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Abstract

We show that we can reduce the variance in a simple problem
of stochastic homogenization using the classical technique of antithetic
variables. The setting, and the presentation, are deliberately kept
elementary. We point out the main issues, show some illustrative results,
and demonstrate, both theoretically and numerically, the efficiency of the
approach on simple cases.

1 Introduction

Several settings in homogenization require the solution of corrector problems
posed on the entire space Rd. In practice, truncations of these problems
over bounded domains are considered and the homogenized coefficients are
obtained in the limit of large domains. The question arises as to how such
computations can be accelerated. In the deterministic case, acceleration
techniques reminiscent of signal filtering have been introduced in [5]. The work
has since then been significantly improved by A. Gloria in [12]. In [5], it was
shown that acceleration techniques efficient for deterministic problems do not
necessarily perform well in the stochastic framework. In the latter case, the
main difficulty is related to the intrinsic noise present in the simulation. The
challenge is consequently not that much to improve the rate of convergence,
which is intrinsically that of the central limit theorem, but rather to reduce
the variance, thereby improving the prefactor of the convergence given by the
central limit theorem. Although very well investigated in other application
fields such as financial mathematics, variance reduction techniques seem to have
not been applied to the context of stochastic homogenization. The purpose of
the present contribution is to present a first attempt to reduce the variance in
stochastic homogenization. For this purpose, we consider a simple situation, and
a simple variance reduction technique. The probability theoretic arguments we
will make use of are elementary. The equation under consideration is a simple
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elliptic equation in divergence form, with a scalar coefficient. The coefficient is
assumed to consist of independent, identically distributed random variables set
on a simple mesh (see (2) below). The technique used for variance reduction
is that of antithetic variables. Our setting is academic in nature, somewhat far
from physically relevant cases, and elementary. Many more difficult situations
could be addressed: other types of stationary ergodic coefficients, matrix rather
than scalar coefficients, other types of equations, other techniques for variance
reduction, . . . The present contribution is a proof of concept: variance reduction
can be achieved in stochastic homogenization. Future works [3, 4, 11] will
provide more details on the numerics and the theory, and also address some of
the many possible extensions mentioned above. We also mention the related
work [13] on stochastic homogenization of discrete elliptic equations.

2 Stochastic homogenization theory

Although we wish to keep the mathematical formalism as limited as possible
in our exposition, we need to introduce the basic setting of stochastic
homogenization (see [17] for a similar presentation and related issues).
Throughout this article, (Ω,F ,P) is a probability space and we denote by
E(X) =

∫
ΩX(ω)dP(ω) the expectation value of any random variable X ∈

L1(Ω, dP). We next fix d ∈ N∗ (the ambient physical dimension), and assume
that the group (Zd,+) acts on Ω. We denote by (τk)k∈Zd this action, and
assume that it preserves the measure P, that is, for all k ∈ Z

d and all A ∈ F ,
P(τkA) = P(A). We assume that the action τ is ergodic, that is, if A ∈ F is
such that τkA = A for any k ∈ Zd, then P(A) = 0 or 1. In addition, we define
the following notion of stationarity (see [7]): any F ∈ L1

loc

(
Rd, L1(Ω)

)
is said

to be stationary if, for all k ∈ Zd,

F (x + k, ω) = F (x, τkω), (1)

almost everywhere in x and almost surely. In this setting, the ergodic
theorem [16, 18] can be stated as follows: Let F ∈ L∞ (Rd, L1(Ω)

)
be a

stationary random variable in the above sense. For k = (k1, k2, . . . kd) ∈ Zd, we
set |k|∞ = sup

1≤i≤d
|ki|. Then

1

(2N + 1)d

∑

|k|∞≤N
F (x, τkω) −→

N→∞
E (F (x, ·)) in L∞(Rd), almost surely.

This implies that (denoting by Q the unit cube in Rd)

F
(x
ε
, ω
) ∗−⇀
ε→0

E

(∫

Q

F (x, ·)dx
)

in L∞(Rd), almost surely.

Besides technicalities, the purpose of the above setting is simply to formalize
that, even though realizations may vary, the function F at point x ∈ Rd and the
function F at point x + k, k ∈ Z

d, share the same law. In the homogenization
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context we now turn to, this means that the local, microscopic environment
(encoded in the coefficient a, see (3) below) is everywhere the same on average.
From this, homogenized, macroscopic properties will follow.

We now fix an open, regular, bounded subset D of Rd, a L2 function f on
D, and a random function a assumed stationary in the sense (1) defined above.
We also assume a is bounded, positive and almost surely bounded away from
zero. For simplicity, we take a random piecewise constant function of the form:

a(x, ω) =
∑

k∈Zd

1Q+k(x)ak(ω), (2)

where Q is the unit cube of Rd and (ak(ω))k∈Zd denotes a family of i.i.d. random
variables. The standard results of stochastic homogenization [2, 15] apply to
the boundary value problem





−div
(
a
(x
ε
, ω
)
∇uε

)
= f in D,

uε = 0 on ∂D.
(3)

These results state that, in the limit ε −→ 0, the homogenized problem obtained
from (3) reads: {

−div (A⋆∇u⋆) = f in D,
u⋆ = 0 on ∂D. (4)

The homogenized matrix A⋆ is defined as

[A⋆]ij = E

(∫

Q

(ei + ∇wei
(y, ·))T a (y, ·)

(
ej + ∇wej

(y, ·)
)
dy

)
, (5)

where, for any p ∈ Rd, wp is the solution (unique up to the addition of a
(random) constant) in

{
w ∈ L2

loc(R
d, L2(Ω)), ∇w ∈ L2

unif(R
d, L2(Ω))

}
to





−div [a (y, ω) (p+ ∇wp(y, ω))] = 0 a.s. on Rd,

∇wp is stationary in the sense of (1),

E

(∫

Q

∇wp(y, ·) dy
)

= 0,

(6)

where we have used the notation L2
unif for the uniform L2 space, that is the

space of functions for which, say, the L2 norm on a ball of unit size is bounded
above independently from the center of the ball.

The solution uε to (3) is known to converge to the solution u⋆ to (4) in
various appropriate senses. The tensor and function A⋆ and u⋆ are deterministic
quantities, although they originate from a series of random problems. This is
a consequence of the ergodic setting described above, which allows random
microscopic quantities to average out in deterministic macroscopic quantities.
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Note however that the computation of A⋆ requires the computation of the so-
called corrector functions wp, which are random.

The above result generalizes that of the classical periodic setting (see e.g.
[2, 9]) where, instead of being stationary ergodic, the function a in (3) is periodic.
Then, although the homogenized problem can be expressed similarly, the crucial
difference is that (at least in this simple linear case) the corrector problem can,
in the periodic case, be reduced to the equation −div [a(y) (p+ ∇wp(y))] = 0
set on the periodic cell Q = [0, 1]d, and not on the entire space Rd as
in (6). Correspondingly, the terms of the homogenized tensor in (5) are simple
deterministic integrals on Q. In the random case, the corrector problem (6)
is intrinsically set on the entire space and the numerical approximation of its
solution wp is the main computational challenge. Problem (6) is in practice
truncated on a bounded domain QN = [−N,N ]d and usually supplied with
periodic boundary conditions:

{
−div

(
a(·, ω)

(
p+ ∇wNp (·, ω)

))
= 0 on QN ,

wNp is QN -periodic.
(7)

Correspondingly, we set:

[A⋆N ]ij (ω) =
1

|QN |

∫

QN

(
ei + ∇wNei

(y, ω)
)T
a(y, ω)

(
ej + ∇wNej

(y, ω)
)
dy. (8)

In the limit of large domains QN , the homogenized tensor (5) is recovered. In
addition, the rate of convergence with which the truncated values approach the
exact homogenized value A⋆ can be assessed theoretically. We refer to [8, 19]
for the proof of all the above statements. As will be seen below, the variance
of the random variables involved plays a role in the approximation procedure.
Reducing this variance is the problem we now consider.

3 Variance reduction

3.1 Classical Monte Carlo method

As mentioned above, the large size (large N) limit of the coefficient (8) obtained
using the solution of the truncated corrector problem (7) gives the value of
the homogenized coefficient (5). Formally, this is a convergence of the type
A⋆N (ω) −→ A⋆ as N −→ +∞ almost surely. The practical approach to this
problem is the Monte Carlo approach. We now briefly investigate the role of
the variance in the problem.

To start with, we consider the one-dimensional setting. Although this setting
is very particular (and sometimes misleading because oversimplified), it also
allows to already understand the basic features of the problem and the bottom
line of the approach, with the economy of many unnecessary technicalities.

In the one-dimensional setting, the definition (2) reads

a(x, ω) =
∑

k∈Z

1[k,k+1[(x)ak(ω) (9)
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with (ak(ω))k∈Z
a family of i.i.d. random variables. It is easily seen that the

truncated corrector problem (7) can be explicitly solved and leads to the value

a⋆N (ω) =

(
1

2N

N−1∑

k=−N

1

ak(ω)

)−1

(10)

of the approximation for the homogenized tensor (here, a scalar coefficient of
course). In the limit of large N , it almost surely converges to the value of the
exact homogenized coefficient

a⋆ = E

(
1

a0

)−1

. (11)

This exact value is readily obtained explicitly solving (5)-(6). The simplest

possible argument consists now in considering (a⋆N (ω))−1 =
1

2N

N−1∑

k=−N

1

ak(ω)

and remark that the rate of convergence of this quantity to (a⋆)
−1

is evidently
given by the central limit theorem, where the variance of the random variable
(ak(ω))−1 plays a crucial role. Although correct, this argument exploits too
much the very peculiar nature of the one-dimensional setting (we have taken
the inverse of the coefficient and recasted it as a sum, a fact that is not
possible otherwise than in one dimension). An argument with slightly more
generality consists in considering a⋆N (ω) itself – and not its inverse–, and,
using elementary calculus, showing that it also converges to a⋆ with a rate
of convergence where the variance of a0(ω) again plays the crucial role. Indeed,

one may for instance remark that E

(∣∣∣∣
(

1
2N

∑N−1
k=−N

1
ak

)−1

− E

(
1
a0

)−1
∣∣∣∣
2
)

can

be bounded from above (using a simple almost sure upper bound of ak(ω)) by

E

(∣∣∣
(

1
2N

∑N−1
k=−N

1
ak

)
− E

(
1
a0

)∣∣∣
2
)

up to an irrelevant multiplicative constant

and that the latter quantity, once easily computed, is of the form
1

2N
Var

(
1

a0

)
.

Again, the variance of the random coefficient plays a role.
In dimensions higher than one, the situation is considerably more intricate

and the rate of convergence with which the coefficient arising from the truncated
computation converges to its limit is not so simple to evaluate. This is the
purpose, under appropriate conditions (called mixing conditions and which are
indeed met in our present setting), of the work [8].

The numerical practice is as follows. A set of M independent realizations
of the random coefficient a are considered. The corresponding truncated
problems (7) are solved, and an empirical mean of the truncated coefficients (8)
is inferred. This empirical mean only agrees with the theoretical mean value
of the truncated coefficient within a margin of error which is given by the
central limit theorem (in terms of M). The variance of the coefficients therefore
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again plays a role, as a prefactor. For a sufficiently large truncation size N ,
this truncated value is admitted to be the exact value of the coefficient. The
error made is controlled by the estimations of the theoretical work [8]. Of
course, the overall computation described above is expensive, because each
realization requires a new solution to the d-dimensional boundary value problem
(7) of presumably large a size since N is taken large. There is therefore a
huge interest in reducing the cost of the computation, or, otherwise stated, in
reaching a better accuracy at a given computational cost. Since the variance
of the truncated homogenized tensor is an important ingredient, reducing the
variance becomes a challenging and sensitive issue.

More explicitly, let (am(x, ω))1≤m≤M denote M independent and identically

distributed underlying random fields. We define a family
(
A⋆,mN

)
1≤m≤M of i.i.d.

homogenized matrices by, for any 1 ≤ i, j ≤ d,

[
A⋆,mN

]
ij

(ω) =
1

|QN |

∫

QN

(
ei + ∇wN,mei

(·, ω)
)T
am(·, ω)

(
ej + ∇wN,mej

(·, ω)
)
,

where wN,mej
is the solution of the corrector problem associated to am. Then we

define for each component of A⋆N the empirical mean and variance

µM

(
[A⋆N ]ij

)
=

1

M

M∑

m=1

[
A⋆,mN

]
ij
,

σM

(
[A⋆N ]ij

)
=

1

M − 1

M∑

m=1

([
A⋆,mN

]
ij
− µM

(
[A⋆N ]ij

))2

.

(12)

Since the matrices A⋆,mN are i.i.d., the strong law of large numbers applies:

µM

(
[A⋆N ]ij

)
(ω) −→

M→+∞
E

(
[A⋆N ]ij

)
almost surely.

The central limit theorem then yields

√
M
(
µM

(
[A⋆N ]ij

)
− E

(
[A⋆N ]ij

)) L−→
M→+∞

√
Var

(
[A⋆N ]ij

)
N (0, 1), (13)

where the convergence holds in law, and N (0, 1) denotes the standard gaussian
law. Introducing its 95 percent quantile, it is standard to consider that the

exact mean E

(
[A⋆N ]ij

)
is equal to µM

(
[A⋆N ]ij

)
within a margin of error

1.96

√
Var

(
[A⋆N ]ij

)

√
M

. The exact variance Var
(
[A⋆N ]ij

)
being unknown in

practice, it is customary to replace it by the empirical variance given in (12)

above. It is therefore considered that the expectation E

(
[A⋆N ]ij

)
lies in the
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interval

µM

(
[A⋆N ]ij

)
− 1.96

√
σM

(
[A⋆N ]ij

)

√
M

, µM

(
[A⋆N ]ij

)
+ 1.96

√
σM

(
[A⋆N ]ij

)

√
M


 .

(14)

The value µM

(
[A⋆N ]ij

)
is thus, for both M and N sufficiently large, adopted

as the approximation of the exact value [A⋆]ij .

Of course, a tensorial argument could be applied here, not considering
separately each entry of the matrix but treating the matrix as a whole. The
approach developed above, component by component, is sufficient for the simple
cases considered in the present work.

3.2 Antithetic variable for stochastic homogenization

We know from the previous section that constructing empirical means
approximating E (A⋆N ) with a smaller variance at the same computational cost
is of high interest. We now describe a possible approach to achieve this goal.

In generality, fix M = 2M. Suppose that we give ourselves M i.i.d. copies
(am(x, ω))1≤m≤M of a(x, ω). Construct next M i.i.d. antithetic random fields

bm(x, ω) = T (am(x, ω)) , 1 ≤ m ≤ M,

from the (am(x, ω))1≤m≤M. The map T transforms the random field am into
another, so-called antithetic, field bm. Explicit examples of such T are given
in the sequel (see (20) and Section 4 below). The transformation is performed
in such a way that, for each m, bm should have the same law as am, namely
the law of the coefficient a. Somewhat vaguely stated, if the coefficient a was
obtained in a coin tossing game (using a fair coin), then bm would be head each
time am is tail and vice versa. We refer the reader to Figure 1 below for explicit
illustrative examples of such a construction. Then, for each 1 ≤ m ≤ M, we
solve two corrector problems. One is associated to the original am, the other
one is associated to the antithetic field bm. Using its solution vN,mp , we define
the antithetic homogenized matrix B⋆,mN , whose elements read, for 1 ≤ i, j ≤ d,

[
B⋆,mN

]
ij

(ω) =
1

|QN |

∫

QN

(
ei + ∇vN,mei

(·, ω)
)T
bm(·, ω)

(
ej + ∇vN,mej

(·, ω)
)
.

And finally we set, for any 1 ≤ m ≤ M,

Ã⋆,mN (ω) :=
1

2

(
A⋆,mN (ω) +B⋆,mN (ω)

)
. (15)

Since am and bm are identically distributed, so are A⋆,mN and B⋆,mN . Thus, Ã⋆,mN

is unbiased (that is, E

(
Ã⋆,mN

)
= E

(
A⋆,mN

)
). In addition, it satisfies:

Ã⋆,mN −→
N→+∞

A⋆ almost surely,
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because b is ergodic.

Let us define new estimators

µM

([
Ã⋆N

]
ij

)
=

1

M
M∑

m=1

[
Ã⋆,mN

]
ij
,

σM

([
Ã⋆N

]
ij

)
=

1

M− 1

M∑

m=1

([
Ã⋆,mN

]
ij
− µM

([
Ã⋆N

]
ij

))2

,

(16)

which require 2M resolutions of corrector problems, i.e. as many as the classical
estimators (12), since we choose M = 2M. In addition, note that we have built
a new random variable whose variance is

Var

([
Ã⋆N

]
ij

)
=

1

2
Var

(
[A⋆N ]ij

)
+

1

2
Cov

(
[A⋆N ]ij , [B

⋆
N ]ij

)
. (17)

Applying the central limit theorem to Ã⋆N , we obtain

√
M
(
µM

([
Ã⋆N

]
ij

)
− E

(
[A⋆N ]ij

)) L−→
M→+∞

√
Var

([
Ã⋆N

]
ij

)
N (0, 1). (18)

Similarly to (14), we deduce a confidence interval from this convergence. The

exact mean E

([
Ã⋆N

]
ij

)
is equal to µM

([
Ã⋆N

]
ij

)
within a margin of error

1.96

√
Var

([
Ã⋆N

]
ij

)

√
M

. It results from (17) that, if

Cov
(
[A⋆N ]ij , [B

⋆
N ]ij

)
≤ 0, (19)

then the width of this interval has been diminished by the new approach, and,
correspondingly, the quality of approximation at given computational cost has
increased.

To understand slightly more in details at the theoretical level why the
approach is likely to perform well, we again consider the one-dimensional
setting (9) for which we recall the explicit expressions (10) and (11) for the
truncated and the exact homogenized coefficients, respectively.

Suppose as a first illustration that a0 is a Bernoulli distributed random
variable a0 ∼ B(1/2):

P(a0 = α) = 1/2 and P(a0 = β) = 1/2,

for some 0 < α < β. Defining the antithetic variable

bk(ω) = α+ β − ak(ω)
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and next the antithetic field

b(x, ω) =
∑

k∈Z

1[k,k+1[(x) bk(ω) =
∑

k∈Z

1[k,k+1[(x) (α+ β − ak(ω)) , (20)

it is immediately seen that

1

2

(
1

a⋆N (ω)
+

1

b⋆N (ω)

)
= E

(
1

a0

)
.

The variance of the inverse of the truncated coefficient has vanished. This
example might seem oversimplified because we are indeed making use of two
peculiarities of the problem: the set {α, β} of values taken by the coefficient
a has cardinality two, and the explicit expression (10) allows us to explicitly
manipulate the inverse of the homogenized coefficient. The situation, although
oversimplified, is yet a first good indicator of the interest of the approach. As in
the previous section, we can be slightly more general, by considering for instance
that the random coefficient a is now uniformly distributed over a given interval,
say a0 ∼ U([α, β]). Then,

1

2

(
1

a⋆N (ω)
+

1

b⋆N(ω)

)
=

1

2N

N−1∑

k=−N

1

2

(
1

ak(ω)
+

1

bk(ω)

)
. (21)

It is a simple matter to show that, because the function x 7→ 1/x is decreasing,
we have

Cov

(
1

a0
,

1

b0

)
≤ 0. (22)

Consider indeed a decreasing function f , and X and Y two independent random
variables, identically distributed according to U([α, β]). Since x 7→ f(α+β−x)
is increasing, we observe that

(f(X) − f(Y )) (f(α+ β −X) − f(α+ β − Y )) ≤ 0,

hence
E[f(X) f(α+ β −X)] ≤ E[f(X)] E[f(α+ β −X)],

which reads Cov[f(X), f(α+ β −X)] ≤ 0. Choosing f(x) = 1/x yields (22).
Since

Var

(
1

2

(
1

a⋆N
+

1

b⋆N

))
=

1

4N
Var

(
1

a0

)
+

1

4N
Cov

(
1

a0
,

1

b0

)
,

we conclude that

Var

(
1

2

(
1

a⋆N
+

1

b⋆N

))
≤ Var

(
1

a⋆2N

)
.

Therefore, E(1/a0) can be approximated either by (21) or by 1/a⋆2N , with an
equal cost (i.e. an equal number of random variables in both sums), but the
former has a smaller variance than the latter. It is hence of better quality.
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As mentioned above, the practice in dimensions higher than one is to
generate a set of identically distributed coefficients for each truncated corrector
problem, and to use (15). The appropriate analogous one-dimensional approach

is to consider M =
M

2
independent copies of a(x, ω) and set

ã⋆,mN (ω) :=
1

2

(
a⋆,mN (ω) + b⋆,mN (ω)

)

=
1

2

(
1

2N

N−1∑

k=−N

1

amk (ω)

)−1

+
1

2

(
1

2N

N−1∑

k=−N

1

bmk (ω)

)−1

with empirical mean

µM (ã⋆N ) (ω) =
1

M

M∑

m=1

ã⋆,mN (ω).

We approach more generality since

µM (ã⋆N ) (ω) −→
M→+∞

E (ã⋆N ) = E (a⋆N ) almost surely,

but E (a⋆N ) 6= a⋆. It can again be remarked that a⋆N(ω) is an increasing function
of the uniform variables (ak(ω))k∈Z

. From this observation, it is possible to
show that Cov (a⋆N , b

⋆
N ) ≤ 0, and to conclude that the variance of µM (ã⋆N) is

smaller than that of µ2M (a⋆N ). For this proof on a model by analogy, as well as
for proofs that variance reduction is indeed achieved for some actual settings in
dimensions higher than one (such as for instance those from [1, 10, 6]), we refer
to [3, 11]. The above simplified arguments were only meant to have pedagogic
value.

4 Numerical experiments

The previous section provides some elementary ingredients for a theoretical
analysis of the efficiency of the approach. The one-dimensional setting is
however too particular. More convincing theoretical arguments have to be
developed. As announced, this will be the purpose of future publications.
Meanwhile, it is possible to test the approach on actual two-dimensional cases,
and it is the purpose of this section to report on such tests. As above, we only
consider random coefficients that are piecewise constant and of the form (2).
The test cases we choose correspond to three different laws for a0:

• case (i): a Bernoulli law of parameter 1/2, namely a0 ∼ B(1/2),
P (a0 = α) = 1/2 and P (a0 = β) = 1/2;

• case (ii): a Bernoulli law of parameter 1/3, namely a0 ∼ B(1/3),
P (a0 = α) = 1/3 and P (a0 = β) = 2/3;

• case (iii): a uniform law, namely a0 ∼ U ([α, β]).
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We take the specific values α = 3 and β = 20, just to fix the ideas. Similar
qualitative conclusions would be reached with other generic values. Figure 1
shows a realization of a and its antithetic field b in cases (i) and (iii).

Figure 1: Realization of a(x, ω) given by (2) (left) and the associated antithetic
field b(x, ω) (right). Top figures: a0 ∼ B(1/2); bottom figures: a0 ∼ U ([α, β]).

Our numerical tests have been performed using the finite elements software
FreeFem++ developed by F. Hecht (Paris VI, see [14]). The discretization of
the corrector problem is performed using P1 Lagrange finite elements, and a
regular Q-periodic mesh of QN . The discretization meshsize is fixed and has
value h = 0.2.

It is worth mentioning how we practically proceed to generate an antithetic
variable. This may indeed be delicate. We have taken random coefficients
that can all originally be expressed in terms of a uniformly distributed random
variable (with a view, notably, to be consistent with the way a random
variable is practically generated on a computer). We then build the antithetic
variable precisely using the ’mother’ uniform random variable. The technique
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is best explained on case (ii). Write the variable a0 ∼ B(1/3) as a0 ∼
α + (β − α)1{1/3≤U0≤1} where U0 ∼ U ([0, 1]) denotes a random variable that
has uniform law on the interval [0, 1]. The antithetic variable is then taken as
b0 ∼ α + (β − α)1{0≤U0≤2/3} and the correspondence is made realization by
realization using the actual realization of U0.

In cases (i) and (ii), in dimension 2, the exact homogenized tensor is known
to be isotropic, A⋆ = a⋆I2 (see [15, Chap. 7, pp. 234-237] for a proof). Of
course, for N finite, A⋆N is a generic matrix, but our numerical experiments
consistently show that, for N sufficiently large, the off-diagonal terms are very
small on average compared to the diagonal terms, in the three cases we have
considered. Table 1 summarizes, in case (iii), the estimated means and standard
deviations of the components of A⋆N for different values of N . It confirms that
the main sources of variance are the diagonal terms. The same conclusion holds
in cases (i) and (ii).

N [A⋆N ]11 [A⋆N ]22 [A⋆N ]12
5 10.42 (0.608) 10.39 (0.620) 0.00391 (0.074)
10 10.39 (0.269) 10.39 (0.273) 0.00369 (0.033)
20 10.37 (0.171) 10.37 (0.162) 0.00089 (0.017)
40 10.39 (0.069) 10.39 (0.070) -0.00219 (0.0095)
60 10.38 (0.045) 10.38 (0.045) 0.00059 (0.0069)
80 10.38 (0.033) 10.38 (0.034) 0.00013 (0.0047)
100 10.38 (0.028) 10.38 (0.028) 0.00010 (0.0033)

Table 1: For each entry of A⋆N , empirical mean µ100

(
[A⋆N ]ij

)
(and empirical

standard deviation σ
1/2
100

(
[A⋆N ]ij

)
, in brackets), in the case (iii).

In our three test cases, we have compared for different values of N the

estimated variance of
[
Ã⋆N

]
11

with that of [A⋆N ]11. In order to quantitatively

assess the efficiency of the antithetic variables method, we introduce the
effectivity ratio

R ([A⋆N ]11) =
σ100

(
[A⋆N ]11

)

2σ50

([
Ã⋆N

]
11

) .

The factor 2 at the denominator accounts for the number of realizations
associated to the classical and antithetic Monte Carlo methods, given that we
wish to work at fixed computational cost. Indeed, after solving M = 2M
corrector problems (7), one can either build a confidence interval of size

1.96
√
σM

(
[A⋆N ]11

)
/M following (13) and (14), or a confidence interval of size

1.96

√
σM

([
Ã⋆N

]
11

)
/M following (18).

Our next table, Table 2, contains the values of this representative ratio
for each test case. We have also plotted on Figure 2 the curves of estimated
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means (12) and (16), with their confidence intervals, for the three cases under
study here.

If we admit that the theory developed in the previous section applies to the
two-dimensional case, another manner to check variance reduction is to compute
the empirical covariance between [A⋆N ]11 and [B⋆N ]11 (recall (19)). This is the
reason why we have also plotted on Figure 2 the normalized empirical value of
this covariance,

Cov
(
[A⋆N ]11 , [B

⋆
N ]11

)
√

Var
(
[A⋆N ]11

)
Var

(
[B⋆N ]11

) , (23)

for test case (iii) (similar results have been obtained for the two other test cases).

N a0 ∼ B(1/2) a0 ∼ B(1/3) a0 ∼ U ([α, β])
5 5.34 2.06 6.31
10 3.91 1.56 6.46
20 5.41 2.92 10.2
40 3.07 2.31 6.67
60 4.41 2.47 6.16
80 4.49 1.95 5.68
100 4.28 2.99 7.89

Table 2: Representative effectivity ratios R
(
[A⋆N ]11

)
for test cases (i), (ii) and

(iii). The number shown gives the gain in computational time or, equivalently,
at given computational cost, the square of the gain in the width of the confidence
interval.

The results are self-explanatory: the variance is reduced. The reduction
is not spectacular, but it is definite, and, equally importantly, systematic.
Considering that the approach induces no additional computational cost at all,
this is very good. Other more adapted, but also more delicate to design and
implement, variance reduction approaches will be tested in the future [4, 11],
and one may expect even more significant reductions.

5 Variance reduction for the solution u⋆

We conclude this article examining the problem of variance reduction from
a slightly different perspective. We have so far investigated the question of
variance reduction for the homogenized tensor A⋆. This is the question typically
relevant in Mechanics, where for instance determining the homogenized tensor
is an important issue because it allows to define, say, the Young modulus or
the Poisson ratio of the homogenized material. In some contexts however, the
focus is more on the solution of the homogenized problem, rather than on the
coefficients of the homogenized equation. For a given right-hand side f in (3)
(or for a set of such right-hand sides), one wishes to know the behaviour of
the solution uε for small ε. Now, reducing the variance on the solution u is
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Figure 2: Estimated means (with confidence intervals) for [A⋆N ]11 (red) and[
Ã⋆N

]
11

(green), in the cases a0 ∼ B(1/2) (top left), a0 ∼ B(1/3) (top right) and

a0 ∼ U ([α, β]) (bottom left). In the latter case, we also plot the estimator (23)
of the normalized covariance between [A⋆N ]11 and [B⋆N ]11 (bottom right).
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not exactly the same question as reducing the variance on the coefficients of
the equation (because the map that associates the solution to the coefficients of
the equation is a highly nonlinear nonlocal map). Note also that a systematic
way to investigate the question would of course be to study the variance of the
homogenized operator itself (or of its eigenelements) and it is indeed on our
agenda to do so in a more extensive article [4, 11]. But for the time being, we
briefly mention here a possible variance reduction approach on the solution u⋆,
for a given representative right-hand side f .

In principle, one may think of several possible ways for computing the
solution u⋆ to the homogenized problem (4). A first approach, which we denote
by (M1), consists in the following schematic sequence of computations

(am(x, ω))1≤m≤M
corrector pb−→

(
A⋆,mN (ω)

)
1≤m≤M

1
M

P

−→ µM (A⋆N )
(24)−→ u⋆N,M ,

where u⋆N,M solves the boundary value problem

{
−div

(
µM (A⋆N ) (ω)∇u⋆N,M(x, ω)

)
= f in D,

u⋆N,M(x, ω) = 0 on ∂D.
(24)

In short, (M1) consists in first approximating A⋆ using the Monte Carlo
approach and its outcome µM (A⋆N ), and next to solve for u⋆N,M .

A second approach, (M2), consists in the sequence

(am(x, ω))1≤m≤M
corrector pb−→

(
A⋆,mN (ω)

)
1≤m≤M

(25)−→
(
u⋆,mN (·, ω)

)
1≤m≤M .

Otherwise stated, for each 1 ≤ m ≤M , the problem
{

−div
(
A⋆,mN ∇u⋆,mN

)
= f in D,

u⋆,mN = 0 on ∂D,
(25)

is first solved, and the empirical mean and variance of the corresponding
solutions are next constructed:

µM (u⋆N) (x, ω) =
1

M

M∑

m=1

u⋆,mN (x, ω),

σM (u⋆N ) (x, ω) =
1

M − 1

M∑

m=1

(
u⋆,mN (x, ω) − µM (u⋆N) (x, ω)

)2
.

(26)

The empirical mean is then taken as the approximation of our seeked solution u⋆.
Of course, it is immediately seen that a set of approaches, intermediate

between (M1) and (M2), can be designed. This is the set of approaches (M3).
For each 1 ≤ m ≤ M , we first solve the corrector problem, and thus obtain
A⋆,mN (ω). We next set M = PR, and define, for each 1 ≤ r ≤ R,

µr

P (A⋆N ) (ω) =
1

P

P∑

p=1

A
⋆,p+(r−1)P
N (ω),
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which is an empirical mean computed with P realizations among theM available
realizations. For each 1 ≤ r ≤ R, we next solve the boundary value problem

{
−div

(
µr

P (A⋆N )∇u⋆,rN
)

= f in D,
u⋆,rN = 0 on ∂D.

The estimators for u⋆ then are

µR,P (u⋆N) (x, ω) =
1

R

R∑

r=1

u⋆,rN (x, ω),

σR,P (u⋆N) (x, ω) =
1

R− 1

R∑

r=1

(
u⋆,rN (x, ω) − µR,P (u⋆N) (x, ω)

)2
.

We observe that, in dimension one, the solution of (25) satisfies

(
u⋆,mN

)′
(x, ω) = − 1

a⋆,mN (ω)

(
F (x) − 1

|D|

∫

D
F

)
,

where F (x) is such that F ′(x) = f(x). Hence, in view of (10) and (11), we have

E

[(
u⋆,mN

)′]
= − 1

a⋆

(
F (x) − 1

|D|

∫

D
F

)
= E

[
(u⋆)

′]
.

As a consequence, the empirical mean built following approach (M2), namely
µM (u⋆N) (x, ω) defined by (26), is an unbiased estimator of u⋆(x), for any
finite N and M , in the one-dimensional case. The estimators built following
approaches (M1) and (M3) do not share this property.

In the present work, we only consider approach (M2), leaving the study
of the other approaches for future works. We apply the exact same technique
as above, considering antithetic variables to reduce the variance. The variance
under consideration is however now that of the approximation of u⋆.

We consider the test case (iii) defined in the previous section. We choose
the right-hand side f(x, y) = (x− 0.5)2 + (y − 0.5)2 on the domain D = (0, 1)2

(similar results have been obtained with other right-hand sides). The efficiency
of the antithetic variable technique is assessed using the following ratio

R (u⋆N ) = Ess Inf
x∈D

σ100 (u⋆N)

2σ50 (ũ⋆N)
. (27)

We have also checked that the technique does not introduce any bias by
monitoring the estimator

Ess Sup
x∈D

∣∣∣∣
µ100 (u⋆N ) − µ50 (ũ⋆N )

µ100 (u⋆N)

∣∣∣∣ . (28)

Numerical results are gathered in Table 3. We observe that the technique does
not introduce any bias, and that, again, a significant variance reduction, at fixed
computational cost, is obtained.
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N Estimator (28) Estimator (27)
5 4.20 ×10−4 10.1
10 3.80 ×10−4 10.9
20 1.56 ×10−3 14.6
40 4.05 ×10−4 11.8
80 5.21 ×10−4 9.10
100 3.24 ×10−4 9.02

Table 3: Estimator (28) of the bias, and estimator (27) of the variance reduction,
in the case a0 ∼ U ([α, β]) (the equation (25) has been solved on a mesh of size
h = 0.1).
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