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Abstract. We introduce a systematic way to build symplectic schemes for the
numerical integration of a large class of highly oscillatory Hamiltonian systems.
The bottom line of our construction is to consider the Hamilton-Jacobi form of
the Newton equations of motion, and to perform a two-scale expansion of the
solution, for small times and high frequencies. The approximation obtained for
the solution is then used as a generating function, from which the numerical
scheme is derived. Several options for the derivation are presented. The various
integrators obtained are tested and compared to several existing algorithms.
The numerical results demonstrate their efficiency.

1. Introduction. This article presents a possible systematic methodology to de-
sign symplectic algorithms for a large class of highly oscillatory Hamiltonian dy-
namics. In short, our methodology consists in considering the Hamilton-Jacobi form
of the Newton equations of motion, and performing a two-scale expansion of the
solution, for small times and high frequencies.

The specific form of Hamiltonian systems we consider in this work reads

Hε(q1, q2, p1, p2) =
pT
1 p1

2
+

pT
2 p2

2
+ V0(q1, q2) + (Ω(q1))

2 qT
2 q2

2ε2
, (1)

where ε is a small parameter (ε ≪ 1), where q = (q1, q2) ∈ R
s × R

f and p =
(p1, p2) ∈ R

s × R
f (the superscripts s and f respectively stand for the slow and

the fast variables), and where V0 is a potential energy that does not depend on ε,
and is bounded from below. The important assumption in (1), which limits the
applicability of our work, lies in the specific form of the Hamiltonian (1) regarding
the fast degrees of freedom. It is assumed to be a harmonic oscillator,

pT
2 p2

2
+ (Ω(q1))

2 qT
2 q2

2ε2
, in those fast degrees of freedom.
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In addition, but this time this is not such a strong, structural assumption, we
assume throughout this article that the fast frequency Ω(q1) is a scalar quan-
tity, and that there exists c > 0 such that Ω(q1) ≥ c > 0 for all q1. The case

where (Ω(q1))
2 qT

2 q2

2ε2
is replaced by

qT
2 Ω2(q1)q2

2ε2
, where Ω(q1) is a symmetric f × f

matrix, is, in principle, tractable with our approach, but leads to several difficulties
that we have not been able to satisfactorily solve yet.

Our last assumption is that, for consistency, the initial conditions of the Hamil-
tonian dynamics derived from (1) are assumed to depend on ε in such a way that
the system energy is bounded with respect to ε. In particular, this implies that q2

is of order ε at initial time, a property that is propagated forward in time. We shall
comment upon the above three assumptions below.

As is well-known, the numerical integration of the Newton equations derived
from (1), namely

dq

dt
=

∂Hε

∂p
(q, p),

dp

dt
= −

∂Hε

∂q
(q, p), (2)

using a standard symplectic scheme (such as velocity Verlet) is expensive. This
originates from the smallness of ε, which dramatically reduces the size of admissible
time steps.

Our purpose is thus to design numerical integrators that are much more efficient.
There already exist many works in this direction. Indeed, Hamiltonian systems of
the type (1) have already been studied in the literature, see for instance [2, 3, 21].
In [21, Chap. XIII and XIV], E. Hairer, Ch. Lubich and G. Wanner present in
a unified way and analyze several algorithms designed for the integration of (2).
Another algorithm, which also belongs to the class that is analyzed in [21], has
been proposed in [14]. The Hamiltonian (1) has also been considered in [4], where
an averaging technique is used to build a different algorithm. We also mention
the studies [9, 33], based on the Heterogeneous Multiscale Method paradigm, the
Equilibrium method [22], and the methods proposed in [26, 30]. In contrast to
the above works, and as announced above, our idea, in order to derive efficient
algorithms for Hamiltonian systems which are symplectic by construction, is to
work on the Hamilton-Jacobi form of the equations of motion. Otherwise stated,
we adapt to the case of highly oscillatory systems the idea originally used by Feng
in [10] to build symplectic integrators. In fact, we will superimpose to the latter
the idea of two-scale expansion, natural in such a multiscale context.

Some important comments are already in order, both on our purpose and on the
assumptions we make.

First, let us discuss in its own the purpose of constructing symplectic integrators
for such multiscale Hamiltonian systems.

Certainly, symplectic schemes are natural for the integration of Hamiltonian
systems since they reproduce at the discrete level an important geometric property
of the exact flow. More than natural, symplectic schemes are also proved to be
efficient as regards the conservation of the energy and of the possible invariants of
the system over extremely long times (see [21, Chap. IX and X] and [1, 17, 31];
see also [16] where, on a numerical example, symplectic methods are shown to be
superior to some non-symplectic methods that exactly preserve the energy). The
proof of this property, as is well-known, relies on backward error analysis (along with
some elements of KAM theory, for the conservation of the invariants). In any case,
the properties of conservation are obtained in the limit of small time steps. This is
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where our context of highly oscillatory equations somehow collides with the above
line of thought. For backward error analysis to hold true, the time step has to be
small compared to ε (the shortest period present in the system), but, for efficiency,
the time step used in practice needs to be much larger than ε. So, we will not be able
to refer to backward error analysis to justify the long time conservation properties
of the scheme. The notion of symplecticity in its own may even be considered of
poor interest in this particular context (see the introduction of Chapter XIII of
[21]). Ideally, what we would need is a notion of partial symplecticity with respect
to the slow degrees of freedom in the system. In the absence of such a notion, and of
the corresponding construction, the best we can do is build a “globally” symplectic
scheme, and observe its actual conservation properties.

Another property that could be of interest, alternatively to symplecticity, is
symmetry. In the case of a constant fast frequency, we build a non-symmetric scheme
(see Algorithm 2.1 below), and also consider its symmetrized version (see Algorithm
2.2). In the general case of a non constant fast frequency, the scheme we propose,
namely Algorithm 3.1, is not symmetric. At present time, it is not clear, to us at
least, how symmetry is related to long time conservation properties. The literature
does not seem to provide a definite understanding of this issue: examples [18] and
counterexamples [11] exist, showing the complexity of the situation. Despite such
a growing literature, the understanding of symmetric methods is not at the level of
that of symplectic methods. In addition, symmetric schemes are often implicit.

A last general point we would like to emphasize, before getting to some other
types of comments, is that we are after the computations of trajectories. Our
purpose here is not to build a reduced system, involving only the slow degrees of
freedom in the presence of some effective potential created by the (eliminated) fast
degrees of freedom. We do not want either to directly compute averages based on
the trajectories. For both above issues, there are a lot of relevant, excellent, studies
and approaches in the literature. The only question we address here is: are we able,
while keeping all the degrees of freedom explicit, to approximate as accurately as
possible the trajectories over long times?

Second, let us briefly comment upon our assumptions. There are three of them:
the form of the Hamiltonian, the form of the fast frequency Ω(q1), the size of the
initial conditions.

Our approach applies to Hamiltonians that are harmonic in the fast variables.
Although this specific form is quite general, and already used in the literature (see
e.g. [4, 14]), we conceed that this is a strict, structural, limitation of our work. This
is related to our technique of derivation. The harmonicity of the Hamiltonian with
respect to the fast degrees of freedom translates into the (partial) periodicity of the
generating function Sε, a property that is subsequently used to close the hierarchy
of equations produced by the two-scale expansion (see Section 2.1). Somehow, this
harmonicity hypothesis assumes that some preliminary work has been performed on
the original Hamiltonian in order to approximate its fast degrees of freedom. It is not
a priori impossible that some analogous derivation could be performed for slightly
more general Hamiltonians. In homogenization theory, it is indeed well-known that
periodicity is an assumption that may be relaxed in various directions (think of
stochastic homogenization, . . . ). However, it is unlikely that all Hamiltonians will
be tractable with such an approach. This has the following consequence: in order
to compare the integrators we derive with other, more generic integrators (such as
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the Impulse method [15, 34] or the Mollify method [12, 32]) in a fair manner, we
will bear in mind the specificity of our setting.

Our second assumption concerns the fast frequency Ω(q1). The expression (1)
shows a scalar frequency Ω(q1). This is the only case we shall consider in this article.
In other words, this corresponds to a spherical matrix of frequencies, and to fixed
eigenmodes that all share the same eigenvalue. There are several extensions of this
simple case (see [21, Chap. XVI], [24, 25, 29], and [23] for the case of a non constant
fast frequency, and [21, p 535] for an illustrative and simple example on which
eigenvalues of the frequency matrix cross, which induces additional difficulties).
The interested reader will find a short review on these different cases in [7]. Clearly,
the scalar case that we consider here is rather simple. However, it is rich enough to
allow for several interesting variants of our construction.

Regarding initial conditions, we have chosen to work with initial conditions whose
energy is bounded, uniformly in ε. As already mentioned, this implies that the
position q2 of the fast variable is also bounded from above by ε. Therefore, the
nonlinear feedback it might have on the slow degrees of freedom, via the potential
V0(q1, q2), is all the smaller. We will thus take care of testing the integrators over
an extremely long time frame, so as to let the possible instabilities develop, if they
have to.

Finally, and in addition to this list of comments, let us emphasize one, extremely
important mathematical point, not to say weakness, in our derivation. We are
unable to perform any numerical analysis of our algorithms. This would clearly
provide a rigourous understanding. We are only in position to test the integrators
numerically, and observe their remarkable efficiency. Actually, to the best of our
knowledge, it seems that the only numerical analysis tool that is available in the con-
text of highly oscillatory Hamiltonian systems is the Modulated Fourier Expansion
(MFE) (see [21, Sec. XIII.5], [5, 6, 20]), which currently works well to analyze cer-
tain symmetric schemes. So, although symmetric schemes are often implicit (such
as Algorithm 2.2 that we propose in Section 2.1, which is symplectic, symmetric
and implicit), they are interesting because they may allow for a numerical analysis.

The plan of our work is as follows. First, in Section 2, we consider the case when
the fast frequency is constant. Section 2.1 describes the derivation of two algorithms
and Section 2.2 shows the numerical results on some commonly used test case. Next,
in Section 3, we address the case when the fast frequency actually depends on the
slow position q1. We hope to be able to return in future publications to other, more
complicated, cases of fast frequencies. Note that the methodology described here in
details has been introduced in [27]. We also outlined there the derivation of some

(but not all) algorithms presented below. Even in the present extended and updated

version, it is not possible to give all the details of the calculations, which might be
rather tedious, although not difficult. They can be read in [28].

We conclude this introduction by some preliminary calculations, which will make
the above strategy somewhat more precise.

Let Sε(t, q, P ) be the solution of

∂tSε = Hε

(
q + ∂P Sε, P

)
, Sε(0, q, P ) = 0. (3)

For all (q, p, t), we know that (Q(t), P (t)), implicitly defined by

p = P (t) +
∂Sε

∂q
(t, q, P (t)), Q(t) = q +

∂Sε

∂P
(t, q, P (t)), (4)
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solve (2) with the initial conditions (q, p). At this stage, we are in position to
more explicitly describe our approach. Using a two-scale type Ansatz, we derive

an approximation S̃ε(h, q, P ) of the solution Sε(h, q, P ) of (3) at time t = h, for
a small parameter ε and for a time step h which is small yet much larger than ε
(hence the computational efficiency). Once obtained, this approximation is inserted
in the change of variables (4) and a symplectic integrator for (1)-(2) follows. More
precisely, in view of (4), we consider the equations

p = Ph +
∂S̃ε

∂q
(h, q, Ph), Qh = q +

∂S̃ε

∂P
(h, q, Ph) (5)

that define a symplectic map Ψ̃h : (q, p) 7→ (Qh, Ph). The corresponding scheme

reads (qn+1, pn+1) = Ψ̃h(qn, pn).
Before we proceed, we need to make a slight preparation. As we have already

noticed, the variable q2 is of order ε, because the energy is bounded. It is thus
appropriate to proceed with a change of variable and of unknown function in (3).
We set

r2 =
Ω(q1)

ε
q2 and Sε(t, q1, r2, P1, P2) = Sε

(
t, q1,

εr2

Ω(q1)
, P1, P2

)
.

It follows that, in this new set of variables, Sε satisfies

∂tSε =
PT

1 P1

2
+

PT
2 P2

2
+ V0

(
q1 + ∂P1

Sε,
εr2

Ω(q1)
+ ∂P2

Sε

)
(6)

+
1

2

(
Ω(q1 + ∂P1

Sε)

ε

)2 (
εr2

Ω(q1)
+ ∂P2

Sε

)T (
εr2

Ω(q1)
+ ∂P2

Sε

)

with the initial condition

∀q1, ∀r2, ∀P1, ∀P2, Sε(0, q1, r2, P1, P2) = 0. (7)

This is the form we will use in the sequel.

2. The case of a constant fast frequency. In this section, we consider the case
when Ω(q1) ≡ Ω does not depend on q1. A natural idea consists in applying our
approach directly on Eq. (6), that is in the original coordinates (q1, q2, p1, p2). It
consists in making the Ansatz

Sε(t, q1, r2, P1, P2) = S0 (t, τ, q1, r2, P1, P2) + εS1 (t, τ, q1, r2, P1, P2)

+ higher order terms in εk, k ≥ 2,

where the fast time τ is

τ =
tΩ

ε
, (8)

and where the functions (Sk)k≥0 are supposed to be 2π periodic in τ . Note that, in
the case when V0 does not depend on q2, the exact solution to (6)-(7) is consistent
with this Ansatz. Indeed, fast and slow variables are then decoupled and the solution
to (6)-(7) reads

Sε = Sslow(t, q1, P1) + εSfast(τ, r2, P2),

where τ is defined by (8), Sslow(t, q1, P1) solves the Hamilton-Jacobi equation

∂tSslow = H1(q1 + ∂P1
Sslow, P1), Sslow(0, q1, P1) = 0



352 CLAUDE LE BRIS AND FRÉDÉRIC LEGOLL

associated to the Hamiltonian H1(q1, p1) =
pT
1 p1

2
+ V0(q1), and

Sfast(τ, r2, P2) =
1

Ω

[(
PT

2 P2 + rT
2 r2

2

)
tan τ + PT

2 r2

(
1

cos τ
− 1

)]

is indeed 2π periodic in τ and solves the Hamilton-Jacobi equation associated to

H2(r2, p2) =
pT
2 p2

2
+ Ω2 rT

2 r2

2
.

We have followed this idea in [27] (see also [28] for more details). In this article, we
follow a different variant of the approach, which actually leads to the most efficient
schemes. The idea is to first perform a change of variables, so as to analytically
integrate the fast motion, and to only apply our approach in a second stage. Section
2.1 is dedicated to the design of the algorithms. We report on the obtained numerical
results in Section 2.2.

2.1. Derivation of symplectic schemes. Our approach is suggested by the con-
sideration of the uncoupled case. Indeed, assume momentarily that V0 does not
depend on q2. Then the fast and the slow variables are decoupled, and we can
analytically integrate the fast motion. Such an observation is also used in the ex-
ponential integrators analyzed in [21, Chap. XIII], in the integrator described in
[14], and in the adiabatic integrators [24, 25] addressing the case of a frequency
matrix that varies with q1. The first step of these algorithms is indeed a change
of variables, so that the new variables are solutions of an ODE simpler than the
original one.

Consider the time-dependent change of variables (q2, p2) 7→ (x2, y2) = χ(t, q2, p2)
defined by

q2 = cos

(
Ωt

ε

)
x2 +

ε

Ω
sin

(
Ωt

ε

)
y2,

p2 = −
Ω

ε
sin

(
Ωt

ε

)
x2 + cos

(
Ωt

ε

)
y2.

The dynamics on (x2, y2) reads

ẋ2 =
ε

Ω
sin

(
Ωt

ε

)
∂2V0

[
q1(t), cos

(
Ωt

ε

)
x2(t) +

ε

Ω
sin

(
Ωt

ε

)
y2(t)

]
,

ẏ2 = − cos

(
Ωt

ε

)
∂2V0

[
q1(t), cos

(
Ωt

ε

)
x2(t) +

ε

Ω
sin

(
Ωt

ε

)
y2(t)

]
,

and the dynamics on (q1, x2, p1, y2) is a Hamiltonian dynamics with the time-
dependent Hamiltonian

Hpre
ε (t, q1, x2, p1, y2) =

pT
1 p1

2
+ Wε

(
Ωt

ε
, q1, x2, y2

)
,

where

Wε(τ, q1, x2, y2) = V0

[
q1, (cos τ)x2 +

ε

Ω
(sin τ)y2

]
.

Let us now take this Hamiltonian, as a function of (q1, x2, p1, y2), as a starting
point for our manipulations. Let Sε(t, q1, x2, P1, Y2) solve

∂tSε =
PT

1 P1

2
+ Wε

(
Ωt

ε
, q1 + ∂P1

Sε, x2 + ∂Y2
Sε, Y2

)
, Sε(0, q1, x2, P1, Y2) = 0.
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The variable x2 is of order ε, so we again change of variables and of unknown
function:

r2 =
Ω

ε
x2 and Sε(t, q1, r2, P1, Y2) = Sε

(
t, q1,

εr2

Ω
, P1, Y2

)
,

so that Sε satisfies

∂tSε =
PT

1 P1

2
+ Wε

(
Ωt

ε
, q1 + ∂P1

Sε,
εr2

Ω
+ ∂Y2

Sε, Y2

)
, (9)

with the initial condition Sε(0, q1, r2, P1, Y2) = 0. We make the Ansatz

Sε(t, q1, r2, P1, Y2) = S0 (t, τ, q1, r2, P1, Y2) + εS1 (t, τ, q1, r2, P1, Y2) (10)

+higher order terms in εk, k ≥ 2,

where the fast time τ is again τ =
tΩ

ε
, and where the functions (Sk)k≥0 are supposed

to be 2π periodic in τ . We now insert (10) in (9), identify the first variable of Wε

with the fast time τ , and expand in powers of ε.
The fast position is of order ε, so S0 does not depend on Y2. From the equation

of order ε−1, we infer that S0 does not depend on τ . The equation of order ε0 reads

∂tS0 + Ω∂τS1 =
PT

1 P1

2
+ V0(q1 + ∂P1

S0, 0). (11)

Since S0 does not depend on τ and S1 is 2π periodic in τ , we infer from (11) that

∂tS0 =
PT

1 P1

2
+ V0(q1 + ∂P1

S0, 0) (12)

and

∂τS1 = 0.

Equation (12) is supplied with the initial condition S0(t = 0, q1, r2, P1) = 0. For
each r2, we thus recognize the Hamilton-Jacobi equation for the Hamiltonian func-
tion

H1(q1, p1) =
pT
1 p1

2
+ V0(q1, 0). (13)

So S0 does not depend on r2. In the sequel, we will approximate S0(t, q1, P1) by

S0(t, q1, P1) ≈ SSE
0 (t, q1, P1),

with

SSE
0 (t, q1, P1) = S0(0, q1, P1) + t∂tS0(0, q1, P1) (14)

= t

(
PT

1 P1

2
+ V0(q1, 0)

)
,

which amounts to integrating the Hamiltonian dynamics generated by (13) with the
symplectic Euler algorithm. We have S0(t) = SSE

0 (t) + O(t2).
The sequel of the identification is rather tedious but not difficult (see [28] for

details). We find that

S1 ≡ 0 (15)
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and that S2(t) = SSE
2 (t) + O(t2), with

SSE
2 (t, τ, q1, r2, P1, Y2) =

1

Ω2
(∇2V0)

T Y2 −
t

2Ω2
(∇2V0)

T∇2V0

+
t

4Ω2

(
rT
2 ∇22V0r2 + Y T

2 ∇22V0Y2

)
(16)

+
1

Ω2
(∇2V0(q1 + tP1, 0))T ((sin τ)r2 − (cos τ)Y2) ,

where the derivatives of V0 are evaluated at (q1, 0) unless otherwise mentioned.
Consider now the approximation

Sε(h) = S0(h) + εS1(h) + ε2S2(h) + . . . ≈ Spre1
ε (h)

with

Spre1
ε (h) := SSE

0 (h) + εS1(h) + ε2SSE
2 (h), (17)

where SSE
0 , S1 and SSE

2 are respectively defined by (14), (15) and (16) (we discuss
this choice, and the truncations it implies, in Remark 2 below). We insert this
approximation in (5) and obtain the following equations for (P1, Y2):

y2 = Y2 +
hε

2Ω
∇22V0(q1, 0)r2 +

ε

Ω
sin τ∇2V0(q1 + hP1, 0),

p1 = P1 + h∇1V0(q1, 0) +
ε2

Ω2
∇12V0(q1, 0)Y2 −

hε2

Ω2
∇12V0(q1, 0)∇2V0(q1, 0)

+
hε2

4Ω2
(rT

2 ∇122V0(q1, 0)r2 + Y T
2 ∇122V0(q1, 0)Y2)

+
ε2

Ω2
∇12V0(q1 + hP1, 0) ((sin τ)r2 − (cos τ)Y2) .

This implicit system reads z = Z + hf(Z) + εg(Z) with z = (p1, y2), and thus
a fixed point method works well to compute Z = (P1, Y2). Next, we compute
(Q1, X2) by explicit formulae. Returning to the original variables (q1, q2, p1, p2), we

write the obtained symplectic scheme as (Q1, Q2, P1, P2) = Ψpre1
h (q1, q2, p1, p2) (see

Algorithm 2.1).

Remark 1. High-order derivatives of V0 appear in Algorithm 2.1. This originates
from the strategy of approximating the generating function in order to derive a
numerical scheme. This was already observed by Feng [10] for nonstiff Hamiltonian

functions of the form
pT p

2
+ V (q). Replacing such high-order derivatives by their

finite difference approximation is a possible option, which however breaks the sym-
plecticity of the scheme if it is done on the scheme itself. Another option is to make
this finite difference approximation directly in the generating function, and from
there follow (5) to derive a symplectic scheme. We will not pursue in this direction
in the present work.
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Algorithm 2.1 (Preconditioned Symplectic Scheme Ψpre1
h (q1, q2, p1, p2)). Set

(q1, q2, p1, p2) = (qn
1 , qn

2 , pn
1 , pn

2 ), τ = Ωh/ε and perform the following steps:

1. Change of variables: set x2 = q2, y2 = p2, r2 = Ωx2/ε.
2. Solve for (P1, Y2) the equations





y2 = Y2 +
hε

2Ω
∇22V0(q1, 0)r2 +

ε

Ω
sin τ∇2V0(q1 + hP1, 0),

p1 = P1 + h∇1V0(q1, 0) +
ε2

Ω2
∇12V0(q1, 0)Y2

−
hε2

Ω2
∇12V0(q1, 0)∇2V0(q1, 0)

+
hε2

4Ω2
(rT

2 ∇122V0(q1, 0)r2 + Y T
2 ∇122V0(q1, 0)Y2)

+
ε2

Ω2
∇12V0(q1 + hP1, 0) ((sin τ)r2 − (cos τ)Y2) .

3. Set Q1 = q1 + hP1 +
hε2

Ω2
∇12V0(q1 + hP1, 0) ((sin τ)r2 − (cos τ)Y2) .

4. Set

X2 = x2 +
ε2

Ω2
∇2V0(q1, 0) +

hε2

2Ω2
∇22V0(q1, 0)Y2

−
ε2

Ω2
cos τ∇2V0(q1 + hP1, 0).

5. Return to the original variables:




Q2 = (cos τ)X2 +
ε

Ω
(sin τ)Y2,

P2 = −
Ω

ε
(sin τ)X2 + (cos τ)Y2.

Set
(
qn+1
1 , qn+1

2 , pn+1
1 , pn+1

2

)
= (Q1, Q2, P1, P2).

Remark 2. Let us motivate the truncations that we made in the series in powers
of ε and h. Since S1 ≡ 0, the Ansatz (10) reads

Sε(h, q1, r2, P1, Y2) = S0(h, q1, P1) + ε2S2(h, q1, r2, P1, Y2) + ε3e3(ε, h, q1, r2, P1, Y2)

with S0(h, q1, P1) = SSE
0 (h, q1, P1) + h2e0(h, q1, P1) and

S2(h, q1, r2, P1, Y2) = SSE
2 (h, q1, r2, P1, Y2) + h2e2(h, q1, r2, P1, Y2).

Hence, Sε(h) = Spre1
ε (h) + Eε(h, q1, r2, P1, Y2) with

Eε(h) = h2e0(h) + ε2h2e2(h) + ε3e3(ε, h).

In view of (5), we have

X2 − x2 =
∂Sε(h)

∂Y2
=

∂Spre1
ε (h)

∂Y2
+

∂Eε(h)

∂Y2
.

We see that ∂Y2
Spre1

ε (h) is a sum of two quantities of respective order ε2 and ε2h,
whereas ∂Y2

Eε(h) is a sum of two quantities of respective order ε2h2 and ε3. Hence
∂Y2

Eε(h) is negligible compared to ∂Y2
Spre1

ε (h). The same holds true for the equa-
tion that defines Y2. For the slow position, we have

Q1 = q1 +
∂Spre1

ε (h)

∂P1
+

∂Eε(h)

∂P1
.



356 CLAUDE LE BRIS AND FRÉDÉRIC LEGOLL

The quantity ∂P1
Eε(h) includes a term of order h2, which is not negligible compared

to the term of order ε2 which appears in ∂P1
Spre1

ε (h). However, since we keep all
the terms that come from Spre1

ε (h) for the fast variables, we also need to keep all of
them for the slow variables, in order for the scheme to be symplectic.

Neglecting all terms of order ε3, the scheme Ψpre1
h (q1, q2, p1, p2) is of order 1 in h.

A simple, well-known, manner to get a scheme of higher order is to consider the
symmetric form

(Q1, Q2, P1, P2) = Ψpre2
h (q1, q2, p1, p2) =

(
Ψpre1

h/2

)∗
Ψpre1

h/2 (q1, q2, p1, p2).

This scheme is symplectic and symmetric and, neglecting all terms of order ε3, it
is of order 2 in h (see Algorithm 2.2). Note that, if V0 does not depend on q2, then
the slow and the fast variables are decoupled, and we recover the velocity Verlet
algorithm in the slow variables and the exact flow in the fast variables.

Algorithm 2.2 (Preconditioned Symplectic Scheme Ψpre2
h (q1, q2, p1, p2)). Set

(q1, q2, p1, p2) = (qn
1 , qn

2 , pn
1 , pn

2 ) and perform the following steps:

1. Set (Q1, Q2, P 1, P 2) = Ψpre1
h/2 (q1, q2, p1, p2).

2. Set (Q1, Q2, P1, P2) =
(
Ψpre1

h/2

)∗
(Q1, Q2, P 1, P 2).

Set
(
qn+1
1 , qn+1

2 , pn+1
1 , pn+1

2

)
= (Q1, Q2, P1, P2).

Let us conclude this section by the following remark. It is standard to show [2, 3]
that the dynamics on the slow variables obtained in the limit ε → 0 is a dynamics

of Hamiltonian H1(q1, p1) =
pT
1 p1

2
+ V0(q1, 0). We observe that, in the limit ε → 0,

Algorithm 2.1 reduces to the Symplectic Euler algorithm on H1 (and Algorithm 2.2
reduces to the velocity Verlet algorithm). So, in the limit ε → 0, the algorithms we
have introduced reduce to a symplectic scheme which integrates the limit dynamics.

Additionally, the time step h being fixed, we check that

lim
ε→0

PT
2 P2 + Ω2 QT

2 Q2/(ε2)

pT
2 p2 + Ω2 qT

2 q2/(ε2)
= 1

for Algorithms 2.1 and 2.2. This is consistent with the fact that
pT
2 p2

2
+ Ω2 qT

2 q2

2ε2

is an adiabatic invariant of the dynamics (see [2, 3]).

2.2. Numerical results. This section presents some numerical results obtained
with Algorithm 2.2 for the integration of (1)-(2) in the case of a constant fast
frequency.

The test-bed chosen for our comparison is the commonly used Fermi-Pasta-Ulam
spring chain [21, Sec. XIII.2.1]. This chain is a collection of one-dimensional springs,
that is fixed at its two end points. The even numbered springs are stiff and harmonic,
whereas the odd numbered springs are nonharmonic and nonstiff (see Figure 1). We
consider here the case of seven springs, described by six degrees of freedom since
the total length of the system is prescribed. In this case, q1 = (q1,1, q1,2, q1,3) ∈ R

3,
q2 ∈ R

3, Ω(q1) = 1, and the potential energy V0 in (1) reads

V0 =
1

4

(
(q1,1 − q2,1)

4 +

2∑

i=1

(q1,i+1 − q2,i+1 − q1,i − q2,i)
4 + (q1,3 + q2,3)

4

)
.
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Figure 1. Fermi-Pasta-Ulam spring chain.

The energy in the fast spring j (1 ≤ j ≤ 3) reads Ij(q, p) =
p2
2,j

2
+

q2
2,j

2ε2
and

I(q, p) = I1(q, p) + I2(q, p) + I3(q, p) (18)

is an adiabatic invariant in the sense of [21, Theorem XIII.6.3].
In the following, we first study our algorithm regarding the computation of the

exact trajectory. Following the practice of [21, Sec. XIII.2], we then compare our
algorithm to the exponential integrators proposed in the literature. We name these
various algorithms as in [21, Sec. XIII.2] and [14] (see Table 1).

Algorithm Reference
A Gautschi [13] Non symplectic
B Deuflhard [8] and Impulse algorithm [15, 34] Symplectic
C Garcia-Archilla et al, Mollify algorithm [12] Symplectic
D Hochbruck and Lubich [19] Non symplectic
E Hairer and Lubich [20] Non symplectic
G Grimm and Hochbruck [14] Non symplectic
Table 1. Some exponential integrators proposed in the literature. All
these integrators are symmetric.

2.2.1. Long time energy preservation. As mentioned in the Introduction, we cannot
refer to backward error analysis to justify long time energy preservation for the
symplectic algorithms proposed above. Indeed, these algorithms are useful in the
regime where the time step is large compared to the shortest period present in the
system. In the present state of our understanding, all we can do is therefore test

them, that is numerically check that energy is well-preserved.
We work with ε = 0.02 and h = 0.17, and monitor the energy and the adiabatic

invariant (18) up to time T = 106, which is a rather large value compared to final
times usually considered with this stiffness. The results obtained with Algorithm
2.2 are shown on Figure 2. No drift can be seen.

2.2.2. Exchange of fast energies. The sum I(q, p) of the energies in the fast springs,
given by (18), is an adiabatic invariant of the exact trajectory. Exchanges of energy
between the fast springs occur on a time scale of order ε−1 (see [21, Sec. XIII.2.1]).
We study how Algorithm 2.2 reproduces these exchanges.

Following [21, Fig. XIII.2.4], we set ε = 0.02 and h = 0.03. Results are shown
on Figure 3. The exact trajectory and the numerically computed trajectory sat-
isfactorily agree. We do not include the results for ε = 10−3. They are similar,
although the exchanges (for both the exact and the approximated trajectory) are
much slower.
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Figure 2. Energy (for convenience, we plot Hε − 0.8) and adiabatic
invariant I along the trajectory computed with Algorithm 2.2 (ε = 0.02
and h = 0.17).
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Figure 3. Preservation of the energy (for convenience, we plot Hε −
0.8), of the adiabatic invariant I and exchange between the {Ij}1≤j≤3

for ε = 0.02 (Algorithm 2.2 has been used with h = 0.03).

2.2.3. Comparison on a test case with a fixed stiffness. We now set ε = 10−3, and
study our algorithm when the time step h varies. We compare Algorithm 2.2 with
the exponential integrators described in [21, Chap. XIII] and in [14] (we omit in
our comparison the Impulse algorithm (B), since it is usually outperformed by the
Mollify algorithm (C); we have checked this in the particular situation considered
here).

We first study the preservation of the energy and of the adiabatic invariant. On
Figure 4, we plot, as a function of the time step h, the relative error

err = max
t∈[0,104]

|Hε(t) − Hε(0)|

Hε(0)
(19)
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on the energy conservation over the time interval [0, 104]. On Figure 5, we plot

max
t∈[0,104]

|I(t) − I(0)|

I(0)
, (20)

which is the maximum variation to the initial value of the adiabatic invariant (18).
On the exact trajectory with ε = 10−3, we observe that this quantity is close to
0.0037.

As is well-known [21, Fig. XIII.2.5], for several exponential integrators, reso-
nances appear when h is a (odd or even or both) multiple of επ, which is half the
period of the fast motion. There are almost no resonances with Algorithm 2.2.
However, for all the algorithms considered here, these resonances are very peaked:
it is easy to find a time step h for which the algorithms are not resonant. We note
that Algorithm 2.2 preserves the energy with an equal or better accuracy than all
the other algorithms. Algorithms G and 2.2 have no resonances, and the latter pre-
serves the energy with a better accuracy than Algorithm G. We also observe that
the adiabatic invariant variation (20) is very well reproduced by Algorithm 2.2.

Remark 3. We work with ε small. Indeed, when we compute an approximation of
the generating function, we have made a truncation in the series in powers of ε (see
(17)). If ε is too large, this truncation does not make sense. Since ε is small, q2 is
also small, which implies that V0(q1, q2) could be well-approximated by a harmonic
function of q2, a test case that seems less challenging than the one with a function
V0 truly nonharmonic in q2. However, despite its apparent simplicity, we observe
that the test case at hand here is not so easy to deal with, since resonances appear
with some of the algorithms.

We next study the global errors at time T , which we define by

err = ‖xnum(T ) − xexact(T )‖2 (21)

for a variable x ∈ R
3, where ‖·‖2 is the Euclidean norm in R

3, xexact(T ) is the value
of the variable x on the exact trajectory at time T and xnum(T ) is its approximation
on the numerically computed trajectory. Following [14, Fig. 2], we study these
errors at time T = 1, for the variable x ≡ q1, x ≡ q2/ε (which is of order O(1) in
ε), x ≡ p1 and x ≡ p2. Results are shown on Figure 6. For the slow variables q1

and p1, we have gathered exponential algorithms for which the error was almost
the same. For the fast variables q2/ε and p2, we have kept the two exponential
algorithms that provide the smallest errors (see [14, Fig. 2] and [21, Fig. XIII.2.2]
for more comprehensive numerical results).

We first see that, with Algorithm 2.2, the error does not converge to 0 when
h → 0. This is due to the truncation in the series in powers of ε performed to
approximate the generating function. Even if h → 0, an error remains. Note
however that we are not interested in the regime h → 0, for numerical efficiency
reasons.

As soon as h ≥ επ, we observe that the error on the slow variables q1 and p1

is similar for Algorithm 2.2 and for the exponential integrators A, C, D, E and
G, provided we use a non-resonant time step for the latter algorithms. We now
turn to the fast variables. In the regime h ≥ επ of practical interest, the error
with Algorithm 2.2 is much smaller than the error with the exponential integrators.
There is no resonance with Algorithm 2.2. In summary, we observe a good accuracy
on the solution at time T = 1 ≫ ε computed with Algorithm 2.2 proposed here.
Note that this time T is much longer than the time scale ε of the fast variables.
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Figure 4. Maximum relative variation (19) of the energy on the time
interval [0, 104], for several time steps h (ε = 10−3). See Table 1 for
exponential algorithms terminology.

We next set ε = 0.02, and monitor again the energy and adiabatic invariant
preservations, with the estimators (19) and (20), on the time interval [0, 104]. On
the exact trajectory with ε = 0.02, the estimator (20) is close to 0.093. Numerical
results are shown on Figures 7 and 8. We observe that all integrators uniformly
perform less well than in the case ε = 10−3. Indeed, when increasing ε while
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Figure 5. Maximum variation (20) of the adiabatic invariant on the
time interval [0, 104], for several time steps h (ε = 10−3). We compare
the numerical results with the exact result, which is here 0.0037 (see
body of the text). See Table 1 for exponential algorithms terminology.

keeping h/(επ) constant, h increases and thus the slow dynamics is integrated less
accurately. We observe that the algorithm 2.2, despite being built for the regime of
small ε, again gives better results than the other algorithms of the literature, when
ε = 0.02 and h ≤ 0.2 (that is, h/(επ) ≤ 3).
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Figure 6. Global errors (21) at time T = 1, for several time steps h

(ε = 10−3). For the fast variables, only the results for the exponential
integrators that best perform are shown. See Table 1 for exponential
algorithms terminology.

Let us emphasize that the conclusions drawn from the comparison between the
algorithm 2.2 developed in the present work and the algorithms C, D and E are
limited to the specific context considered. The algorithms C, D and E can be used
for any Hamiltonian system with a slow/fast potential energy separation, whereas
the algorithms introduced here apply to Hamiltonians of the form (1). On the other
hand, and this is then a fair comparison, Algorithm 2.2 outperforms the integrators
A and G, specifically developed for (1).

2.2.4. Robustness of the algorithms. Let us now compare the algorithms using a
fixed time step h = 0.02, and a varying stiffness. Our aim is to check that the
errors in the energy and adiabatic invariant preservations do not depend on ε, and
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Figure 7. Maximum relative variation (19) of the energy on the time
interval [0, 104], for several time steps h (ε = 0.02). See Table 1 for
exponential algorithms terminology.

thus that we can use a time step h which is not bounded by ε, as would be the case
for a standard algorithm (such as velocity-Verlet).

We again use the estimators (19) and (20). Results are shown on Figures 9
and 10. We again see that ε has to be sufficiently small for the energy to be
well-preserved by Algorithm 2.2. When ε is sufficiently small, we observe that the
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Figure 8. Maximum variation (20) of the adiabatic invariant on the
time interval [0, 104], for several time steps h (ε = 0.02). We compare
the numerical results with the exact result, which is here 0.093. See
Table 1 for exponential algorithms terminology.

accuracy in the energy preservation does not depend on ε, so the algorithms are
unsensitive to the stiffness, up to the occurence of resonances. The variations of the
adiabatic invariant, that become larger when ε increases, are very well reproduced
by Algorithm 2.2.
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Figure 9. Maximum relative variation (19) of the energy on the time
interval [0, 104], for several ε (h = 0.02). See Table 1 for exponential
algorithms terminology.

3. Non constant fast frequency. We now consider the case when the fast fre-
quency Ω(q1) actually depends on q1. In Section 3.1, we derive an efficient sym-
plectic algorithm. For brevity, we focus on the differences between the present case
and the case of a constant frequency. We report on numerical tests in Section 3.2.
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Figure 10. Maximum variation (20) of the adiabatic invariant on the
time interval [0, 104], for several ε (h = 0.02). We compare the numerical
results (red curve) with the exact result (green curve). See Table 1 for
exponential algorithms terminology.

At the beginning of Section 2, we have underlined that (at least) two variants are
possible in the case of a constant frequency. In this section, we only follow the first
strategy, namely the one which consists in working with the original variables. It is
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not yet clear to us whether the second strategy mentioned earlier can be adapted
to the case of a non constant frequency.

3.1. Derivation of a symplectic algorithm. We consider the following Ansatz

Sε(t, q1, r2, P1, P2) = S0(t, q1, P1) (22)

+
∑

k≥1

εkSk

(
t,

T (t, q1, P1)

ε
, q1, r2, P1, P2

)

for the solution to (6)-(7), where (Sk)k≥1 are 2π periodic functions in the fast time
τ = T (t, q1, P1)/ε. The fast time is chosen such that ∂tT = Ω(q1(t)), hence

T =

∫ t

0

Ω(q1(s)) ds.

We need to approximate this equation so that T only depends on t, q1 and P1. A
trapezoidal approximation reads

T (t) =
t

2
[Ω(q1(0)) + Ω(q1(t))] + O(t3)

=
t

2

[
Ω(q1(0)) + Ω

(
q1(0) +

∂S0

∂P1

)]
+ O(t3) + O(εt)

=
t

2

[
Ω(q1) + Ω

(
q1 + t

∂2S0

∂P1∂t
(t = 0)

)]
+ O(t3) + O(εt).

We set

T (t, q1, P1) :=
t

2

[
Ω(q1) + Ω

(
q1 + t

∂2S0

∂P1∂t
(t = 0)

)]
(23)

and

τ =
T (t, q1, P1)

ε
, (24)

which is an approximation of order O(t3/ε) + O(t) of the exact phase. Thus, if
t ≪ ε1/3, then τ is a good approximation of the exact phase.

We now insert (22) in (6)-(7), and compare like-powers of ε. For instance, the
equation of order ε0 reads

∂tS0 + ∂tT ∂τS1 =
PT

1 P1

2
+

PT
2 P2

2
+ V0(q1 + ∂P1

S0, 0)

+
1

2
Ω(q1 + ∂P1

S0)
2

(
r2

Ω(q1)
+ ∂P2

S1

)T (
r2

Ω(q1)
+ ∂P2

S1

)
,

that we next expand in powers of t. After some tedious but not difficult computa-
tions (see [28] for details), we obtain

S0(t = 0) = 0,

∂tS0(t = 0) =
PT

1 P1

2
+ V0(q1, 0), (25)

S1(t = 0) =
1

Ω(q1)

(
PT

2 P2 + rT
2 r2

2

)
tan τ +

PT
2 r2

Ω(q1)

(
1

cos τ
− 1

)
,

∂ttS0(t = 0) = PT
1 ∇1V0(q1, 0),

∂tS1(t = 0) = −
PT

1 ∇Ω(q1)

Ω2(q1)

(
rT
2 P2

2 cos τ
+

PT
2 P2 tan τ

2

)
,

where all functions Sk and their derivatives are evaluated at (t = 0, τ, q1, r2, P1, P2).
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We first consider the approximation Sε(h) ≈ S̃ε(h), with

S̃ε(h) := S0 + h∂tS0 + εS1 + εh∂tS1. (26)

The scheme on the fast variables is obtained from (5), and reads

P2 =
(cos τ)p2 − (sin τ)r2

1 − β/2
, (27)

Q2 =
ε

Ω
tan τ (1 − β)P2 +

1

cos τ

(
1 −

β

2

)
q2, (28)

with

β =
h

Ω(q1)
PT

1 ∇Ω(q1).

When cos τ → 0 and sin τ → 1, we can approximate (28) by

Q2 ≈
1

(cos τ)(1 − β/2)

β2

4
q2.

So the scheme is singular in the limit cos τ → 0. To remove this singularity, we
slightly modify the generating function. We have

S̃ε(h) = h

(
1

2
PT

1 P1 + V0(q1, 0)

)

+
ε

Ω(q1)

[
rT
2 r2

2
tan τ +

PT
2 P2

2
(1 − β) tan τ − rT

2 P2 +
rT
2 P2

cos τ

(
1 −

β

2

)]
,

that we replace by

SNC
ε (h) := h

(
1

2
PT

1 P1 + V0(q1, 0)

)
+

ε

Ω(q1)

[
rT
2 r2

2
tan τ

+
PT

2 P2

2
exp(−β) tan τ − rT

2 P2 +
rT
2 P2

cos τ
exp(−β/2)

]
.

(29)

The difference between (29) and (26) is of order O(h2ε), so the order of the approx-
imation has not been modified.

In view of (23), (24) and (25), the fast time τ reads

τ =
h

2ε
[Ω(q1) + Ω(q1 + hP1)] . (30)

We now insert SNC
ε (h) into (5), and obtain the scheme ΨNC

h (see Algorithm 3.1),
which is well defined even in the limit cos τ → 0 (see in particular Steps 4 and 5
of the algorithm, that replace (27) and (28)). This scheme is symplectic. The new
momentum P1 is implicitly defined (see Step 2 of the algorithm; note in particular
that the fast time τ depends on P1, in view of (30)). Once P1 is determined, the
other variables Q1, Q2 and P2 can be computed in an explicit fashion. Computing
P1 amounts to solving a nonlinear equation of the form F(P1) = 0. To this end, we
use a Newton algorithm, and compute the derivative of F with a finite difference
scheme. On the test case reported below, only three iterations were sufficient to
converge.
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Algorithm 3.1 (Symplectic Scheme ΨNC
h (q1, q2, p1, p2)). Set (q1, q2, p1, p2) =

(qn
1 , qn

2 , pn
1 , pn

2 ) and perform the following steps:

1. Set r2 =
Ω(q1)

ε
q2.

2. Solve for P1 the following implicit equation:

p1 = P1 + h∇1V0(q1, 0)

−
ε

Ω2(q1)

(
pT
2 r2 sin2 τ∗ +

rT
2 r2 − pT

2 p2

2
sin τ∗ cos τ∗

)
∇Ω(q1)

+
h

4Ω(q1)

(
rT
2 r2 + pT

2 p2

)
(∇Ω(q1) + ∇Ω(q1 + hP1))

−
hε

Ω(q1)

[
pT
2 p2 − rT

2 r2

2
sin τ∗ cos τ∗ + pT

2 r2

(
1

2
− sin2 τ∗

)]
d(q1, P1),

with τ∗ =
h

2ε
[Ω(q1) + Ω(q1 + hP1)] and d(q1, P1) = ∇q1

(
PT

1 ∇Ω(q1)

Ω(q1)

)
.

3. Set τ =
h

2ε
[Ω(q1) + Ω(q1 + hP1)] and β =

h

Ω(q1)
PT

1 ∇Ω(q1).

4. Set P2 = exp(β/2) ((cos τ)p2 − (sin τ)r2) .

5. Set Q2 = exp(−β/2)

(
(cos τ)q2 +

ε sin τ

Ω(q1)
p2

)
.

6. Set

Q1 = q1 + hP1 +
h2

4Ω(q1)

(
rT
2 r2 + pT

2 p2

)
∇Ω(q1 + hP1)

−
hε

Ω2(q1)

[
pT
2 p2 − rT

2 r2

2
sin τ cos τ + pT

2 r2

(
1

2
− sin2 τ

)]
∇Ω(q1).

Set
(
qn+1
1 , qn+1

2 , pn+1
1 , pn+1

2

)
= (Q1, Q2, P1, P2).

Remark 4. In the case of scalar fast variables (q2 ∈ R, p2 ∈ R), it is shown in [2, 3]
that the dynamics on the slow variables obtained in the limit ε → 0 is a dynamics

of Hamiltonian Hhom
1 (q1, p1) =

pT
1 p1

2
+ V0(q1, 0) + CΩ(q1), where

C = lim
ε→0

p2
2(0) + Ω2(q1(0)) q2

2(0)/(ε2)

2Ω(q1(0))

is a constant which depends on the initial conditions. We show in this remark that,
in the limit ε → 0, Algorithm 3.1 is consistent with this theoretical result.

We first check that, for the slow variables, in the limit ε → 0, Algorithm 3.1 is
the symplectic algorithm which is derived from the generating function

Shom
num(h, q1, P1) = h

(
V0(q1, 0) +

PT
1 P1

2
+

C

2
[Ω(q1) + Ω(q1 + hP1)]

)
,

where C =
pT
2 p2 + Ω2(q1) qT

2 q2/(ε2)

2Ω(q1)
is supposed to be a constant. We observe that

Shom
num(h, q1, P1) = Shom(h, q1, P1) + O(h2), where Shom(t, q1, P1) is the solution of

the Hamilton-Jacobi equation associated to Hhom
1 .

In addition, the time step h being fixed, we check on Algorithm 3.1 that

lim
ε→0

PT
2 P2 + Ω2(Q1) QT

2 Q2/(ε2)

pT
2 p2 + Ω2(q1) qT

2 q2/(ε2)

Ω(q1)

Ω(Q1)
= 1 + O(h2).
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Up to the term O(h2), this is consistent with the fact that

1

Ω(q1)

(
pT
2 p2

2
+ Ω2(q1)

qT
2 q2

2ε2

)

is an adiabatic invariant of the dynamics.

3.2. Numerical results. We have implemented Algorithm 3.1 in the scalar case
(q1 ∈ R, q2 ∈ R), with

Ω(q1) =
√

1 + q2
1 and V0(q1, q2) = (q2

1 + q2
2 − 1)2.

In addition to the preservation of energy, we monitor the variation of

I =

p2
2

2
+ Ω(q1)

2 q2
2

2ε2

Ω(q1)
(31)

along the trajectory. Recall that I is an adiabatic invariant (see [2, 3]), and that,
on a given time window, its variation decreases as ε decreases.

We first choose ε = 10−3 and h = 0.02, and monitor the evolution of the energy
and adiabatic invariant up to time T = 106. Results are shown on Figure 11. No
drift can be seen.

I(t)
Hε(t)

t

1e+065000000

1.4

1.35

1.3

1.25

1.2

1.15

1.1

1.05

1

0.95

Af (t) exact
Af (t) computed

t

1009896949290

2

1.8

1.6

1.4

1.2

1

Figure 11. Left: Energy and adiabatic invariant along the trajectory
computed with Algorithm 3.1 (ε = 10−3 and h = 0.02). Right: as

expected, Af =
p2
2

2
+ (Ω(q1))

2 q2
2

2ε2
varies.

We now let the time step h vary, while keeping the stiffness at its prescribed
value ε = 10−3. On Figure 12, we plot the variation of the energy (see estimator
(19)) and the variation of the adiabatic invariant (31) (see estimator (20)), over the
time interval t ∈ [0, 104]. We observe a good behaviour of the algorithm: even if h
is much larger than ε, the energy and the adiabatic invariant are preserved with a
good accuracy (the error is less than 1% for all h ≤ 10ε). For h ≤ 10ε, the variation
of the energy seems to be proportional to h, up to very peaked resonances. This
behaviour is consistent with the approximation (26)-(29), where terms of order h2

have been neglected.
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Figure 12. Maximum variation (19) of the energy (left) and maxi-
mum variation (20) of the adiabatic invariant (right) on the time interval
[0, 104], for several h (ε = 10−3), for Algorithm 3.1.

Error on q2/ε
Error on q1

h/ε
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1e-10
Error on p2

Error on p1

h/ε

10001001010.1

1
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1e-04

1e-06

1e-08

Figure 13. Global errors (21) at time T = 1, for several time steps h

(ε = 10−3).

On Figure 13, we plot the global errors (21) at time T = 1 of q1, q2/ε, p1 and
p2. We again observe a very good accuracy, even if h ≫ ε.

We finally study the robustness of the algorithm. We set the time step to h =
0.02, and consider the variation of the energy and of the adiabatic invariant, over
the time interval t ∈ [0, 104], for stiffness ε varying between 10−3 to 1. Results are
shown on Figure 14. When ε decreases to 0, the algorithm performs equally well,
up to peaked resonances.
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Figure 14. Maximum variation (19) of the energy (left) and maxi-
mum variation (20) of the adiabatic invariant (right) on the time interval
[0, 104], for several ε (h = 0.02), for Algorithm 3.1.
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