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Abstract

We present here a limiting process allowing us to write some continuum me-
chanics models asanatural asymptotic of molecular models. The approach isbased
on the hypothesis that the macroscopic displacement is equal to the microscopic
one. We carry out the corresponding cal culations in the case of two-body energies,
including higher order terms, and also in the case of Thomas-Fermi type models.

1. Introduction

It is commonly admitted in the continuum mechanics literature that the stored
energy of an elastic crystal is of the form:

Eu) = / E(Vu(x))dx, @)
Q

where Q@ c R3 isthe reference configuration of the solid, and « is the deformation
to which the solid is subjected. Moreover, the stored-energy density E is assumed
to reflect the microscopic symmetries of the crystal [2,3,15,22,49], in addition to
the standard frameinvariance[16, 30]. In other words, denoting by G theinvariance
group of the underlying crystalline structure, we have:

VM e MP3, VO eG, VYReSO®B), ERMQ)=EM), (2

where Mixe’ denotesthe set of three-by-three matrices having positive determinant,
on which the energy density E is supposed to be defined. Thisinvariance property
is at the origin of many important properties of crystalline solids, as well as math-
ematical difficultiesin the use of energies of the form (1). Seefor instance[15, 20,
22,32,49]. However, an exact expression, or even an approximation for E israrely
available [48]. Closely linked with this problem is the question of the associated
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functional space: To what space A should u belong in order to properly define the
minimization problem

Iy = inf{E(u), ue A}?
The definition of A should include, in addition to regularity properties, suitable
boundary conditions.

In order to answer these questions, arigorousderivation of (1) and (2) isneeded,
starting from the atomic level, sinceit isthe scale at which the crystaline latticeis
present. A standard approach to thiskind of problemis I'-convergence [19], which
assumes implicitly that at an intermediate level, the microscopic (or mesoscopic)
deformation, which is not necessarily equal to the macroscopic deformation u,
should locally minimize the energy. Roughly speaking, this approach consists in
setting a microscopic version of the minimization problem 14 in terms of the mi-
croscopic deformation u,, depending on the interatomic distance ¢. If we let this
distance go to zero, this yields a (weak) limit deformation u = ug together with
an energy, possibly of the form (1). However, it is far from clear what should be
the microscopic counterpart of 74: what regularity should the deformation exhibit
at thislevel, and how should the boundary conditions (which are by nature macro-
scopic) be translated microscopically? This kind of strategy is used in [11,36,37]
in the case of atwo-body finite-range energy. In [23], the case of a more complex
microscopic model is considered.

Another (and seemingly more naive) approach isthefollowing: thewhole point
isin fact to link the macroscopic deformation u appearing in (1) with the defor-
mation truely experienced by the atoms of the solid, that is, a sort of microscopic
deformation. Since this link is far from being clear physically, let us assume the
simplestlink, that is, equality. Thisisthe approach usedin[4, 5], and a'sotheonewe
adopt here. Let us emphasize that we are aware of the lack of physical justification
of this assumption [24]. With a view to tackling more realistic cases in the future,
the present work seemsto us anecessary and useful preliminary mathematical step,
before we can relax the present simplifying assumptions.

Let us give the example of atwo-body interaction, in order to fix the ideas: the
energy £({X;}) of N identical atoms of positions X; isthen given by

EqXih= Y, WXi—X)), €)
1<i<j<N

where W istheinteraction potential. Let us now assumethat asolid is defined by a
domain €2, and alattice ¢, and that theinteratomic distanceisequa toe > 0, which
in the end will tend to zero. Assuming that the solid experiences a deformation u,
whichisa C diffeomorphism defined on €2, then the positions of the atoms of the
deformed solid are

Xi=u(X)), {(XNi<iey =eNQ,
the set of points { X ?} being the reference state. Consequently, the energy per atom
of the deformed configuration is:

1
EuEtN Q) = o D> Wulei) — ue))). (4)

iFjetnia
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Fig. 1. The reference configuration and the deformed one

Next, considering the potential W, its characteristic length § should be com-
parable with ¢. In other words, considering the reference configuration, which
minimizes the energy (3), its atomic spacing should be proportional to §. (Thisis
clear sinceif {X?} isaground state for W, {SX?} isaground state for W(3).) We
will however also study other cases apart from the ¢ = § case, that is, cases when
e K §dand$ « e, respectively. The total energy of the deformed system is thus
equal to

) -
st = 5 30 wo( M), ©)

i+jetnia

where N = #({N %Q) isthetotal number of atoms, and Wy istherescaled potential,
and does not depend on ¢ nor on §. The energy £ appearing in (1) should then be
thelimit, ase and § go to zero, of &, s:

Ew) = lim E.5(w). ©)

Despite the seemingly crude assumption we make in this strategy (namely,
that the microscopic deformation is equal to the macroscopic one), there are some
advantages to be found in this approach.

First of all, the above limiting process (6) is clearly not linked with the fact
that the energy originates from a two-body interaction. Indeed, we will see in
Section 3 below that more complex microscopic models, taking (at least partialy)
the quantum nature of the electrons into account, give rise to the same kind of
convergence results. This allows us to hope that similar results will hold for more
complex microscopic theories.

Another point is that since it is a mere limiting process, involving no I'-
convergence properties, we may very well go further: considering the limit as a
zero-order term in the development of the energy with respect to ¢, it is possible to
compute the next orders. Thisiswhat is donein Theorem 3.
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In addition, let us point out that for numerical purposes, this approach gives a
way of computing the sum (4) in the limit ¢ — 0, which is the exact expression
of the energy, u being the microscopic deformation. Of course, its link with the
macroscopic one is still unknown, but independently of this link, the above limit
(6) may be seen as a good approximation in the case where ¢ is small, hence N
large, circumventing any direct computation of (4), which indeed may be out of
reach of computer facilites for very large N [17,35].

Finally, let us point out that our approach isintimately linked with the concept
of a thermodynamic limit [27,12], as explained in Section 3, which is a I"-limit
process, athough normally not presented as such.

Thearticleisorganized asfollows: Section 2 gives the computation of the limit
(6), together with the corresponding development, up to order two with respect to
& (Theorem 3). Section 3 then studies the limit (6) in the case of some gquantum
models, namely Thomas-Fermi typetheories. L et usemphasize that the use of these
simplified modelsisonly for mathematical purposes. the same problem with more
sophisticated models should be addressed, but it seems for now beyond our reach,
technically. We give a few possible extensions of the present work in Section 4,
while the last section is devoted to the derivation of afew simple properties of the
computed elastic energies. We hope to come back to these questions in the near
future.

Most of the results detailed here have been announced in [9].

2. Thesimplest case: two-body potentials

We present here the homogeni zation scheme described in Section 1 in the sim-
plest case, that is, when the microscopic energy is defined by atwo-body potential.
In other words, we study the limit (6), with the energy &, s being given by (5), that

IS.
1 u(ei) —u(ej)
oy L (R,

iFjeniq

55,8(’4) =

Assuming that thereference configurationisan equilibriumstate, i.e., that aninfinite
system with minimal energy is periodic, it is physically reasonable to assume that
8 and ¢ have comparable size, i.e., that in the limit process e — 0, we should take
§ = . We will nevertheless study the other possible cases, that is, when ¢ « § or
8 « e. Note also that the fact that the equilibrium configuration is periodic is not
proven, so far as we know, except in one dimension [8,25,46,33,34,41,43], or in
very simple casesin two dimensions [42].

2.1. Zero-order term

Hereafter, we denote by ¢ a sequence of positive real numbers converging to
zero,and§ = §(¢) alsogoingto zero. Theproperty ¢ <« § meansthatlim,_ o ﬁ =

0, and § < & means that lim,_, ¢ 2&

=~ = 0, these limits being taken along the
corresponding sequence.
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Theorem 1. Consider a periodic lattice ¢ such that its periodic cell Q(¢) isof unit
volume: |Q(¢)| = 1. Let Wy be a function defined on R¢ \ {0}, which is Lipschitz
on the exterior of any ball Bg, with R > 0, and such that there exists C = 0 and
a > 0 such that |[Wy(x)| < m% Let © be a bounded Lipschitz open subset of

R4, and let u bea C> diffeomorphism defined on 2, with valuesin R?. Consider
&:.s the energy defined by (5). Then the following statements hold:

(i) Ife =3, then

fim ) = 5o / > Wo(Vu(x)j)dx. @)

jee\{0}

(i) Ife < 8, andif Wo € LY(R3), then

1 dx
"m< ) Eeslu) = 2|sz|(/ WO)/mdeuw(x))r ®)

(iii) If 8§ « ¢, and if for some p € R, ‘ Ilim |x|? Wo(x) = a, then
X|—> 00

"m<> Leslu) = 2|sz|/ Z |V'4(X)J|" . ®)

Proof. We first prove (i). Note that this result seems to be well known, but since
we found no rigorous proof of it in the literature, we provide the reader with one
here. Consider (5), withe = §, that is:

Sg,a(u)zﬁ Z WO(M)

ifjetniq

We first split this sum into two sums, using a cut-off radius A > 0, which in the
end will go to infinity:

55,5<u>=% 3 Wo<—“(8i);”(8j)>

li—jl=A

1 u(ei) —u(ej)
T CLECl) R

li—jl>A

both sums being reduced to couples (i, j) in (2@ N E)Z such that i % j. The

deformation u being a C> diffeomorphism, we have a|i — j| < “ED1EDl <
Bli — j| for some constants« and 8 depending only on u. Consequently, the second
sumin (10) is easily seen to vanish as A goesto infinity, uniformly with respect to
¢. Turning to the first term, we use a Taylor expansion to write:

M — Vu(ei)(j —i)| < CAZ,
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where C dependsonly on u. Next, using the fact that W isLipschitz on the exterior
of any ball, and that ad (¢) < ali — j| < MED=4EDl for any i and j appearing in
the sum, where d (£) isthe minimal distance between two points of the lattice £, we
may write;

o MDDy 9uin - )| < i

Using thisinequality in (10), we thus have:

1
ES,S(M)—ﬁ Z Z Wo(Vu(si)(j—i))‘

ietniQ  O<li—jI=A

< CyA%He + R(A), (11)

where R(A) corresponds to an upper bound of the second term of (10), and may
thus be chosen equal to R(A) = 55 3~ 4 Vﬁ% < £, where C arevarious
constants independent of . Next, the sum in (11) may be written as

% > > Wo(Vu(ei)j),

ietnlQ  O<|jI=A

where the sum over j isrestricted to j € £ (asin (11)). Then, using the regularity
of u, we may write |Vu(ei)j| = «lj|, where o does not depend on ¢ and i.
Consequently, the sum over j is, up to aterm going to zero as A goes to infinity,
uniformly with respect to ¢, the sum over the whole lattice:

1 c
Eos(u) — o > > Wo(Vu(ei)j)’ < ChaAZHe + =,

. A“
ietnia jet\{0)

The last step is to point out that, since N = #e£ N €2, the sum over i isaRiemann
sum, converging to the desired integral sincethefunction x — 2/4:0 Wo(Vu(x)j)
isLipschitzon 2. Choosing A = e‘%‘l, and then letting £ go to zero, we prove (i).
Let us now prove (ii). For the sake of simplicity, we restrict ourselves to the
case of afinite-range potential, the generalization to the present case being only a
technical matter, similar to the cut-off trick in the proof of (i). We then have, for

i,jetniq,
lu(ei) —u(ej)| > o)i— il

1) 1)

for some constant « depending only on u. Consequently, giveni € £ N %Q the
number of termsin the sum over j contributing to the energy is of order ‘8% ,inview

of theinequality |i — j| < Cg. Therefore, we easily show, using the fact that Wy
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and u are Lipschitz, that

2y WO(u(ei) - u(ej))

i+jetnia

where C depends only on Wy, u and 2. Now, changing variables in the integral,
we have

// M(X) M(y)) dxdy

WO(S ’7)
=/ / — — dédn.
w) Juy 1 det(Vuu=1(&))) det(Vuu=1(n)))|

o 1 .
Next, we use the fact that as § goes to infinity, —————Wo(<) convergesto a
8 fRd W() (S

Dirac mass at zero, so that

/ / o) dsd
057 ooy S 10Vt 6 dek VT

(/R ) / det ; ulu S

Putting all thistogether, we thus have:

im M e sy = L / W / dx
o0 84 ST S\ L) | T det(Va ()|

Observing that, at leading order, N ~ IQl(?)Ilsd , Where | Q(¢)| isthe volume of the
unit cell of ¢, this proves (ii).

We next prove (iii): fixing a positive parameter o (Which in the end will go to
zero), weknow that for |x| largeenough, | Wo(x) — Using theregularity
of y, wethus have, for § large enough,

u(ei) —u(ej) as? <
'WO( 5 )_ u(ei) — uep)l? | =

where C depends only on u. Hence, we deduce easily that
Z i — T|p
2N Py li — jl

e\’ 1 ag?
— N — I ——
‘(8) Fralt) ZN; e —utepi| =
1

Jje\{0} 1 |

IXI"| = IXI"'

CadP
li — jIp’

1 1
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We next apply (i) with Wo(x) = lxi, to conclude that the second term of the right-

hand side of (12) convergesto the desired formula. It only remainsto point out that
(12) isvalid for any « > 0, aslong as  is chosen large enough, which concludes
theproof. O

Remark 2. The regularity assumption we have made on u could be sightly re-
laxed. Indeed, u being a ! diffeomorphism is clearly sufficient to make the above
proof available. However, and although this assumption is reasonable (see [16]),
the Taylor expansion we use here could not be carried out if only lower regularity
was assumed. If for example we allow jumps in the gradient, it might be possible
to obtain a concentration of energy on the jump set (see [11]).

2.2. Higher order terms

We have studied in Subsection 2.1 the limit of the energy as ¢ and § go to zero,
that is, the zero-order term of adevelopment of this energy in powers of . We give
now a derivation of higher order terms of this development, limiting ourselves to
order two, although the computations could be carried out at any order.

Before stating thisresult in Theorem 3 below, we need a definition. Let 2 bea
piecewise C* open bounded set, and let x € 3K2. Denote by I' (x) the tangent plane
at x, and define the non-negative measure jr (). on R™ by

ure = im0 Mws), 13

keAg(T'(x))

with Ao (I (x)) = {d(i, 1T (x)), i € £N I(T(x)~ N Q)}, the number isN; (k) =
#i € LN @)™ NQ), d(i, M (x) =k}, andtheset I'(x)™ = {z+v(x)1, t €
(—00,0), z €I'(x)}, wherev(x) isthe outer normal of Q at x.

Theorem 3. Let Wy be a function defined on R \ {0}, such that for all x = O,
Wo(x) = Wp(—x), which is smooth on the exterior of the ball Bg, for any R > 0,
and such that thereexists C = 0, Ro > O and e > 2 satisfying

(14)

C
Vk €N, Vx e (Bg)°, |D*Wox)| < e

Let Q be a piece-wise C* open bounded subset of R4, and let u be a C diffeo-
mor phism defined on ©, with values in R?. Assume in addition that there exists a
sequencee;, > 0 converging to zero such that, for all integersn, #(s,£ N Q) = %
and that | O (£)| the volume of the unit cell of the lattice ¢ is equal to one. Consi der
&s .« the energy defined by (5). Then, restricting e to the sequence ¢, the following
statements hold:
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(i) 1f8 =&, then

Eea) = 5o / > Wo(Vu(x)(j)) dx

2 jee\(0)

2|Q| m(f > WO(VM(X)J)dMF(x>e(k)>d0(x)

el, jv=k

/ Z D2Wo(Vu(x) ))(D2u(x)(j, /), D2u(x)(j, J)) dx

24| | o0

+&2F1(u) + o(e ),
(15)

whereI"(x) isthetangent plane of 92 at x, the non-negative measured ur ¢ (k)
is defined by (13), and F1 contains only boundary terms;
(ii) If e < 8, and if Wo € L1(R3), then

e\’ Jri Wo dx
<5> Eealu) = 2|fz| /mdet(w(xm

/f(/ WO(VM(X)Z)er(x>e(Z)>dydU(X)
|Q| a0

B 24|sz| /Q/Rd D?Wo(Vu(x)y)(D%u(x)(y, y),

D2u(x)(y, y)) dydx
+ 2Fa(u) + o(e?),

(16)

themeasured uurx),¢ being defined by (13), and theterm F>(u) containing only
boundary terms.

L et us point out that, although formulas (15) and (16) seem rather complicated,
in the special case where € isthe unit cube of R?, and the lattice ¢ is equal to Z¢,
the plane I" (x) is exactly the face of the cube to which x belongs, and the measure
diip(y).za 1S €asily computed to be Z >16p, the sum involving only p e N.
Consequently, in this case, the mtegrand of the second term of (15) reads:

o> WoVu)),

k=21 jezd, jn>k

which may beinterpreted, when Vu istheidentity matrix, asthe surface energy of a
crystal. Inamore general setting, the measure d iur (), may be seen asthe average
number of pointsin ¢ and in the half-space containing €2 which are at distance k
from I"(x).

Proof. We only give the proof of (i), the proof of (ii) following the same line
of arguments. For the sake of simplicity, we assume that the constant a of (14)
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satisfiesa > 8. Thisisonly atechnical assumption, which alowsusto simplify the
argument below. We will next indicate how to deal with the general case (a > 2).
We use a cut-off radius A > 0, asin the proof of Theorem 1, writing

1 (&i) —u(ej)
s i(T T w(nsen)

ieenle  O<li—jl<A

u(ei) —u(ej)
FX T (M) an
ietniQ li—jlzA
where all the sumsover j concernonly j € €. Using (14), the second sumiseasily

bounded by a term of the form <, so that, teking A = =%, with 2 < g < 7,

which ispossiblesincea > 8, thissum is of strictly lower order than £2. Next, we
use a Taylor expansion of the expression Wo(“&0-4(0);

WO(M> = Wo(Vu(ei)(j — i) + %VWo(Vu(si)(j — 1))
x (D?u(ei)(j —i, j — 1))
+ 82[%D2W0(Vu(ei)(j —1)
x (D?uei)(j —i, j — i), D?uei)(j — i, j —i))

1
+ E(Vu(ai)(j —i))Dsu(si)(j —i,j—ij —i)]

3
8_ 2 s s
+ 720 Wo(Vu(ei)(j — i)
x (D?u(ei)(j — i, j — i), D3u(ei)(j —i, j —i, j — i)

0 e3A4
O\ e )

wheretheterm O (Ujl%) involves constants depending only on Wop, u and €.
Since the term depending on j may be summed up over ¢ uniformly with respect
to i, thiswill lead, when summed up with respect to i and j, to a quantity of order
0(e3A% = o(g?). We next study the term of order three: we need to show that,
summed with respect toi and j, it remains of lower order than £2. For this purpose,
we estimateit asfollows, setting j' = j —i:

(18)

> Do (Vu(en () (D2t (', ), D2, ' 1))

0<|j'|<A

c s C C
= Z WU' = Z |j/|d+a—3 = Aa—3" (19)
0<|j’|<A 0<|j’|<A
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This shows that the third-order term in (18) is of order Ang,g, which is negligible

compared to &2, thanks to the definition of A. We may thus write the energy as:

1
Ees) =5 D > [%(Vu(ei)(j —i))
ietnie  O<li—jl<A
& AN 2 N2
+ EVWO(VM(S!)(] — z)) (D M(SI)(J —i,j— l))
2

+ %VWO<Vu(si)(j - i))DSu(Ei)(j —i,j—i,j—i) (20)

2
+ %DZWO(Vu(si)(j - i))
x <D2u(ei)(j —i,j—i), D?uei)(j —i, j — i))] +o(?).
We now notice that, since the missing terms sum up to alower order term, we may

sumupoveral j € £\ {i} inthetermsof order 2. We may in fact do the same thing
for the term of order ¢. Indeed, the missing terms may be estimated as follows:

£ A P TN Celjl?
> Z VWol| Vu(ei)j | D u(sz)(],]) b Z T

lj1zA lj1Z2A

= 0<A51) =0, (21

from the definition of A. Thisestimateisvalid for i far enough from the boundary
of 22, since otherwise the sumistruncated not at A, but at d (i, 2Q¢). On the other
hand, theseterms are easily seen, through the same kind of estimate, to be boundary
terms of higher order.

Weleavethefirst term asit standsfor now, dealing with it afterwards. The other
termsare easily seen to be Riemann sums, converging, up to higher order boundary
terms, to the corresponding integrals. We thus have:

1
Es,S(“)zﬁ Z Z W0<Vu(£i)(j—i)>

ieenle  O<li—jl<A

+%|/Q 3 VWo(Vau())) (D2u)(j, j))dx

Jjet\{0}

1
+82[m [ X Iwovucppoucod. i s
2 jen\(o)

1
"’m/ Z DZWO(VM(X)j)(Dzu(x)(j,J'),Dzu(X)(j,j))dx}
2 jee\(0}
+e2F1(u) + o(£?), 2
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where F1(u) is a boundary term. Integrating by parts the first part of the term of
order 2, we easily see that it is exactly the corresponding term of (15). Turning to
the term of order ¢, we see that itsintegrand is an exact derivative with respect to
x, sothat it isequal to

/ Z VWo(Vu(x)j)(D?ux)(j, j))dx

Jjet\{0}

= [ ¥ wovutmindo . @)
92 jen\(o)

Using the fact that Wo(x) = Wo(—x), together with the fact that the set ¢ \ {0}
is symmetric with respect to 0, we see that this term cancels. We now deal with
the term of order zero: it will naturally give the zero-order term of (15), and also
approximating terms of order 1 and 2 a priori. The point hereisto show that these
terms give the boundary term of (15). Denoting by 82 s (u) the zero-order term of
(22), we write:

EQs(u) = 2N Z > Wo(Vu(ei) j)dx

zem lq jet\(0)

> Wo(Vuei)(j — i)

ietnliq jela
1 N
—on 2. 2 Wo(Vu(ed(j —i). (24)
ielq jelanBa()c

Here, al the sums are restricted to points belonging to £. The third term is easily
bounded asfollows:

C
Z > Wo(Vu(ei)(j —z))‘ <c)y |J|“+d < o = o).

zem Q jelanBa(i)e ljl>A

The two remaining terms will respectively give the terms of order zero and onein
(15). In order to prove this claim for the first term, we denote by f the function
fx) = Zj:ko Wo(Vu(x)j), and writeit as:

2|sz| D flei) = 2|9|/f(x) x

teéﬁl

2|sz| 3 / (Flei) — F)dx,

cn 19 i+eQ(f)

+

jetnie /(si-i-sQ(Z))ﬂQC

| f (25)
iEZﬂ%Q" (ei+eQ€))NQ2
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where Q(¢) isthe primitive unit cell of £. We next make a Taylor expansion of the
secondterm, writing f (ei)— f (x) = V f (i) (i —x)—D? f (¢i) (x—i, x—i)+ O (3).
The first term of this expansion is linear with respect to x — i, and thus cancels
when integrated over i + Q(¢). We thus have

£ N 1
m.z f(sz)—ﬁfgf(x)dx

2|Q| Zf D? f(ei)(y, y)dy + O(&).

KQQ

We recognize here again in the second term a Riemann sum, so that it may be re-
placed, up to terms which are negligible before 2, by the quantity
e? [ fQ(e) D2 f(x)(y, y)dydx. This term being an integral of a derivative with
respect to x, it will give only aboundary term of order £2. We now turn to the last
termsof (25), which are boundary terms, sincethey clearly involve only terms such
that d (i, %89) < 2¢. Next, we notice that each term of thisdifferenceisaRiemann
sum of the boundary, and thus may be replaced, up to boundary terms of order ¢2,
by the corresponding integrals, which are equal.

Wefinally deal with the remaining term, that is, the second term of (24). Since
the treatment of thisterm is rather delicate, we provide a proof in the case when Q
isapolyhedron. The extension to the general case follows the same argument with
somestraightforward technical adaptationsthat we omit. Thefirst pointisthat, since
Jj isrestricted to belong to %Q", using once again that Vi~ is bounded uniformly
on €2, we may reduce this sum to terms which are not far from the boundary:

—% >0 > Wo(Vuei)(j — i)

ietniqj¢l

DD Wo(Vulei)(j — i) + o(e?),

ieﬁﬁagﬁj$%g

whered.Q = {y € 1@, d(y.9(iQ) < \/ig}. This expression shows that thisis
going to be aboundary term. Next, we separate the boundary of 2 into P different
faces, denoted by I',, with 1 < p < P. Wenow consider only one face, putting all
of them together in the end:

Er,(u) = —>— Z D Wo(Vu(ei))),

’EZﬁrp j+ieeniqe

where I'é is the set of pointsin 2 which are at a distance smaller than Jig from
1F Now, considering the set to which j belongs, it may be described, up to a
term of order £2, by the constraints j € ¢ and (j 4+ i — Tip, (i))n = 0, where n

is the outer normal of the face I',, and Tip, is the orthogonal projection on the
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hyper-plane 2T, Now, sinced (i, T',) = (1 (i) —i)n, thisproperty also reads
jn Zd(i, iT,). Hence,

d \V/ + 0
e E
Erp(”) 2|SZ| Wo( ”(51)]) (82)'
€Nl jel, jn2d(i,1T,)

We next approximate, up to order ¢, the sum over j by the same one where ¢i is
replaced by 71, (¢i). Thismay be done using aTaylor expansion, and the correcting
term is shown to be of order £2 when summed up with respect to i using the fact
that @ > 2. The term we want to treat now isthus:

d
& . .
Er,(u) = ~3iq] > Wo(Vu(rr, (£i))j) + O(?).
€N jel, jn2d(i,1T))

Assumefor awhilethat Vu isconstant and equal to F onT",,. We now define the set
AL(Ty) =1{d(i,2T)), ieenTé), and NS (k) =#{i eTEne, di, ir,) =
k}, and using this notation, we write the above energy as
d
& .
Er,)=—>= Y NPk > Wo(Fj)+ 0.

2|Q
152 keAZ(T}) Jjet, jnzk

It only remainsto point out that the number A (k) isequal to the number |T N (k)
appearing in (13), up to a correcting term of order s2~¢. Here IT,| isthe (d — 1)-
dimensional measure of the face I';,. We therefore conclude, in this special case,
that

ellpl [

Er,(u) = 212 Jy

< Z Wo(Vu(x)j))dlLr,,,e(k),

jet, jnZk

which matches exactly the second term of (15). Here, x is any point of T',,. In
order to finish the proof, we only need to point out that if Vu isnot a constant on
I',, asimilar but more tedious analysis leads to the second term of (15) through
aRiemann sum over I',. Next, using an approximation of €2 by a polyhedron, we
conclude the proof in the general case.

We now explain how the above argument may be adapted to the case where
a < 8. Notethat the points where we have used the assumptiona > 8 concern only
thebulk term, and not the surfaceterms. Inthe bulk term, the point isthe choice of 8,
i.e., of A, the cut-off radiusused in (17). Weneed g > 2 sothat the remainder term
in (17) be of order strictly lower than 2. If « < 8, thisimpliesthat the remainder of
(18) isno more of order o(¢2). Hence, we need to exp?nd at an order higher than 2,

g A9t

say ¢.And theremainder, which isof order O(W)’ leads, when summed up

over j, to aterm of order O(¢7-17#7). Hence, if B ischosen strictly lower than 1,
whichispossiblesincea > 2, thistermisof order strictly lower than £2 for ¢ large
enough. Then we only have to deal with the additional terms of the development,
which we do using their exact expression, aswas donein (19) for the term of order
three. O
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Note that, asis clear in the above proof, the development could be carried on
at any order. However, even the surface term of order ¢ is alittle cumbersome to
establish, and its expression seems to be difficult to use except in special cases.
Thisindicates that higher order surface terms are likely to be hard to compute and
to use. On the contrary, if we only look for bulk terms, the development is within
reach. (In such acase, the assumption (14) would involvea > ¢, g being the order
at which we want to develop.)

Another point isthat the term of order ¢ isaboundary term, even if the assump-
tion Wo(x) = Wo(—~x) is dropped. However, in this case, the right-hand side of
(23) would appear in addition to the term of (15).

Finally, let us point out that this order-oneterm showsaminus sign because (and
it is apparent in the above proof) it is the correction of the bulk term of order zero,
to which we have added terms so asto have the whole sum over ¢ when x iscloseto
the boundary. It may be therefore interpreted as the opposite of the surface energy
of the crystal. However, this interpretation is subjected to the assumption that the
atoms are distributed on the lattice ¢ even near the boundary. This assumption is
highly questionable, sinceit isknown that relaxation effects near the boundary may
change or even destroy the periodicity locally. These effects might be of same order
as the surface energy we have derived.

3. Thomas-Fermi type models

We deal in this Section with Thomas-Fermi type models, where the quantum
nature of the electrons is (partially) taken into account, whereas the nuclel are
supposed to be classical particles.

We first present the Thomas-Fermi-von Weizsacker (TFW) model, defineit for
molecules, and then explain how it translates into TFW theory for infinite periodic
(solid-state) systems through the thermodynamic limit process[12]. We also show
the link between thisthermodynamic limit process and the present homogenization
scheme.

3.1. Presentation of the models

We briefly present in this subsecti on the Thomas-Fermi-von Wei zsacker (TFW)
model, recalling that everything we are going to do for this model is clearly adapt-
able to Thomas-Fermi (TF), and even to Thomas-Fermi-Dirac-von Weizsacker
model. We refer to [26] for details on these models.

The TFW energy is defined, for aset of M nuclei of positions {X;}1<;<s and
charges{Z;}1<; <, and aset of electrons defined by their total density o = 0 (such
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that ./p € HY(R?)), by
hZ
ETW((X,. Z:). p) =—<f |wﬁ|2+/ ,05/3)
,p(x) 1 p@)p(y)
47'[80( Z/RS |x—X| E/;s [x —y] dxdy

1 ZiZ; )
+_ —_— 9
2.2.|X,»—X,-|

iFj

(26)

where# isPlanck’sconstant, e the elementary charge, m the mass of an electron and
o the dielectric permittivity constant. Note that the TFW model is usually stated

in a unit system where the coefficients = 2 and 4m of (26) are both equal to 1,
but here we need to scale the characterlst|c length 01‘o the model with respect to the
atomic spacing, as was done in Section 2 for two-body energies. Let us also point
out that we have skipped here dimensi onless constants which should appear in front
of thefirst two termsof (26) (see[39] for the details), sincethey are mathematically
irrelevant here.

Theinteger N being thetotal number of electrons, the density p is subjected to
theconstraint [ p = N.Whentheelectronsarein their ground state, they minimize
the above energy, i.e., they are a solution of the minimization problem

E™W(X;, Zi)) = inf{ETFW«xi, Zi},p), p=0,

Jp € HYR®), /Rs,ozN}. (27)

Here, we assume that we are dealing with a set of N identical atoms, and fix the
nuclear chargeto Z; = 1, although none of these assumptions are limitations. The
important assumption is that the nuclei are periodically distributed, that is, asin
Section 2, {X;} = £ N Q, where ¢ is the periodic lattice on which the nuclei are
distributed, ¢ the inter-atomic distance, and €2 the Lipschitz open set defining the
solid we are studying.

We next point out that the characteristic length of the system is easily shown by
adimensional analysistobe § = hz:;%. Hence, setting Eg = ’fn—z (26) trandlates
into

W ) 5/3 p(x)
Es ™V ({Xi}, p) —EO[/R3|V~/5| +/R3p ( Z/R3 |x—X|
PPG) 1 )}
d - E)

/R/R ol y+2;lxi—xﬂ

(28)
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and (27) similarly. Assuming now that the set of nuclel {X;} = ¢¢ N Q isdeformed
by a C*® diffeomorphism u, we thus define

Erg () = % inf{E!'“”(u(ee nQ),p), »20,
Vb € HYR?), /Rsp = N}, (29)

where N is the total number of nuclel (equal to the number of electrons), that is,
N = #(el N Q). Equation (29) is the equivalent of (5) in the present case of TFW
theory.

We recdll that given a set of any finite nuclei {X;}1<;<y, the minimization
problem (27) has a unique solution p. We refer to [6] for the proof of this result.
The function &5 (u) isthus well defined by (29).

3.2. Infinite periodic systems
The problem of the thermodynamic limit of the above (TFW) model is closely
linked with the problem we are dealing with here. Indeed, setting 5(x) = £3p(ex)
and changing variablesin (28), we get

ESW (et N Q), p)

o =2 -5/3 / A
o E VAR R R ol M-l

p(x)p(y) 1 1
/Rs /Rs Ty TS Z uen=utep| ) |
&

iFjeniQ

(30)

In the special case where the function « is linear, @ simplifies to u(i), so that
the problem we address here is exactly the problem of finding the limit of the
ground-state TFW energy as the set of nuclei fillsin the lattice u(¢), which is the
thermodynamic limit problem for the TFW model, as dealt with in [12,13], given
the fact that the constants involved in (30) scale properly, namely & ~ i, i.e,
8 ~ ¢, whichistheequivalent of (i) of Theorem 1. Wethusrecall herethe results of
[12]: it is possible to define the (renormalized) TFW energy of an infinite periodic
system in which the nuclei are distributed on alattice £ and the electronic density
pissuchthat /5 € Hi,(£), the set of functionsin H} which are ¢-periodic, by:

ET'“”@,e):/ |v\/5|2+/ ﬁ5/3—f pGy
o) o) o)

1
- / / FGe(x — F(dxdy,  (31)
Q) J o)
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where Q(¢) isthe primitive unit cell (or any unit cell) of thelattice ¢, and G, may
be seen as the ¢-periodic version of the Coulomb potential, and is defined by the
following:

—AGy =4n (S0 — i) N QO),

1
G¢ is (—periodic, ‘Iim (Gg(x)—ﬁ)zo.

(32

We then have the following theorem (see [12]):

Theorem 4 (Thermodynamic limit of the TFW model, [12]). Let Q2 be an open
Lipschitz bounded subset of R®. Denote by ET™W (¢ N 1, 5) the rescaled TFW
energy, that is, (30) with Eg = ¢2,8 = ¢ and u = Id:

ETF‘N<m}Q,ﬁ)=/ ok [ 5 Z / o
£ R3 R3 R3 |x—z|
1 1
/Rs/Rsp()p(y)ddHE Z 1@

lx =l li = Jjl
Y iFjeniQ /

And define
1 1 1
ETFW<£ N —Q) = inf{Eg(é N=Q,5), p=0,
g N g
JF e HYRY), / 5= N},
RB
with N' = #(¢ N 1©). Then, it follows that

1
lim ETFW<e n= sz) = E™V(p),

e—0

where ETPW (¢) is defined by the following minimization problem:
E™W () = inf{ETFW(E, ). 20, Vi e Hy(0), /Q(O p= 1}, (34)

the periodic energy ETFW (¢, 5) being defined by (31).

In addition, the solution 5, of the minimization problem ETFW (¢ 0 1) con-
verges to the solution of ETFW(¢), uniformly on any set of the form (2 — y,)Q,
wherel « y, < 1.

&

The proof of Theorem 4 as presented in Chapter 5 of [12] is based on the
convergence and uniqueness of the solution of the Euler-Lagrange equation of
minimization problems ET™W (¢ n 1Q) and ETAW(¢). The first one converges in
some sense to the second, so that their solutions al so converge. Thisiswhy we now
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write down the Euler-Lagrange equation of the minimization problem defining
ETW (u) (29). Setting v = /7, it reads:

Sz, (2, L 1
—A 7 % — — 6 |v=0,
v+3v +<v Zl |x—i|+ v
Nn=Q
where 6 isthe Lagrange multiplier associated with the constraint [ 5 = N. Setting
¢ =—v2x ik + Yicenia = — 6, wethus have:

—Av+ %v7/3 —¢v =0,
—A¢p = 471( Z 8 — v2>. (35)

ietniQ

In the periodic case, the sum over £ N %Q is replaced by a sum over the whole of
£. Notethat as ¢ goesto 0, the system (35) converges to the periodic one. Our aim
in the following subsection is to adapt the proof of Theorem 4 to the case when u
isnot alinear transformation, but ageneral C* diffeomorphism.

3.3. Convergence theorem
We givein this subsection the equivalent of Theorem 1, together with its proof:

Theorem 5. Let Q bea Lipschitzopen set of R3, and let u bea C* diffeomeorphism
defined on 2, and ¢ a periodic | attice. Suppose that the volume of the primitive unit
cell of ¢ isnormalized, i.e|Q(¢)| = 1. Consider theenergy &, s (u) defined by (28),
(29). Then, the following statements hold:

(i) lfe =3¢, andif Eg = £, then thereis a convergence:
. 1
lim €50 = o /Q E™ (Yu(x)0)dx, (36)

where ET™W s the rescaled TFW energy defined by (34), (31), (32).
(i) Ife <« 8, andif Eg = €2, then thereis a convergence:
dx

. 1
MMy Eest) = a1 |, Taavue) 2B 37)

(iii) 1f 8 <« &, and if Eg = 82, then & s (u) converges to a constant independent of
u. This constant may be identified as the rescaled atomic TFW energy [27].

Proof. The ingredients of the present proof are mainly present in [12]. We never-
theless provide them for the sake of compl eteness. We start with the proof of (i). We
denote by p the solution of the minimization problem (28), (29) defining & s (),
and by p the rescaled electronic density, that is, 5(x) = £3p(ex). The proof will
be carried out in three steps:
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Sep 1. We have the convergence

—0, (38)
L (Vu(ei)Q(€))

||”2)H o(- + M(Sl)) PVu(ei)e

which isuniform with respecttoi € £nN (— — —)Q Here, for any periodic lattice

¢’, the density o, isthe corresponding TFW electron|c density, i.e., the solution of
(34), (31), (32).

In order to show (38), we argue by contradiction (this proof is an adaptation
of that of Theorem 5.9 in [12]). Assuming that it does not hold, we deduce the
existence of some x, € Vu(ei) Q(£) such that

v (re + u(ei)

) — UWu(eire(Xe)| 2 o > 0

for some « independent of &, where v = /5, and vyu(eiye = /Pvacene. Using
the regularity of u, we point out that the sequence x. is compact, so that, up to a
subsequence, we may assume that it converges to some xo € (Jg_.<1 Ujeinio

Vu(ei) Q(€). We recall now that v satisfies the Euler-Lagrange equation of the
minimization problem (28), (29), that is, the equivalent of (35):

5

—Av+ §v7/3 —¢v =0,

—A¢:47T< Z (3,4(3/')—1)2), (39)
jetniq )

where the effective potential ¢ may a so be defined by
1 s 1
¢= Zl —|X_M|—U *m—e,
JjenzQ £

the constant 6 being the Lagrange multiplier associated with the constraint [ v2 =
N in (29).

Using liptic regularity results, it is then possible, using the method of [12]
(Propositions 3.8 and 3.12), to show that there exists a constant C independent of
& such that

lollzgey + 11,2 ) + 18l 100y < € (40)

for any p < 3. Inserting this information in the first equation of (39), this also
implies that v is uniformly continuous on R3, uniformly with respect to s. Hence,
for asufficiently small ¢, we have

u()

v(xo+ ) — VVu(eie(x0)| = %- (41)

Now, the bounds we have on v and ¢ are valid for v(- + “2) and ¢ (- + “¢2),
and thus allow us to assume, using elliptic regularity and Relllch s theorem, that
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they converge, up to a subsequence once more, to some v and ¢ in L |oc(R3) and
’Z)C(R3), respectively. We also point out that i beloggs to €, which is compact,
so that we may assume that it convergesto some y € Q. We thus have:

v(-+ D) T in LS(R®),
o(-+ ”(eg’)) — ¢ in LI (R®),
gi — yeQ.

We may then passto thelimitin the system satisfied by v(- +“¢2) and ¢ (- + “2),
that is,

—Av(-+ _¢v(.+u(8i)

K
_A¢(+u(8l) - Z 81{(5/) M(Fl) _U('+u(8l))2.

&
]eéﬁ Q

u(sz)) 5 (+u(§l))7/3 )20’

Note herethatthemeasurezjE intq Sue) _uen convergesin D' (R®) tothemeasure
e Svu(y)» becauselim, o d i, 1Q¢) = +oo. Therefore, we have:

~AT+ 3R -9 -v=0,

—AE =4 <Z SVu(y)j — 52>.

jet

This system has a unique solution (vyy(yye, Pvu(yye) iN LC(R3) x LI (R3), ac-
cording to Theorem 6.5 of [12], and therefore we should have v = vy, (y)¢. We now
reach a contradiction with (41) if we can passto the limit in (41), that is, if vy is
acontinuous function of the matrix M. Thisresult is easily shown by repeating the
same argument as above. This completes the proof of (38).

Sep 2. We have the convergence

u(ez))

=0, (42)
L (Vu(e) Q(6))

EHm H¢ — OVueie

which isuniform with respecttoi € (— - —)Q Here, for any lattice ¢, ¢y isthe

effective potential associated with the densty pe, solution of (34), (31), (32). In
other words, vy = /py and ¢y arethe unique solutionsin L*(R3) and L. .. (R3)
respectively, of the system

—Av+ gv7/3—¢v =0

—A¢p =4n (Z -8 — v2>.

jel’

We skip the proof of (42), sinceit is an easy adaptation of the one of (38).
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Sep 3: Convergence of the energy. We are now in position to show the desired
convergence result. In order to do so, we split the expression of the energy into
different terms, which we treat separately. We first show:

~ 1 5/3
E1(p) := / 7 ( / p (z)dz>dx, (43)
N IQI Vuyow Ot

as e — 0. We separate this integral into a sum of integrals over domains which
will, inthe end, convergeto the unit cell Vu(x) Q) = Q(Vu(x)¢) :

E1(f) = / 553 4 / 555
Z Ll(8j+€ Qo)) Z

jetnle jetniqe su(e/+eQ()

We begin by dealing with the first sum. We have

. < 1
/1 poP = / PP + Zu(ej)dz
Lu(ej+20(0) L u(ej+£Q(O)—u(e))) e
5/3
Vu(ej) Q(€)

uniformly with respect to j e (% — Jig)sz according to (38) and the fact that
[Vu(ej) Q) \ 2(u(ej + £Q) — u(e))| + |2(ulej + Q@) — ulef)) \
Vu(ej) Q(£)| converges to 0 uniformly with respect to j € (2 — %)Q Hence,
using the fact that 0 is bounded independently of ¢ to show that boundary terms

Jj€E 1S2 \ (— - —)Q make a negligible contribution, we deduce that
= 1 5/3 ~5 3
ao=y X [ ity 2, 2 4o,
jetnia Vu(ej) Q£ ]em Qc u(€J+8Q(€))

The first sum may be identified as the Riemann sum converging to the desired
integral. Hence, in order to conclude the proof of (43), we only need to show that
the second sum convergesto 0. In order to do so, we point out that the same argument
as above alows us to show that

1 ~
1=— ,0

N
et Q/Wan(a J cenlor

_14 / 5+ o(D),
%QL’

PVu(ej)e + — Z f o+ o)

Vu(ej)Q(6)

S0 that

li o0 =0. 44
8I—r>rg)/:€|-gzc O ( )
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This, together with the fact that 5 is uniformly bounded in R3, alows us to show
that [1 1o P 5°/3 = 0(1), concluding the proof of (43).

We now turn to the second term of the energy, and show the following conver-
gence:

1
E>(p) = —/ VY12 — — </ IV«/,Ovmx)eIZ) dx. (45)
N |Q| Vu(x)0()

We proceed here in the same way as for (43), showing first that the exterior contri-
bution is negligible. In order to do so, we recall that, using the same notation asin
Step 1, we have

5
—Av + §v7/3—¢v =0

so that, multiplying this equation by v and integrating over %QL‘, we have

1 1 o1 5
- —A — _ = =553 — o1 ;
N/gm( V)V N/;gcdw N Jig 3 o(1)

aCCOfd'ng o (40) and (44). Next, we use elliptic regularity to show  that
N fa( L) Von = = 0(1), thereby proving that

1
lim — |vv|2 -0
>0 N 1ae
Now, using elliptic regularity here again, it can easily be seen that Vv is bounded
in L2 (R®), so that
- 1
E20) =5 > / Vo2 4+ o(1).
/g(ﬁ(l_T)Q FM(E/_HEQ(K))

Following the proof of (43), what we need here in order to conclude the proof is
the following convergence result:

— 0 a &¢—0,

Vv — Vuyyio
L2(Vu(ei)Q(0))

uniformly with respect to i € (— - T)Q This result is easily proved using (38)

and (42) and the first equation of (39). This allows to conclude the proof of (45).
Wefinally deal with the el ectrostatic terms of the energy, whichismoreintricate
than (43) and (45). Werecall that the electrostatic energy reads:

( Z/ P (x) //,O(X),O(y)
RS | “("’"’)| rR3JrR3 [x — Y|

E —)
|u (Ei) u (8])|

i#jeﬂﬂl

1
/ ¢p 2N (x_) M(Fl) (¢(X) |_—%l)|)> (46)

zeéﬂ - Q2

NI =

+
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Herewe have used the definition of ¢, thatis, ¢ = 3", 1 ﬁ p i —0.

We may deal separately with each term of theright-hand sde of (46) Thefirstterm
iseasily treated using the same arguments asfor (43), based on (38), (42) and (40),
showing:

E3(p) == ——/ $p — </ ¢Vu(x)e,0w(x)e)dx (47)
2|Q| Vu(x)Q(f)

ase — 0. We now deal with the last term of (46), and show the following:

1 . 1
E4(p) == o Z <y£%(¢(y) - m))

2|Q|/( ¢w<x)e(y)—|—1|)>dx (48)

ase — 0. Here again, we copy the proof of (43), separating into termsi € (% —
\/ig)fz and those belonging to 2\ (1 — JAE)Q' For the first part, the use of (42)
allows usto conclude. In order to show that the remaining terms are negigible, i.e.,
that

1 . (ei) 1
DY <}I,ngg)(¢(y+” ’)——)>=o(1>, (49)

ie(ﬂ(%Q\%Q) ¢ Il
we use the second equation of (39), and (40), getting

u(ei)

-] =€
onsomeball B,,witha > 0and C independent of i ands provided ¢ issufficiently
small. Hence, using the fact that ¢ is bounded in L1 (R3) and the mean value
inequality, thisimplies that

‘—A(qb(x

unif

u(sz)

‘(b(x—f— ||‘<C Vx € By.

This estimate allows us to conclude that (49) holds, ending the proof of (48).
Now we only haveto collect (43), (45), (47) and (48), and point out that, for all
x € Q,

- / Gvu(x) ) PVu(x)e
Vu(x)Q(¢)

1
+ > / / Pvu) (DG vu)e(@ — ¥)pvue(ydydz
Vu(x)Q &) JVu(x)Q(£)

1 1
= ——/ OVu () PVu(x)E + - I|m <¢W(x)e(y) - —)
2 Jyumo [yl

to conclude the proof of (i).
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We now prove (ii). Here again, we first rescale the density p, setting 5(x) =
£3p(ex). The energy may then be written as:

Ees(u) = |:/ |Vf|2 / ~5/3 ( Z /R3| p(j()8])|
X

(ZﬂQ

1 005G ) . )}
- PR ixdy + = S —
Z/R/R PTG S DI e sy

i+jelniQ

Next, wefollow exactly the steps of the proof of (i), except that here, e and § appear

asparametersinthesystem satisfiedby v = /5 and ¢ = Yjetnia ﬁ —v2x%

| + 2 9 We give the main ingredients, skipping their proofs since they involvethe
same arguments as above:

lvllpere) + 5 (||¢>||LP Ry TPl _Q()) =C,

forany p < 3, and

. ~ &l €
lim p(+u( l))_ : =0,
' 2/3
. & u(el &
lim [-¢(-+ ( ))— , 573 =0,
£k86—0 8 £ |I/l(8l + SQ(E))l LZ(VM(EI)Q(K))

uniformly with respecttoi € £N (— — 7)9 With these convergence results, we

can then easily show that all terms of the energy converge to O except the term
[ %3, which converges to the desired quantity.

Let usnow prove (iii). Here again, it is possible to study the convergence of the
density and deduce from it the convergence of the energy. But we will provide an
alternate and moredirect proof using thefact that we aredealing with aminimization
problem. Onceagainwerescale p, but heretherescaling parameter will be § instead
of . Wethus set 5(x) = 83p(8x). Then, the energy reads:

1 ~ ~
Eratt) ZN(/W VA /R3 P Z /3 |x 'O(jf()sj)'

einiq
FE)F() ) 5 )
PP dxdy + = —
/R/R w—y T2 _Zl ju(ei) — ule))l
iFjetnzQ

:%ETFW(M(EK; Q)>’
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the term ETFW (“£402)) genoting the solution of the minimization problem

ETF\N(w) - inf{ETFW(w, 5), p=0,

JF e H'RY), [RBﬁ - N}, (50)

the energy ETFW (4802 | 5) heing the rescaled TFW energy (33).
Let now pg be anon-negative, radial, compactly supported, smooth function of
total mass 1. Using thefunction n(x) = Zjeu@m) po(x — j) asatest function for
8

the minimization problem (50), we have:
1 u(el N Q)
Ees(u) < NETFW((Ta 77)'

We now point out that, for £ large enough, the terms of the sum defining n have
digoint supports, so that we have

Jwvits [ 2= [ v valen [ o

Next, in order to computetheel ectrostati c terms, we point out that since pg isradi aly
symmetric, has compact support and total mass 1, the function pg * Iil |x\ has

its support included in the support of po. Therefore, we have, if § islarge enough,

1 n(x) n(x)n(y)
_E,Z fR3|x—”(W>| /Rs/Rs TS
jemnt

etniq
1 1 1 u(ej)
__E/Rs”(x) X:l (|x_u(8j)| (po |x|><x_ 5 ))dx
jetniQ s
5 [ (= o )an
=— | _po()( — — + pox*
|x]
Similarly,
nx) 1 8
2 Z /Rs| e Zl luei) —ue))
,em Q i£jenio
__N [ po)
2 Jr3 x|

Coallecting these computations, we thus have:

RS x|

/ / po(x)po(y) dxdy (51)
R3 JR3 -
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for any smooth radially symmetric pg = 0 having compact support. We now define
the TFW atomic energy:

Vo) = inf{E;FW(p), p=>0, peHYR®, /R3p = )\}, (52)

with

p(x)
E;'“N(m:f |wﬁ|2+/ p5/3—/ dx
R3 R3 rR3 |x|

// p(X)p(y)dxdy. (53)
R3JRS |x —y

This minimization problem has been studied in [6], where it is shown to have a
unique minimizer for all » < A, for some A, > 1, which isradially symmetric.
Hence, in (51), we may use a sequence of functions pg converging to the unique
minimizer of (52), getting

limsup&e s ) < Iz (D). (54)
§ke—0

It only remains for us to prove the reverse inequality. In order to do so, we come
back to the function p which achieves the minimum defining & s(u), and the

corresponding rescaled density 5 = §3p(8x). Setting v = \/ﬁ, we write down the
Euler-Lagrange equation satisfied by v, that is,

—Av+ gv7/3—¢>v =0

—A¢=47T( Z Su(a&') —1)2).

: 1
JjenzQ

Using this system of equations, it is possible to adapt the method introduced in [12]
(Propositions 3.8, 3.10 and 3.12) in order to have

vl o3y + I1Bllr  (R3) = <c,

forany p < 3, with C independent of £ and §. Usngelllptlcregularity andRellich’'s
theorem, we may thus assume that for al j € ¢nN Q f -+ @) converges
weskly in H (R®) and strongly in L2 _(R3) to some vj = /p;. Fixing aradius
R > 0, we have, for § large enough:

liminf VY31 Z limin |V\/B|Zz/ ANz
Br

§<ke—0 B\/?(u(;])) §ke—0 Bg (”(é/))

and similarly for [ p53. Hence, letting R go to infinity, we have

1
liminf = \v4 ~12 5/3
5I<r;rl|—r>]0N</R3| \/;| +/|;3p
coo 1 5/3
21 f — \NT
= |S”l)|on (/ | j | +/R P; )

]eﬁﬁ Q
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Next, we use the bounds we have on ¢ and p, finding that A(q& — ﬁ) is
X
bounded in LOO(B\/;), so that ¢ (x + “C2) — ol ‘ convergesin L{%.(R3) to some
§

¢; — f € L™(R®) such that ¢; satisfies —Ag; = 8o — p;. We now point out that
the method used in [7] (Propositions 4.2 and 4.3) is easily adapted to the present
case, and yields:

C C
4/3 -
max(¢ (x), [v(x)|*?) < —“<6">|2+ > o
5 S

| jetniQ I —

for all x such that |x — “$2| <inf,_, 10, ) [x — “52|. Thisallows usto passto

thelimitintheterm — [ p¢, getting

o1 - o1 ~
imig (- fore) =ty Z (-], )

. 1
JELNZQ

€

1
_|Inllnfﬁ Z (—/Rapj¢j.>.

1
jetnzQ

Finally, it is easy to adapt the proof of Step 2 of (i) in order to show that the

convergence of ¢ (x + ”(§-’ )y — m to ¢; — = is uniform with respect to j €

en (- Jig)sz getting

1 . u(ej) 1 1 1

lim > )!I_rpo((p(x+ ; )—m):hmﬁ > I|m<¢/(x) » |)
jetniQ jetniq

Hence, pointing out that ¢p; = \xl —pj* |x‘+6>,,forsomeconstant@],Wededucethat

—3 [repidj+ 3 lime_o(g; — \xl) =—fp|ff|)d +3/f ”ﬁ)p}(l‘)dxdy Gathering
all these results, we have

|8|21mf585(u)>nmmf Z E;F‘N(p)>nmmf Z 0oy,
]e(Zﬂ Q JEZO Q

witha; = [ p;. Now, thefunction IaIFW(A) IS convex non-increasing with respect
tox e RJr Since in addition £ 3" A; < 1, we conclude that

F > JTFW

lsl«mg gg&,a(u) 2 Iy (. (55)
This concludes the proof of (iii). 0O
Remark 6. Let us point out that the method used in the proof of (iii), based on

variational methods, could be used in the proof of (i) and (ii) as well. However,
although it seems more natural, it would be considerably more delicate.
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4. Possible extensions

We indicate in this section some direct consequences of the above results, and
natural extensions of them. There are mainly two types of extensions. those con-
cerning the microscopic model (the electronic problem), and those concerning the
geometry of the atoms.

4.1. Changing the model describing the electrons

In Section 3, we have dealt with Thomas-Fermi type models. These theories
are very crude compared to the Schridinger equation, which they are supposed to
approximate. (The approximation of two-body potentials, usedin Section 2, iseven
worse.)

However, the methods used in this section are intimately linked with the ther-
modynamic limit problem [12,27]. More precisely, it seems that the existence of a
thermodynamic limit allows us to passto thelimit ¢ = § — 0, at least in the two
cases of two-body potentials and Thomas-Fermi type models. Hence, formulas (7)
and (36) are likely to be adaptable to other models, such as for instance Hartree-
Fock models [28,29]. In this case, although the thermodynamic limit has not yet
been fully justified, it is possible (see [14]) to derive it formally. Therefore, the
elastic energy

Eu) = i/ ENF(Vu(x)0)dx,
12| Jo

where EHF(¢) is the Hartree-Fock energy of the lattice ¢, defined in [14], is a
good candidate for the el astic Hartree-Fock energy. The same remarks hold for any
guantum model.

In the case of the true Schrodinger equation, the difficulty is, as far as we
know, that thereis no derivation, even formally, of any thermodynamic limit of the
model. More precisely, it is clearly possible to derive an energy functional, but the
associated variational space is not so easy to guess[19].

Let us make a final remark about these quantum models. in the case of the
Thomas-Fermi model, that is, when we forget the term [ |V\/ﬁ|2 in the energy
(26), we have:

h? p(x)
TF . _ T
E ({Xl}’p)_m/Rsp 4718()( Z/Rs |x—X|d

pxX)p(y) 1 )
P dxdy+=Y ——— ), (56
/R3/R3 lx — Y 2§|Xi—xj| (%0

where we have used the same notation as in (26), setting the nuclear charges Z;
to 1. Let us for awhile forget the physical constant, and assume that 7—7,2 =1land
= linthe system of unitswe use. A scaling argument (see[39]) easily shows
2 whered isthe dimension

e
A eg

that the power 3 appearing in (56) isin fact equal to
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of the space (three, in our case). Therefore, if we consider the corresponding two-
dimensional model, the power we should useis 2, so that in this case (56) reads:

M
ETF(X;), =/ 24 / log(lx — X:d
(X}, p) P ,Z_; P 10g(x = X;Ddx

1
- / f p()10g(1x — y)p(y)dxdy
R2 JR2

1
— 5 2 10g(IX: = X;1). (57)
iFj

Note that, dealing with a two-dimensional model, we have replaced the three-

dimensional Coulomb potential - by thetwo-dimensional one, namely — log(|x|).

|x|

The energy being quadratic with respect to p, the Euler-Lagrange equation of the
problem

ET™F(X;:) = inf{ETF({Xi}, p), p=0, pelL'R>)NL3R?,

log(2 + Ix|)p € L*(R?), /2 p= N} (58)
R

islinear with respect to p. Assuming neutrality, that is, N = M, it reads

N

2p + ) log(lx — Xi|) — p +log(lx]) +6 =0, (59)
j=1

where 6 isthe Lagrange multiplier associated with the mass constraint. Now, taking
the Laplacian of this equation, we have

N

1
—Ap+5p =21 ;ij, (60)
j=

with p € LY(R?). This equation is easily solved, using the Yukawa potential in
dimension two, that is the solution W of —AW + %W = 2718 going to zero at
infinity. The potential W is nothing €else, in fact, than KO(%), where Ky is the
Bessel function of the second kind as defined in [1]. Hence, we have the equality

N
px) =Y Wx—X)). (61)
j=1
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We now go back to the expression of the energy (56), and using (59) and (61), we
have

1 N
ET({X;}, p) = fR2 P2+ E/RZp(x)<Zlog|x — Xi| — p*log |x|>dx

i=1

N
1

i%j
1
=/ p2+—/ p(=20 —0)
R2 2 R2

+ (2p +6 +log( - —X.,‘I))(Xj)

‘I\JII—‘
.MZ

\
1
i

( Iog(| X,/I))(Xj)

N
Z
S wix, X)+NI|m(W(X)+ log(|x|>)
ik

Hence, up to an additive constant, the energy (58) may be expressed in terms of the
two-body potential W: the two-dimensional TF model may be recast into a two-
body model, and therefore enters the scope of Section 2. Incidentally, although the
above computations seem rather basic, we have not found them in the literature.
Note that, according to the proof of (ii) of Theorem 5, the link between the power
p appearing in (37) and the power g appearing in the microscopic energy (26) is
p = g — 1, which ensures that in the present case formulas (8) and (37) become
equivalent.

4.2. Changing the microscopic geometry of the atoms

We now make afew remarks about the microscopic arrangement of the atoms:
so far, we have assumed that they areperiodically distributed. Sincethisassumption
isnot always physically satisfactory, the same problem should be addressed in some
other cases.

Our first point is a direct improvement of the preceding sections, and is con-
cerned with polycrystallinematerials. Inthistypeof solid, wehaveamix of different
lattices £, L2, ... Lk, with volumeratiosay, ap, . . ., ak . The characteristic length
of this mixing is far larger than the atomic one, and far smaller than the macro-
scopic one. We refer the interested reader to [31, 37, 38] and the references therein.
Therefore, introducing an intermediate scale y suchthat ¢ « y « 1 (wedeal here
only with the case ¢ = §), we need to introduce atiling of size y of the set 2, for
instance the unit cells of the lattice y Z3, setting Q; = QN (¥ Q + yj) for j € Z3,
and Q being the unit cube. Then, separating each Q; into K sets Q}, 02, ..., 0¥

of volumeratios as, az, . .., ag respectively and assuming that in the set Q}‘, the
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atoms are distributed on the set ¢;, we thus may use exactly the same computations
as those of Theorem 1(i) or Theorem 5(i), getting as elastic energy:

K
Ew) = ! Z / ar EMOO(Vu(x) 0y )dx, (62)
k=17%

P

wheretheenergy functional E™ ¢ denotesthe corresponding rescal ed microscopic
energy. We can also allow the coefficients a; to depend on x without any change.
Another possible improvement consists in replacing the measure Z,le axdg, M-
plicitly used in (62) by any probability measure v defined in the space of lattices
L£3(R3). Inthis case, the Krein-Milmann theorem allows us to approximate . by a
sum of Dirac masses as above. Theinteger K becoming a parameter depending on
g, and going to infinity ase — 0, with the condition s « y « % < 1,itishere
again possible to adapt our method, finding:

g<u)=ﬁ /Q fc o MO D 0 (63)
3

ci
HEL
N

Fig. 2. Thelimiting process allowing the derivation of (62), with K = 2

L et us point out that the result does not depend on the tiling we choose, aslong
asitissufficiently regular (one can for instance replace the lattice Z2 by any other
lattice in the above argument).

The point hereisin fact that everything wedid in the preceding sections extends
to this situation, except that we have created interfaces between the grains of each
|attice (the cubes Qj.‘ inthe present case). Now, the condition e « y impliesthat the
bulk in each Q; isfar moreimportant energetically than theseinterfaces. However,
thisremark allows usto predict that this presence of different phases should trigger
additive termsin the higher order expansion (Theorem 3), and in particular a bulk
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term of order one accounting for these grain boundaries. Worst of all, thisterm will
probably exhibit a dependence on the tiling used. Hence, the expansion at higher
order should involve atiling which is consistent with the physics of grain boundary
contacts. All thisis clearly beyond our reach today.

It should be noted that in the proof of Theorem 1 (and implicitly in that The-
orem 5), the important feature about periodicity is transation invariance. Indeed,
the crucial point, appart from the Taylor expansion, is the fact that for any lattice
£, we have:

Viel, Y Wo(j-i)= ) Wo(j).
JeOi} jet\{0}
aslong as Wy decaysfast enough at infinity. We cannot break this property without
breaking translation invariance. Conversely, if asort of translation invariance holds,
for instance in the case of almost periodic systems (see [10,44)]), it is possible to
adapt our argument. Indeed, in this case, we would find the same kind of result:

Ew) = i/ Ew,(Vu(x)t)dx,
12 Jo

where Ew,(Vu(x)¢) denotes the two-body energy of the almost periodic set
Vu(x)¢, that is,

I 1 L
Ewo© = M B vamD D, Woli =)
iF+jeBrNVu(x)t

which exists because ¢, hence Vu(x)¢, is amost periodic. Note that this quantity
does not depend on the center of the ball Bg, even in the case when this center
depends on R. This property of existence and uniqueness of an average energy
seems to be the crucia one in order to use the method of Theorem 1. Of course,
even some setswhich are not almost periodic enjoy this property (think for instance
of the set Z3\ {0}), and the question of the characterization of such sets seems to
be open.

5. Convexity and related properties of the homogenized energy

We make here afew remarks about the homegenized energies we have obtained
in Section 2 and Section 3. These are only basic remarks, and we hope to come
back to them in a more general setting in the near future. Starting with the zero-
order terms (7), (8), (36) and (37), we then study higher order terms obtained in
Theorem 3.

5.1. Zero-order term

We start with the zero-order terms (7), (8), (36) and (37), first pointing out that
each of them exhibits the invariance (2), and in particular,

VM e M3, V0 e GL3(Z), EMQ)=EM). (64)
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Here M3 denotes the set of 3-by-3 matrices having positive determinant, and
G L3(2) the set of matrices having integer entries, positive determinant, and whose
inverses have integer entries (this set is also equal to the set of matrices having
integer entries and determinant equal to £1). Equation (64) simply expresses the
fact that the | atti ce defining the microscopic structure of the solid isinvariant under
a change of basis. Note that this remains valid in the high-density limit because
|det Q| = 1.

A first point isthat thisinvariance prevents any growth at infinity of the energy,
therefore excluding the use of standard tools of the calculus of variations. This,
however, is not such a big limitation compared to some remarked on in [15] and
[22], whereit is stated that the invariance (64) prevents any quasi convexity proper-
ty. We provide here a simple proof of this fact in the case of aradially symmetric
two-body interaction, referring to [21] and [22] for amore general result.

Proposition 7. Let W : Rt — R U {400} satisfy the following:
(@ Woisof classCton[R, +o0) for any R > 0;
(0)3a > 0 / Vi € [L+00), [Wo()] £ -5 and [Wj(t)| £ —+, for some
constant C = 0; and
(c) thereexistssomero > Osuchthat W{)(r0) # 0, and Wpismonotoneon 1o, +00).
Define the energy
EM)= Y Wo(Mjl)
JE\{0}

for some fixed lattice ¢, and for any matrix M € M>*3. Then E is not rank-one
convex, thus not quasi convex.

Let us point out that the conditions imposed on Wy are fairly general, and
include in particular amost al two-body potentials currently used in solid-state
physics.

Proof. Weassumefor thesakeof simplicitythat ¢ = Z3. Foranyz € R, A, u = 0,

we define
Az 0
Ad,u,2)=10p 0 |,
00w

and define the function (A, u,z) = E(A(X, i, z)). Assuming for the sake of
contradiction that E isrank-one convex, ¢ isconvex with respect to z. Now, we can
easily show, using (64), that ¢ (1, i, An) = ¢(x, u, 0) for any integer n. Hence, ¢
must be independent of z. Differentiating it with respect to z, we thus find:

. . . : A1 +zj2) )2
0= W <\/ (hj1 +2j2)2 + 23 + M21§> - =
e i+ 27202+ 122 + 123

We now let & go to infinity, getting:

7?2
0= X wo(\0rt 2 R ) e
J€Z2\{0} \/ (w2 + 22) j§ + u?js
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Dividing this equality by z and then taking z to zero, implies that

-2

N

0= ) W(s(mmﬁ.
J€Z2\(0} /

Now, choosing 1 = o, we seethat all terms of this sum have the same sign, while
some of them are equal to W) (r0) # O, which is contradictory. O

However, in the high-density case, that is,

£u) = i dx

12| Jo | det(Vu(x))|P’ 9

with p = 1or p = , thefunctiont — - being convex in either case with respect
tor on R™, the energy & is polyconvex [3], hence quasiconvex. The energy being
highly degenerate, it is necessary to add confining terms in order to have some
equilibrium state. This kind of problem is dealt with in [40].

Note that in the proof of Proposition 7, we have essentially used the fact that a
convex function cannot be periodic, unlessit isaconstant. It isadirect consequence
of [21] that arank-one convex function satisfying (64) must be of the form (65):

Theorem 8 (Fonseca, [21]). Let E be a function defined on Mixs, the set of three-
by-three matrices having positive deter minant.

(i) Assumethat E isbounded below and satisfies (64). Then, E isrank-one convex
if and only if there exists a convex function g : (0, +00) — R such that

E(F) = g(det F) VF e M>3,

(ii) If E satisfies limgg o+ E(F) = +o0 and (64), then its lower quasiconvex
envelope Q E isequal to itsrank-one-convex envel ope, and there existsa convex
function g : (0, +00) — R such that

QE(F) =g(det F) VF e M>3,

Therefore, the application of thistheoremto the TFW case allowsusto conclude
that a result similar to that of Proposition 7 holds in this case. Indeed, should the
corresponding energy be quasiconvex, it would only depend on the determinant of
the gradient deformation, according to (i) above. Hence, using

A0 0

MmM=10 %x 0

1

00 7
as a gradient deformation, the corresponding energy should be independent of A.
This is in contradiction with the fact that as A goes to zero, the energy goes to
infinity (because a “great amount” of nuclei get closer and closer in the process,

see[7], Proposition 5.2 for a rigourous proof).
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5.2. The boundary term

We now turn to the term of order onein (15) and (16). Here again, we give only
asimple example of the role thisterm may play.

Consider thecasee = §, thatis(15), discarding all termsof order strictly higher
than 1. Assumein addition that Q@ = Q isthe unit cube, and that ¢ = Z3. Then, the
elastic energy reads:

1
sw =5 /Q > Wo(Vutx) j)dx - /d XY WolVu) o),

j+0 k21 jn(x)Zk

thesumsover j being restrictedto j € Z3. The consequence of the presence of this
first-order termisthe breaking of property (64). Indeed, let us consider the example

X1+ px2
u(x) = X2 ,
X3

where p is an integer. Then, we have
1 . I3 .
Ew =3 Z Wo(j) = 5 Z( Z Wo(u(j))
Jj#0 k21 "l j1lzk

+ ) Wouln+ ) Wo(u(j))>-

| j21 2k jsl2k

Observe that the last two sums do not depend on p. We are now going to assume
that the potential Wy isradially symmetric, and satisfies

Wo(x) = Wo(Jx|) <0 V|x| > 1L

Hence, we have

Eu) = Ao — g > Wo<\/(jl +pi? + jZ2 + j32>

k211j1l2k

14
2A0—822W0<\/(p—p)2+1+j§>

k=1 jzeZ

> Ag—é&p Z Wo<\/1+m2> = Ao+ ¢Bp,

meZ

where Ag does not depend on p, and B > 0 isindependent of ¢ and p. Therefore,
as p goesto infinity, the energy grows like +¢p, going to infinity.
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5.3. The second-order term

We now study the second-order term. L et us start with the one-dimensional case
(where e = §, that is, (i) of Theorem 3), in which the energy reads, if we neglect
boundary terms and assume that 2 = (0, 1):

1 1 2 1
Ew) =5 /O Z Wo(u'(x) j)dx — ;—4 /0 Zj“Wo”(u’(x)j)(u”(x))zdx,
j+0 Jj=£0
(66)

where the sums are over Z \ {0}, since we assume for the sake of simplicity that
the lattice ¢ isequal to Z. Hence, we have an energy of the form

1
£) = / Eolu' (¥))dx + £2h(u’ (x)) (" (x))2dx,
0

with h(y) = —2l4 %0 J*Wo' (yj), and Eq is the standard zero-order energy.
Thus, if Wy satisfies the inequality

VyeR, > j*Wo"(vj) <0,
j#0

then the energy (66) exhibits a convexification term of order 2. The influence of
this term on the energy has been studied in detail in [4] for the case of the pure
displacement problem, that is,

IA=inf{8(u), u(0) =0, u(1)=1+A},

for some A € R, corresponding to imposing a displacement of length A at the
right end of the solid, the other end remaining till. It is shown in [4] that when
e = 0, I exhibitsdiscontinuouscritical points, and has no absolute minimizer ina
classical sense. When the second-order termisadded, andif 2 > 0, then bifurcation
phenomena (with only smooth critical points) occur.

Let us now point out that there exist potentials for which the corresponding
quantity # isindeed positive. Thisis the case for the Morse potential (well suited
for awide range of materials[45,47]). Indeed, we have the following lemma:

Lemma 9. Consider the Morse potential, that is,
Wo(x) = e~ 2x—=ro) _ 26—(x—r0)’

and assume that the charactestic length rq satisfies ro < 5log(5) — 8log(2) ~
2.502. Then it follows that

Vy >0, > j*Wo'(yj) <O. (67)
j+0
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Proof. We have Wy (x) = de—2(:—70) _ 2,=(*=70) Hence, since we have

3 jei = o 1+ 117 + 1le™2 4 o=
(1—e )5

’

jz1
0 W () = 470 Y (0242 — e
Jj=*0 j=1
1+ 11e 2 4+ 11e™® 4 ¢~
(1—e )5
14 leY 411 4 e—3}'>
(L—e )5

=40 (Zeroe_zy

—e
eV
(1—e)>
(2rop-y L1 41l 4 o7
(1+e>)°

= 4"

—1-1le™Y — 11l % — e—3y>.

Settingr = e and g = ¢ "0, our aim is to show that

t(1+ 1172 4+ 11* + 1)
A4+ 051+ 11t + 1112 4+ 13)

Sincet € (0,1), 2 < t, sothat ¢(r) <

o) = <to Vte (0,1

s+ Studying the variations of  +—

<1+z)5 on [O 1], wef|ndthat|thasamaX|mumat , Whereitisegqual to4 Hence,
44

if 1o > ﬁ, condition (67) is satisfied. Thlsmequallty isequivalentto e > 5
thatis, ro < 5In5+8In2. 0O

On the other hand, it can be shown that the L ennard-Jones potential (Wo(x) =
- — %) cannot satisfy (67).

A similar analysis could be carried out in the high-density case, that is, (ii) of
Theorem 3, the second-order term enjoying the same kind of property.

A similar study should be possible in the three-dimensional case, but calcula-
tionsare alot moreinvolved, and it is not clear whether an elipticity property can
be derived in this case. However, the high-density case is more tractable: looking
at the second-order term of (16), it is possible to change variables in the integral
with respect to y, and obtain:

Eou) : = — / / D2Wo(Vu(x)y)(D%u(x)(y, y), D?u(x)(y, y))dydx

24|Q)|

D2Wo(2) M(x 2). M(x, Z))dz
B 24|sz| / /Rs | det(Vu(x))|

= 2



wherev = u™ 4,
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1
M(x,2) = D%u(x)(Vu(x) "'z, Vu(x) 12),

Vu(§)

-1
2
m) Dv(&)(z, 2).

N(S,z)=<

Thisexpressioniscertainly easier to study. For instance, if we only look for radially
symmetric deformations, then assuming that Wy is radially symmetric, the total
energy is bounded from below by anorm of the second derivative of v, hence by a
norm of the second derivative of u.

The question remains: In the general three-dimensional setting, and both for

(15) and (16), is it possible to find some situations where the second-order bulk
term exhibits ellipticity properties, as was assumed for instancein [5]?
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