consider the small values of �, namely |�| ≤ 2N . For this purpose,
we note that∑

|k|≤N

βij(k + �) =
∑

|k|≤N

[ ∫
Q+�+k

(∇w0
ei

(x) + ei)T Aper(x)∇φej (x) dx

+
∫

Q+�+k

∇φei(x)T Aper(x)(∇w0
ej

(x) + ej) dx
]

=
∫

QN+�

(∇w0
ei

(x) + ei)T Aper(x)∇φej (x) dx

+
∫

QN+�

∇φei (x)T Aper(x)(∇w0
ej

(x) + ej) dx.

We use an integration by parts and (3.4) to write this as∑
|k|≤N

βij(k + �) =
∫

∂(QN+�)

φej n
T Aper(∇w0

ei
+ ei)

+
∫

∂(QN+�)

φei(∇w0
ej

+ ej)T Apern.

Using (3.19) and the fact that the periodic function w0
p satisfies w0

p ∈ W 1,∞(Q),
we obtain ∣∣∣ ∑

|k|≤N

βij(k + �)
∣∣∣ ≤ C

∫
∂(QN +�)

dx

1 + |x|d−1
,

where C is a constant which does not depend on N and �, and dx is the Lebesgue
measure on the (d − 1)-dimension surface ∂(QN + �). In order to estimate the
right-hand side of this inequality, we change variables in the integral, getting∣∣∣ ∑
|k|≤N

βij(k + �)
∣∣∣ ≤ C

∫
∂(Q+�/N)

Nd−1dy

1 + Nd−1|y|d−1
= C

∫
∂Q

dy

1/Nd−1 + |y − �/N |d−1
.

(3.41)
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We use a Riemann sum to write

1
|QN |

∑
|�|≤2N

( ∑
|k|≤N

βij(k + �)
)2

(3.42)

≤ C

|QN |
∑

|�|≤2N

( ∫
∂Q

dy

|y − �/N |d−1

)2

−→ 2dC

∫
2Q

( ∫
∂Q

dy

|y − z|d−1

)2

dz.

Note that the integrals in (3.42) converge since ∂Q is a (d − 1)-dimensional
manifold, hence ∫

∂Q

dy

|y − z|d−1
≤ C log(dist(z, ∂Q)),

which, as a function of z, belongs to L2(2Q). Collecting (3.40) and (3.42), we
find ∑

�∈Zd

( 1
|QN |

∑
|k|≤N

βij(k + �)
)2

≤ C

|QN | ,

thereby proving that the second term of the right-hand side of (3.38) satis-
fies (3.15).

For the last term of the right-hand side of (3.38), we return to (3.41), and
use it exactly as in (3.42) to prove

1
|QN |

∑
|k′|≤N

∣∣∣ ∑
|k|≤N

βij(k + k′)
∣∣∣

≤ C

|QN |
∑

|k′|≤N

∣∣∣ ∫
∂Q

dy

|y − k′/N |d−1

∣∣∣ −→ C

∫
Q

∣∣∣ ∫
∂Q

dy

|y − z|d−1

∣∣∣ dz.

Collecting all the above estimates concludes the proof of (3.15). �

Proof of Corollary 3.1. By construction (see (3.13)),

[
A�,exact

1,N

]
ij

(ω) =
1

|QN |
∫

QN

Fij(x, ω) dx,

where Fij is a stationary function. The ergodic theorem thus applies:

lim
N→∞

[
A�,exact

1,N

]
ij

= E

( ∫
Q

Fij(x, ·) dx
)

=
[
A�

1

]
ij

a.s.,

which proves the first assertion.
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We now prove the second assertion. In view of (3.35), we have

Sij
N :=

[
A�,exact

1,N

]
ij
− [

A�
1

]
ij

=
1

|QN |
∑

|k|≤N

θij
k (3.43)

with
θij

k = γijY−k +
∑
�∈Zd

βij(�)Y�−k =
∑
�∈Zd

βij(� + k)Y�, (3.44)

where
βij(�) = βij(�) if � �= 0, βij(0) = βij(0) + γij ,

Yk and βij defined by (3.33), (3.34), and γij by (3.32). Thus, Yk are independent,
identically distributed random variables with E(Y0) = 0 and E(Y 2

0 ) < ∞. We
infer from (3.37) that

∑
�∈Zd(βij(�))2 < ∞. Hence, equations (3.43) and (3.44)

exactly correspond to the setting considered in [26].
Observe now that

|QN |2Var
([

A�,exact
1,N

]
ij

)
= E

[( ∑
|k|≤N

θij
k

)2]
=

∑
|k|≤N

∑
|k′|≤N

E
[
θij

k θij
k′

]
=

∑
|k|≤N

∑
|k′|≤N

∑
�∈Zd

βij(� + k)βij(� + k′)E(Y 2
0 )

= E(Y 2
0 )

∑
�∈Zd

( ∑
|k|≤N

βij(� + k)
)2

.

Our assumption (3.16) hence reads limN→∞
∑

�∈Zd

( ∑
|k|≤N βij(� + k)

)2 = ∞.
We are thus in position to apply [26, Theorem 1], which yields the second
assertion. �

3.4. Extensions

We briefly mention here some possible extensions of Proposition 3.1.
Our proof, performed in the setting (3.2), can be extended to the case

A1(x, ω) =
∑
k∈Zd

1Q+k(x)Xk(ω)ϕper(x) Id,

where (Xk)k∈Zd is again a sequence of independent, identically distributed
scalar random variables, and ϕper is a scalar-valued function, Q-periodic, and
in L∞(Q). Our proof can also be extended to the case

A1(x, ω) =
∑
k∈Zd

1Q+k(x)Bk(ω),
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where (Bk)k∈Zd is a sequence of independent, identically distributed symmetric
bounded matrices. A result similar to (3.14)–(3.15) is then valid, in the following
sense. Define the matrix Σ ∈ R

d2×d2
as the covariance matrix of A1, that is

Σmn = Cov
(
[A1]ij , [A1]k�

)
, where

{
m = (i − 1)d + j,

n = (k − 1)d + �.

Similarly, define ΣN ∈ Rd2×d2
as the covariance matrix of A�,exact

1,N . Then we
have

ΣN = CT
N Σ CN , (3.45)

where the matrix CN ∈ Rd2×d2
does not depend on the random matrices Bk,

and satisfies the bound
|CN | ≤ C√|QN | , (3.46)

for C a constant independent of N . Note that in order to prove the above
property, one needs to carry out computations similar to those in Sections 3.2
and 3.3, except that (3.17) is now a system of d2 partial differential equations
indexed by 1 ≤ n, m ≤ d:{

− div
[
Aper∇φm,n

p

]
= div

[
Emn1Q(∇w0

p + p)
]
,

φm,n
p ∈ L2

loc(R
d), ∇φm,n

p ∈ (L2(Rd))d,
(3.47)

where Emn is the canonical basis of the space of matrices of size d × d. This
problem is easily shown to have a unique solution, by the same method as in
the proof of Lemma 3.1, with the estimate (3.18). Then, Lemma 3.2 reads

∇w1
p(x, ω) = ∇w1

p(x) +
∑
k∈Zd

∑
1≤m,n≤d

∇φm,n
p (x − k)(Bmn

k (ω) − E(Bmn
k )),

with w1
p defined by (3.20), and where Bmn

k (ω) is the coefficient mn of the matrix
Bk(ω). This decomposition may then be used to prove (3.45) and (3.46) above,
by the same method as in Section 3.3.

Another observation is the following. Return to the case (3.2), but assume
now that Xk is a stationary sequence (we do not assume independence anymore).
Then a similar result holds. In such a case, one needs to assume that

E =
∑
k∈Zd

|Cov(X0, Xk)| < +∞, (3.48)

and equality (3.14) is then replaced by

Var
([

A�,exact
1,N

]
ij

) ≤ E Cij
N , (3.49)

where Cij
N is independent from the random variables Xk and satisfies (3.15).
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