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Abstract We present a possible approach for the computation of free energies and
ensemble averages of one-dimensional coarse-grained models in materials science.
The approach is based upon a thermodynamic limit process, and makes use of ergodic
theorems and large deviations theory. In addition to providing a possible efficient
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computational strategy for ensemble averages, the approach allows for assessing the
accuracy of approximations commonly used in practice.

Keywords Coarse-grained models · Materials science · Thermodynamic limit ·
Canonical averages · Free energies · Law of large numbers · Large deviations theory

1 Introduction

Computing canonical averages is a standard task of computational materials sci-
ence. Consider an atomistic system consisting of N particles, at positions u =
(u1, . . . , uN) ∈ R

3N . Provide this system with an energy

E(u) = E
(
u1, . . . , uN

)
. (1.1)

The finite temperature thermodynamical properties of the material are obtained from
canonical ensemble averages,

〈A〉 =
∫
ΩN A(u) exp(−βE(u)) du
∫
ΩN exp(−βE(u)) du

, (1.2)

where Ω ⊂ R
3 is the macroscopic domain where the positions ui vary, A is the ob-

servable of interest, and β = 1/(kBT ) is the inverse temperature (Deák et al. 2000).
The denominator of (1.2) is denoted by Z and called the partition function. The ma-
jor computational difficulty in (1.2) is of course the N -fold integrals, where N , the
number of particles, is extremely large. Indeed, for integrals of the type (1.2) to be
quantitatively meaningful in practice, N does not need to approach the Avogadro
number, but still needs to be extremely large (105, say).

The three dominant computational approaches for the evaluation of (1.2) are
Monte Carlo methods, Markov chains methods, and molecular dynamics methods
respectively (see, e.g. Cancès et al. 2007 for a review of sampling methods of the
canonical ensemble, along with a theoretical and numerical comparison of their per-
formances for molecular dynamics). In the present article, we use the latter type of
methods, and more precisely the overdamped Langevin dynamics (also called biased
random walk). The ensemble average (1.2) is calculated as the long-time average

〈A〉 = lim
T →+∞

1

T

∫ T

0
A(ut ) dt (1.3)

along the trajectory generated by the stochastic differential equation

dut = −∇uE(ut ) dt + √
2/β dBt . (1.4)

It is often the case that the observable A actually does not depend on the positions
ui of all the atoms, but only on some of them. Think, for instance, of nanoindentation:
we are especially interested in the positions of the atoms below the indenter, in the
forces applied on these atoms, . . . Our aim is to design a numerical method to compute
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the canonical averages of such observables in a more efficient way than the general
strategy (1.3)–(1.4). This will also enable us to assess the validity of other approaches,
as compared to ours.

The Quasicontinuum Method (QCM) is a commonly used example of approaches
that allow for the calculation of the specific ensemble averages discussed above.
In its original version, the method was focused on the zero temperature setting.
It was originally introduced in (Tadmor and Phillips 1996; Tadmor et al. 1996),
and then further developed in (Knap and Ortiz 2001; Miller et al. 1998; Miller
and Tadmor 2002; Shenoy et al. 1998, 1999; Tadmor et al. 1999). It has been
studied mathematically in, e.g., (Anitescu et al. 2009; Arndt and Griebel 2005;
Arndt and Luskin 2008; Blanc et al. 2002, 2005, 2007a; Dobson and Luskin 2008,
2009a, 2009b; Dobson et al. 2009a, 2009b; E and Ming 2004, 2007; Lin 2003, 2007;
Ortner and Süli 2008). See (Blanc et al. 2007b; Legoll 2009) for recent reviews. An
extension of the original idea has recently been developed in (Dupuy et al. 2005) and
carries through to the finite-temperature case, considered in the present article. See
also (Curtarolo and Ceder 2002; LeSar et al. 1989) for prior studies developing ideas
in the same vein.

Let us briefly detail the bottom line of coarse-graining strategies for the compu-
tation of canonical averages. For simplicity of exposition, we let the atoms vary in
Ω = R

3. The idea is to subdivide the particles of the system into two subsets. The first
subset consists of the so-called representative atoms (abbreviated in the QCM termi-
nology as repatoms, with positions henceforth denoted by ur ). The second subset is
that of atoms that are eliminated in the coarse-grained procedure. Their positions are
denoted by uc. We assume that the observable considered only depends on the po-
sitions ur of the repatoms, not on those of the other atoms, uc. More precisely, one
writes

u = (
u1, . . . , uN

) = (ur , uc), ur ∈ R
3Nr , uc ∈ R

3Nc , N = Nr + Nc,

and our aim is to compute (1.2) for an observable A that only depends on ur :

〈A〉 = Z−1
∫

R3N

A(ur) exp
(−βE(u)

)
du. (1.5)

We observe that, owing to our assumption on A,
∫

R3N

A(ur) exp
(−βE(u)

)
du =

∫

R3Nr

dur A(ur)

∫

R3Nc

exp
(−βE(ur, uc)

)
duc,

and likewise

Z =
∫

R3N

exp
(−βE(u)

)
du =

∫

R3Nr

dur

∫

R3Nc

exp
(−βE(ur, uc)

)
duc.

Introducing the coarse-grained potential (also called free energy)

ECG(ur) := − 1

β
ln

[∫

R3Nc

exp
(−βE(ur, uc)

)
duc

]
, (1.6)
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the expression (1.5) reads

〈A〉 = Z−1
r

∫

R3Nr

A(ur) exp
(−βECG(ur)

)
dur, (1.7)

with Zr = ∫
R3Nr exp(−βECG(ur)) dur . Under appropriate conditions ensuring er-

godicity of the system, the integral (1.7) is in turn computed from

〈A〉 = lim
T →+∞

1

T

∫ T

0
A
(
ur(t)

)
dt

with

dur = −∇ur ECG(ur) dt + √
2/β dBt . (1.8)

Simulating the dynamics (1.8) is a less computationally demanding task than simu-
lating (1.4), owing to the reduced dimension Nr . This simplification comes at a price:
calculating the coarse-grained free energy (1.6).

Remark 1 The present work concentrates on the computation of ensemble averages
and free energies, using coarse-grained models. Practice shows that the same coarse-
graining paradigm is used to simulate actual coarse-grained dynamics at finite tem-
perature. We will not go in this direction, as the physical relevance of the latter ap-
proach is unclear to us.

In order to approximate the free energy (1.6), state-of-the-art finite temperature
methods perform a Taylor expansion of the position of the eliminated atoms uc . In
this Taylor expansion, a linear interpolation and a harmonic approximation of the
positions of the atoms are successively performed. More precisely, given the positions
ur of the repatoms, some “reference” positions uc(ur) of the eliminated atoms are
first determined by linear interpolation between two (or more) adjacent repatoms.
Then it is postulated that

uc = uc(ur) + ξc

where the perturbation ξc is small. The energy is then calculated from a Taylor ex-
pansion truncated at second order:

E(ur,uc) = E
(
ur,uc(ur) + ξc

) ≈ Ẽ(ur , uc)

with

Ẽ(ur , uc) := E
(
ur,uc(ur)

) + ∂E

∂uc

(
ur,uc(ur)

) · ξc + 1

2
ξc · ∂2E

∂u2
c

· ξc. (1.9)

It follows (we skip the details of the argument and refer to the bibliography pointed
out above for further details) that ECG(ur) is approximated by

EHA(ur) = − 1

β
ln

∫

R3Nc

exp
(−βẼ(ur , uc)

)
duc, (1.10)
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which is analytically computable. Without such simplifying assumptions, the actual
computation of ECG for practical values of Nr and Nc seems undoable. The approach
has proven efficient. Reportedly, it satisfactorily treats three-dimensional problems
of large size. However, from the mathematical standpoint, it is an open question to
evaluate the impact of the above couple of approximations (reference positions uc(ur)

defined by a linear interpolation, followed by an harmonic expansion around these
positions). The purpose of the present article is to present an approach that, in simple
cases and under specific assumptions, allows for a quantitative assessment of the
validity and limits of the above couple of approximations.

Our approach is based on a thermodynamic limit. It was first outlined in (Patz
2009) for the special case of harmonic interactions. The approach is exact in the limit
of an infinite number of eliminated atoms and, therefore, valid when this number Nc

is large as compared to the number Nr of representative atoms that are kept explicit
in the coarse-grained model. This regime, after all, is the regime that all effective
coarse-graining strategies should target. In short, the consideration of the asymptotic
limit Nc → +∞ makes tractable a computation which is not tractable for finite Nc

(unless simplifications, as those mentioned above, are performed). We do not claim
for originality in our theoretical considerations on the thermodynamic limit of the
free energy of atomistic systems. We provide them here for consistency. However,
our specific use of such theoretical considerations as a computational strategy for
approximating coarse-grained ensemble averages in computational materials science
seems, to the best of our knowledge, new. We were not able to find any comparable
endeavor in the existing literature in which we have access.

Let us conclude this introduction by briefly describing our approach. Assume for
simplicity that there is only one repatom: Nr = 1. Our idea to compute 〈A〉 in (1.5)
is to change variables, that is, introduce y = (y1, . . . , yN) = Φ(u), and recast (1.5) as

〈A〉 =
∫

R3N

A

(
1

N

N∑

i=1

yi

)

ν(y) dy

for some probability density ν(y) (see (2.5) below for an explicit example). We next
recognize 〈A〉 as the expectation value E[A( 1

N

∑N
i=1 Yi)], where Y = (Y1, . . . , YN)

are random variables distributed according to the probability ν. A law of large num-
bers provides the limit of 〈A〉 when N → +∞ (which corresponds to Nc → +∞,
since Nr = 1). The rate of convergence may also be evaluated using the central limit
theorem.

Note that the above approach bypasses the calculation of the free energy ECG to
compute the ensemble average (1.5). Our strategy is hence different from the one we
described above, which is based on using the formula (1.7).

It is also interesting to try and evaluate ECG in the same regime. First, it is to
be remarked that ECG scales linearly with the number Nc of eliminated atoms. The
relevant quantity is hence the free energy per particle

F∞(ur) := lim
Nc→+∞

1

Nc

ECG(ur). (1.11)

We now observe that NcF∞ is not necessarily a good approximation of ECG, for
large Nc, even if F∞ is a good approximation of ECG/Nc. It is not clear to us how
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to use F∞, or the probability measure Z−1
Nc

exp(−βNcF∞), to compute in an effi-
cient manner an approximation of the average 〈A〉 (see Remark 8 below). Never-
theless, computing F∞ turns out to be also interesting, but for a different reason.
This energy is indeed related to the coarse-grained constitutive law of the mater-
ial at finite temperature, as we explain at the end of Sect. 2.2 (see Derrida 2007;
Olla 2007 for related approaches).

We develop our approach in the one-dimensional setting, for simple cases of pair
interactions. We first consider nearest neighbor (NN) interactions. In this case, we
develop a computational strategy to approximate ensemble averages (see Sect. 2.1),
and we next address the computation of free energies (see Sect. 2.2). Numerical con-
siderations are collected in Sect. 2.3.

We next turn to next-to-nearest neighbor interactions, traditionally abbreviated
as NNN. For this model, we focus on the computation of ensemble averages (see
Sect. 3.1). As explained in Sect. 3.2, more complicated types of interaction poten-
tials and “essentially one-dimensional systems” (including polymer chains) may be
treated likewise, although we do not pursue in this direction.

A similar interpretation of ensemble averages as the one presented here, using a
Markov chain formalism, should lead to an analogous strategy for two-dimensional
systems. Some preliminary developments, not included in the present article, already
confirm this. However, definite conclusions are yet to be obtained, both on the for-
mal validity of the approach and on the best possible numerical efficiency accom-
plished. The fact that the two-dimensional case is much more difficult than the one-
dimensional case is corroborated by the literature on this subject: only very simple
cases, such as spin systems or harmonic interactions (with zero equilibrium length)
are known to have explicit solutions in this context (see the reviews Baxter 1982; Pre-
sutti 2008). We therefore prefer to postpone considerations on the two-dimensional
situation until a future publication.

2 The Nearest Neighbor (NN) Case

As mentioned in the Introduction, our approach is based on the asymptotic limit
N −→ +∞. We therefore first rescale the problem with the interatomic distance h,
such that Nh = L = 1 (see Remark 2 below). The atomistic energy (1.1) in the
rescaled NN case writes

E
(
u1, . . . , uN

) =
N∑

i=1

W

(
ui − ui−1

h

)
, (2.1)

where W : R → R is an interatomic potential (see (2.37) for a precise example, and
theorems below for precise assumptions on W ). We now impose u0 = 0 to avoid
translation invariance, and consider that only atoms 0 and N are repatoms, while all
the other atoms i = 1, . . . ,N −1 are eliminated in the coarse-graining procedure (see
Fig. 1). Our argument can be straightforwardly adapted to treat the case of Nr > 2
repatoms (see Fig. 2 and the end of Sect. 2.1).
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Fig. 1 (Color online) We isolate a segment between two consecutive repatoms (in red). All atoms
in-between (in blue) are eliminated in the coarse-graining procedure

Fig. 2 (Color online) The repatoms (in red) are explicitly treated, all other atoms (in blue) being elimi-
nated in the coarse-graining procedure

In this simple situation, the average (1.5) reads

〈A〉N = Z−1
∫

RN

A
(
uN

)
exp

(

−β

N∑

i=1

W

(
ui − ui−1

h

))

du1 · · ·duN, (2.2)

where we have explicitly mentioned the dependence of 〈A〉 upon N using a subscript.

Remark 2 Instead of the energy (2.1), we can work with the energy

Ẽ
(
u1, . . . , uN

) =
N∑

i=1

W
(
ui − ui−1),

for an interatomic potential W that reaches its minimum at a value x̄ independent of
h (say x̄ = 1). In that case, as N → ∞, the mean size of the system diverges, and we
thus expect averages of the type (1.5) to diverge as well: for instance,

lim
N→∞ Z̃−1

∫
uN exp

(−βẼ(u)
)
du = ∞.

With that scaling, the relevant quantity to consider is

Z̃−1
∫

A

(
uN

N

)
exp

(−βẼ(u)
)
du

which is exactly (2.2).

We introduce

yi := ui − ui−1

h
, i = 1, . . . ,N, (2.3)

and next remark that

uN = h

N∑

i=1

yi = 1

N

N∑

i=1

yi. (2.4)



248 J Nonlinear Sci (2010) 20: 241–275

Thus, the average (2.2) reads

〈A〉N = Z−1
∫

RN

A

(
1

N

N∑

i=1

yi

)

exp

(

−β

N∑

i=1

W(yi)

)

dy1 · · ·dyN, (2.5)

where now

Z =
∫

RN

exp

(

−β

N∑

i=1

W(yi)

)

dy1 · · ·dyN .

Remark 3 In (2.2), we let the variables ui vary on the whole real line. We do not con-
strain them to obey ui−1 ≤ ui , which encodes the fact that nearest neighbors remain
nearest neighbors. The argument provided here and below carries through when this
constraint is accounted for: we just need to replace the interaction potential W by

Wc(y) =
{

W(y) when y ≥ 0,

+∞ otherwise.
(2.6)

Likewise, we could also impose that all the ui stay in a given macroscopic segment.
If they are ordered increasingly, it is enough to impose this constraint on u0 and uN .
This is again a simple modification of our argument.

2.1 Limit of the Average

It is evident from the expression (2.5) that

〈A〉N = E

[

A

(
1

N

N∑

i=1

Yi

)]

for independent identically distributed (i.i.d.) random variables Yi , sharing the law
z−1 exp(−βW(y)) dy, with z = ∫

R
exp(−βW(y)) dy. A simple computation thus

gives the following result.

Theorem 1 Assume that A : R −→ R is continuous, that for some p ≥ 1, there exists
a constant C > 0 such that

∀y ∈ R,
∣∣A(y)

∣∣ ≤ C
(
1 + |y|p), (2.7)

and that
∫

R

(
1 + |y|p) exp

(−βW(y)
)
dy < +∞. (2.8)

Introduce y∗ and σ defined by

y∗ = z−1
∫

R

y exp
(−βW(y)

)
dy and

(2.9)
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σ 2 = z−1
∫

R

(
y − y∗)2 exp

(−βW(y)
)
dy,

with z = ∫
R

exp(−βW(y)) dy. Then

lim
N→+∞〈A〉N = A

(
y∗). (2.10)

In addition, if A is C2 and if (2.7)–(2.8) hold with p = 2, then σ < ∞ and

〈A〉N = 〈A〉approx
N + o

(
1

N

)
, (2.11)

with

〈A〉approx
N := A

(
y∗) + σ 2

2N
A′′(y∗). (2.12)

The proof of (2.10) is a direct application of the law of large numbers, and that
of (2.11) is an application of the central limit theorem. We skip them. The following
considerations, for more regular observables A, indeed contain the ingredients for
proving (2.10)–(2.11), simply by truncating the expansion at first order.

Remark 4 Note that other growth assumptions on A are possible, along with corre-
sponding assumptions on W . For instance, if A satisfies |A(y)| ≤ C exp(|y|) for some
C and if W is such that exp(|y| − βW(y)) is integrable, then (2.10) holds.

If A is more regular than stated in Theorem 1, then it is of course possible to pro-
ceed further in the expansion of 〈A〉N in powers of 1/N . Indeed, assume for instance
that A is C6, that A(6) is globally bounded and that (2.7)–(2.8) hold with p = 6. Then

A

(
1

N

N∑

i=1

Yi

)

= A

(

y∗ + 1

N

N∑

i=1

Di

)

,

= A
(
y∗) + A′(y∗) 1

N

N∑

i=1

Di + 1

2
A′′(y∗)

(
1

N

N∑

i=1

Di

)2

+ 1

6
A(3)

(
y∗)

(
1

N

N∑

i=1

Di

)3

+ 1

24
A(4)

(
y∗)

(
1

N

N∑

i=1

Di

)4

+ 1

5!A
(5)

(
y∗)

(
1

N

N∑

i=1

Di

)5

+ 1

6!A
(6)(ξ)

(
1

N

N∑

i=1

Di

)6

,

where Di = Yi − y∗ and ξ lies between y∗ and (1/N)
∑

Yi . We now take the expec-
tation value of this equality. Let us introduce

AN := A
(
y∗) + 1

2
A′′(y∗) 1

N
E
(
D2

1

) + 1

6
A(3)

(
y∗) 1

N2
E
(
D3

1

)
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+ 1

24
A(4)

(
y∗)

(
1

N3
E
(
D4

1

) + N − 1

N3

(
E
(
D2

1

))2
)

+ 1

5!A
(5)

(
y∗)

(
1

N4
E
(
D5

1

) + N − 1

N4
E
(
D2

1

)
E
(
D3

1

))
. (2.13)

Then

∣∣〈A〉N − AN

∣∣ ≤ 1

6!
∥∥A(6)

∥∥
L∞E

[(
1

N

N∑

i=1

Di

)6]

. (2.14)

We now use the fact that any i.i.d. variables Di with mean value zero satisfy the
following bounds:

∀p ∈ N, ∃Cp > 0,

∣∣∣∣∣
E

[(
1

N

N∑

i=1

Di

)p]∣∣∣∣∣
≤

⎧
⎪⎪⎨

⎪⎪⎩

Cp

N
p
2

if p is even;

Cp

N
p+1

2
if p is odd.

(2.15)

This is proved by developing the power p of the sum, and then using the fact that the
variables are i.i.d and have mean value zero. We hence infer from (2.13), (2.14), and
(2.15) that

〈A〉N = A
(
y∗) + σ 2

2N
A′′(y∗) + 1

N2

(
m3

6
A(3)

(
y∗) + σ 4

24
A(4)

(
y∗)

)
+ O

(
1

N3

)
,

where σ is defined by (2.9) and

m3 = z−1
∫

R

(
y − y∗)3 exp

(−βW(y)
)
dy. (2.16)

More generally, it is possible to expand 〈A〉N at any order in 1/N , provided that
A is sufficiently smooth and exp(−βW) sufficiently small at infinity. In view of the
bounds (2.15), we can see that using a Taylor expansion of order 2p around y∗ for A

gives an expansion of 〈A〉N of order p.
The practical consequence of Theorem 1 is that, for computational purposes, we

may take the approximation

〈A〉N ≈ A

(
z−1

∫

R

y exp
(−βW(y)

)
dy

)
. (2.17)

As pointed out above, it is possible to improve this approximation if necessary by
expanding further in powers of 1/N .

We conclude this section by showing that our consideration of a single “segment”
carries through to the case when there are 3 repatoms, of respective index 0, M1 and
M1 + M2, with M1h = L1, M2h = L2, Nh = L = 1 (see Fig. 3). The average to
compute is

〈A〉N = Z−1
∫

RN

A
(
uM1, uM1+M2

)
exp

(

−β

N∑

i=1

W

(
ui − ui−1

h

))

du1 · · ·duN .
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Fig. 3 When considering two
consecutive segments—or
more—, the argument may be
readily adapted. See the text

In the regime h → 0, N,M1,M2 → +∞ with M1/N and M2/N fixed, we have,
using similar arguments,

lim
N→+∞〈A〉N = A

(
L1y

∗, (L1 + L2)y
∗).

The generalization to Nr > 3 repatoms, in the appropriate asymptotic regime, easily
follows.

Remark 5 (The Small Temperature Limit) It is interesting here to consider the small
temperature limit of the above expansion, that is, the limit β → +∞. In such a case,
using the Laplace method (see Bender and Orszag 1978), it is possible to compute the
limit of the terms that appear in the expansion (2.12) of 〈A〉N . We give as an example
the first and the second terms:

A
(
y∗) = A(a) + O

(
1

β

)
,

σ 2

2
A′′(y∗) = 1

2β

A′′(a)

W ′′(a)
+ O

(
1

β2

)
,

where a is the point where W attains its minimum (in this remark, we assume for
simplicity that W attains its minimum at a unique point). Hence,

〈A〉N =
[
A(a) + O

(
1

β

)]
+ 1

N

[
1

2β

A′′(a)

W ′′(a)
+ O

(
1

β2

)]
+ O

(
1

N2

)
.

Now, it is possible to recover these terms by expanding the energy E around the
equilibrium configuration corresponding to yi = a. Indeed, if we assume that W(y) =
W ′′(a)(y − a)2/2 in (2.2), then a simple explicit computation gives

〈A〉N = A(a) + 1

2NβW ′′(a)
A′′(a) + O

(
1

β2N2

)
.

Hence, expanding the first terms of (2.12) in powers of 1/β for large β gives an
expansion that agrees with that obtained using a harmonic approximation of the en-
ergy. This provides a quantitative evaluation of the latter approach in this asymptotic
regime.

2.2 Limit of the Free Energy

We now look for a more demanding result. For clarity, let us return to the general
coarse-grained average (1.7), which of course equals (2.2) and (2.5) in our simple
NN case. Instead of searching for the limit of the average 〈A〉 for large Nc, we now
look for the limit of the free energy per particle (see (1.6) and (1.11)). We discuss
below (see Remark 8 and the end of this section) the interpretation of that quantity.
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In the present section, ur is in fact equal to uN (the right-end atom) since atom 0,
although a repatom, is fixed to avoid translation invariance: u0 = 0. Thus, we wish to
identify the behavior for N large of

ECG
(
uN

) = − 1

β
ln

[∫

RN−1
exp

(−βE
(
u1, . . . , uN

))
du1 · · ·uN−1

]
. (2.18)

Note that ECG is the free energy corresponding to integrating out N − 1 variables.
From Thermodynamics, it is expected that ECG scales linearly with N . This is con-
firmed by the consideration of the harmonic potential W(x) = k

2 (x − a)2, for which
ECG(uN) = kN

2 (uN − a)2 + C(N,β, k), where

C(N,β, k) = 1

β

(
N − 1

2

)
lnN − N − 1

2β
ln

(
2π

βk

)

does not depend on uN (see the details in Patz 2009). Therefore, we introduce the
free energy per particle

FN(x) := 1

N
ECG(x),

so that

〈A〉N = Z−1
r

∫

R

A
(
uN

)
exp

(−βNFN

(
uN

))
duN . (2.19)

The limit behavior of FN is provided by the large deviations principle. This claim
is made precise in the following theorem.

Theorem 2 Assume that the potential W satisfies

∀ξ ∈ R,

∫

R

exp
(
ξy − βW(y)

)
dy < +∞, (2.20)

and exp(−βW) ∈ H 1(R \ {0}). Then the limit behavior of FN is given by the follow-
ing Legendre transform:

lim
N→+∞

(
FN(x) + 1

β
ln

z

N

)
= F∞(x) (2.21)

with

F∞(x) := 1

β
sup
ξ∈R

(
ξx − ln

[
z−1

∫

R

exp(ξy − βW(y)) dy

])
(2.22)

and z = ∫
R

exp
(−βW(y)

)
dy.

Remark 6 The assumption exp(−βW) ∈ H 1(R \ {0}) allows for W to be piecewise
continuous, with discontinuity at the origin. This in particular allows us to deal with
the type of potentials mentioned in Remark 3.
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Proof Let us first rewrite the free energy FN(x) as follows:

FN(x) = − 1

βN
ln

[∫

RN−1
exp

(

−β

N−1∑

i=1

W

(
ui − ui−1

h

)

− βW

(
x − uN−1

h

))

du1 · · ·duN−1

]

= −N − 1

βN
lnh − 1

βN
ln

[∫

RN−1
exp

(

−βW

(

Nx −
N−1∑

i=1

yi

)

− β

N−1∑

i=1

W(yi)

)

dy1 · · ·dyN−1

]

= − 1

β
lnh − 1

β
ln z − 1

βN
lnμN(x),

where μN is the law of the random variable (1/N)
∑N

i=1 Yi and Yi is a sequence of
i.i.d. random variables with law μ(y) = z−1 exp(−βW(y)). Observe that

μN(x) = N

zN

∫

RN−1
exp

(

−βW

(

Nx −
N−1∑

i=1

yi

)

− β

N−1∑

i=1

W(yi)

)

dy1 · · ·dyN−1.

We also have

μN(x) = Nμ∗N(Nx),

where μ∗N denotes the (N − 1)-fold convolution product of μ (μ∗2 = μ ∗ μ).
The sequence of measures μN satisfies a large deviations property (see, for in-

stance, Ellis 1985a, 1985b, 1995; Varadhan 1984). We are going to use it in order
to compute the limit of 1

N
lnμN. We first prove a lower bound, which is a simple

consequence of the results of (Varadhan 1984). The upper bound is more involved:
we need to reproduce the corresponding proof of (Varadhan 1984), and use a refined
version of the central limit theorem (see Lions and Toscani 1995).

We introduce the function

GN(x) = − 1

βN
lnμN(x), (2.23)

which satisfies, in view of the above computation,

FN(x) = − 1

β
ln

z

N
+ GN(x). (2.24)

First step: lower bound. We write

μN+1(x) = (N + 1)

∫

R

μ
(
N(x − t) + x

)
μN(t) dt. (2.25)
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Let us define

J x
N(t) = − 1

N
lnμ

(
N(x − t) + x

)
.

This function clearly satisfies the following convergence:

lim inf
u→t,N→+∞J x

N(u) = J x∞(t) :=
{

+∞ if t �= x,

0 if t = x.

Hence, we may apply Theorem 2.3 of (Varadhan 1984), which implies that

lim inf
N→+∞

(
− 1

N
ln

∫

R

exp
(−NJx

N(t)
)
μN(t) dt

)
≥ inf

t∈R

(
J x∞(t) + βF∞(t)

)

= βF∞(x), (2.26)

where F∞ is defined by (2.22). Since the left-hand side of (2.26) is equal to
β(N+1)

N
GN+1(x) + ln(N+1)

N
, we infer from the above bound that

lim inf
N→+∞GN(x) ≥ F∞(x). (2.27)

Second step: upper bound. We now aim at bounding GN from above. We recall that
the function we maximize in (2.22) is concave, so there exists a unique ξx ∈ R such
that

F∞(x) = 1

β

(
ξxx − ln

[
z−1

∫

R

exp
(
ξxy − βW(y)

)
dy

])
.

The Euler–Lagrange equation of the maximization problem implies

x =
∫

R
y exp(ξxy − βW(y)) dy

∫
R

exp(ξxy − βW(y)) dy
. (2.28)

We introduce the notations

μ̃(t) = exp(ξxt − βW(t))
∫

R
exp(ξxt − βW(t)) dt

and M(ξ) = z−1
∫

R

exp
(
ξ t − βW(t)

)
dt,

and compute

μN(x) = N

∫

RN−1
μ

(

Nx −
N−1∑

i=1

yi

)

μ(y1) · · ·μ(yN−1) dy1 · · ·dyN−1

= NM(ξx)
N−1

∫

RN−1
μ

(

Nx −
N−1∑

i=1

yi

)

exp

(

−ξx

N−1∑

i=1

yi

)

× μ̃(y1) · · · μ̃(yN−1) dy1 · · ·dyN−1

≥ NM(ξx)
N−1

∫

|Nx−∑
yi |≤δ

μ

(

Nx −
N−1∑

i=1

yi

)
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× exp

(

−ξx

N−1∑

i=1

yi

)

μ̃(y1) · · · μ̃(yN−1) dy1 · · ·dyN−1

≥ NM(ξx)
N−1

(
inf[−δ,δ]μ

)
exp

(−ξxNx − |ξx |δ
)

×
∫

|Nx−∑
yi |≤δ

μ̃(y1) · · · μ̃(yN−1) dy1 · · ·dyN−1,

for any δ > 0. Hence,

GN(x) ≤ − 1

βN
lnN − N − 1

βN
ln
(
M(ξx)

) + ξxx

β
+ |ξx | δ

βN

− 1

βN
ln
(

inf[−δ,δ]μ
)

− 1

βN
ln P

(∣∣∣∣∣
1

N

N−1∑

i=1

Yi − x

∣∣∣∣∣
≤ δ

N

)

, (2.29)

where the random variables Yi are i.i.d. of law μ̃. Equation (2.28) implies that
E(Yi) = x. According to the hypotheses on W , we have μ̃ ∈ H 1(R \ {0}), hence
we may apply Theorem 5.1 of (Lions and Toscani 1995). It implies that the law θN

of the variable (
∑N

i=1 Yi − Nx)/
√

N converges in H 1(R) to some normal law. In
particular, we have convergence in L∞, hence

P

(∣∣∣∣∣
1

N

N−1∑

i=1

Yi − x

∣∣∣∣∣
≤ δ

N

)

=
∫ x+δ√

N−1

x−δ√
N−1

θN−1(t) dt ≥ 2γ δ√
N − 1

,

for N large enough, where γ > 0 does not depend on N . Inserting this inequality into
(2.29), we find

GN(x) ≤ − 1

βN
lnN − N − 1

βN
ln
(
M(ξx)

) + ξxx

β
+ |ξx | δ

βN

− 1

βN
ln
(

inf[−δ,δ]μ
)

− 1

βN
ln

(
2γ δ√
N − 1

)
. (2.30)

Hence,

lim sup
N→+∞

GN(x) ≤ − 1

β
ln
(
M(ξx)

) + ξxx

β
,

which implies, according to the definition of M and ξx , that

lim sup
N→+∞

GN(x) ≤ F∞(x). (2.31)

Estimates (2.27) and (2.31) imply limN→+∞ GN(x) = F∞(x). In view of (2.24), this
implies (2.21). �
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Remark 7 (The Small Temperature Limit) As in Remark 5, it is possible to com-
pute the expansion of F∞(x) as β → +∞. Using the Laplace method, and assuming
that W is convex, one finds that

F∞(x) = W(x) + 1

2β
lnW ′′(x) + O

(
1

β2

)
.

Let us now consider another strategy to find an approximation of FN . In the spirit
of the quasicontinuum method, we expand E(u1, . . . , uN) around the equilibrium
configuration ui = iuN/N , for a given uN . More precisely, we set ui = ui + ξi ,
assume that ξi is small, and expand the energy at second order with respect to ξi , as
explained in the Introduction. This yields the approximate energy Ẽ defined by (1.9),
that we next insert in (2.18) (as we did in (1.10)). Due to the harmonic approximation,
the resulting coarse-grained energy that we denote EHA, is analytically computable
and reads

EHA(x) = NW(x) + N − 1

2β
lnW ′′(x) + N − 1

2β
ln

β

2π
+ 1

2β
lnN. (2.32)

Hence,

FHA(x) := lim
N→+∞

1

N
EHA(x) = W(x) + 1

2β
lnW ′′(x) + 1

2β
ln

β

2π
. (2.33)

Thus, up to an additive constant, FHA(x) corresponds to the first-order approximation
(in powers of 1/β) of F∞(x).

Slightly improving the proof of Theorem 2 above, it is possible to prove the con-
vergence of the derivative of the free energy, a quantity which is indeed practically
relevant (e.g., for the simulation of (1.8)):

Corollary 1 Assume that the hypotheses of Theorem 2 are satisfied. Then we have

FN(x) + 1

β
ln

(
z

N

)
−→ F∞(x) in L

p

loc, ∀p ∈ [1,+∞).

In particular, this implies that F ′
N converges to F ′∞ in W

−1,p

loc .

Proof According to Theorem 2, we already know the pointwise convergence of
GN(x) = FN(x)+β−1 ln(z/N). We therefore only need to prove that GN is bounded
in L∞

loc to prove our claim.

Lower bound: We go back to (2.25), and point out that μ ≤ 1/z. Hence,

μN+1(x) ≤ N + 1

z

∫

R

μN = N + 1

z
,

which implies, using (2.23) that

GN+1(x) ≥ − 1

β(N + 1)
ln

N + 1

z
,

which is bounded from below independently of N .
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Upper bound: We return to (2.30), and notice that according to the definition of ξx , the
function x �→ ξx is continuous. In addition, the constant γ in (2.30) is a continuous
function of ξx . Therefore, (2.30) provides an upper bound on GN .

As a conclusion, GN is bounded in L∞
loc, which allows to conclude. �

Remark 8 Considering the above theoretical results, it could be tempting to approach
the average (2.19), that is,

〈A〉N = Z−1
r

∫

R

A
(
uN

)
exp

(−βNFN

(
uN

))
duN,

by

Z−1∞
∫

R

A
(
uN

)
exp

(−βNF∞
(
uN

))
duN, (2.34)

with Z∞ = ∫
R

exp(−βNF∞(uN)) duN . Note that FN has been replaced by F∞ in
the exponential factor. This strategy is not efficient since this approximation does not
provide the expansion (2.11)–(2.12) of 〈A〉N in powers of 1/N . Indeed, it is possible
to use the Laplace method to compute the expansion of (2.34) as N → +∞. It reads

A
(
y∗) + 1

2N

(
σ 2A′′(y∗) + m3

σ 2
A′(y∗)

)
+ o

(
1

N

)
,

where σ is defined by (2.9) and m3 is defined by (2.16). This expansion coincides
with (2.11)–(2.12) only for the first term, that is A(y∗). The second one differs, unless
m3A

′(y∗) = 0.
To improve the approximation (2.34), one may use the precised large deviations

principle (see Dembo and Zeitouni 1993, Theorem 3.7.4 or Bahadur and Ranga Rao
1960). In such a case, one replaces (2.34) by

Z̃−1∞
∫

R

A
(
uN

)√
F ′′∞

(
uN

)
exp

(−βNF∞
(
uN

))
duN, (2.35)

with Z̃∞ = ∫
R

√
F ′′∞(uN) exp(−βNF∞(uN)) duN . This quantity is well defined

since F∞ is a convex function. Then it is seen that the expansion of (2.35) in powers
of 1/N agrees with (2.11)–(2.12) up to the second order term. Note however that
using (2.35) leads to a much more expensive computation than using (2.12), since it
requires the evaluation of F∞ and its second derivative.

The above convergence of the free energy FN is useful for the computation of the
free energy of a chain of atoms with a prescribed length. Indeed, consider a chain on
which we impose

uN = 
,
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for a fixed 
. We aim at computing the free energy FN as a function of 
, in the limit
N → +∞. We have

FN(
) = − 1

βN
ln

[∫

RN−1
exp

(

−β

N∑

i=1

W

(
ui − ui−1

h

))

du1 · · ·duN−1

]

,

where uN = 
. The limit of FN is provided by Theorem 2.
Another interest of the approach is to provide an approximation of F ′

N(
), a quan-
tity related to the constitutive law of the material under consideration, at the finite
temperature 1/β . Indeed, note that

F ′
N(
) = 〈AN 〉
N , (2.36)

where 〈·〉
N is the average with respect to the Gibbs measure dμ
(u
1, . . . , uN−1) as-

sociated to the energy
∑N−1

i=1 W(ui−ui−1

h
) + W(
−uN−1

h
) (recall that h = 1/N ), and

the observable AN is defined by

AN

(
u1, . . . , uN−1) = W ′(N

(

 − uN−1)).

Note that W ′(N(
 − uN−1)) can be interpreted as the force in the spring between
atom N − 1 and N , when the position of the latter is fixed at the value 
. Hence,
F ′

N(
) can be interpreted as the average force between atoms N − 1 and N , when
the position of atom N is prescribed at uN = 
, and the relation 
 �→ F ′

N(
) can be
considered as the constitutive relation (at a given temperature) of the chain, providing
the stress F ′

N(
) as a function of the strain 
. Corollary 1 provides the convergence
of F ′

N(
) to F ′∞(
).

Remark 9 Note that in (2.36) the observable AN depends on N . Hence, the results
of Sect. 2.1 (obtained using the law of large numbers and not involving the large
deviations principle) do not apply to compute the large N limit of 〈AN 〉
N . In addition,
the Gibbs measure dμ
 is not of the form considered previously, since the atom N

has a prescribed position.

2.3 Numerical Tests

For our numerical tests, we choose the pair interaction potential

W(x) = 1

2
(x − 1)4 + 1

2
x2 (2.37)

shown on Fig. 4. Note that W(x) grows fast enough to +∞ when |x| → +∞, such
that assumptions (2.8) and (2.20) are satisfied. Note also that we have made no as-
sumption on the convexity of W in Theorems 1 and 2. We consider here a convex
potential. At the end of this section, we will consider a nonconvex example (see
(2.38)), and show that we obtain similar conclusions.

We first consider the computation of ensemble averages, and we again restrict
ourselves to the case of two repatoms u0 = 0 and uN . This is just for simplicity and
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Fig. 4 The potential W

(defined by (2.37)) chosen for
the tests

for the sake of demonstrating the feasibility and the interest of our approach. The
case of Nr repatoms may be treated likewise.

We choose an observable A(x), and we compare the following four quantities:

(i) the exact average 〈A〉N defined by (2.2). Following (1.3)–(1.4), this quantity is
computed as the long-time average of A(uN(t)) along the full system dynamics

dut = −∇uE(ut ) dt + √
2/β dBt in R

N.

This equation is numerically integrated with the forward Euler scheme (also
called the Euler–Maruyama scheme), with a small time step �t :

un+1 = un − �t∇uE(un) + √
2�t/βGn

where Gn is a N -dimensional vector of random variables distributed according
to a Gaussian normal law. In practice, we have simulated many independent
realizations of this SDE, in order to compute error bars for 〈A〉N .

(ii) a harmonic type approximation of 〈A〉N , based on the “interpolation + harmonic
expansion” procedure outlined above. That is, we introduce EHA defined by
(2.32), and we approximate 〈A〉N by

〈A〉HA
N :=

∫
R

A(x) exp[−βEHA(x)]dx
∫

R
exp[−βEHA(x)]dx

.

(iii) a Law of Large Numbers (LLN) type approximation of 〈A〉N , which consists in
approximating 〈A〉N by A(y∗), following Theorem 1.

(iv) a refined approximation, which consists in approximating 〈A〉N by 〈A〉approx
N

defined by (2.12), following Theorem 1.

Note that only one-dimensional integrals are needed for approximations (ii), (iii), and
(iv). They can be computed with a high accuracy.

We plot on Fig. 5 these four quantities, for increasing values of N (the temperature
is fixed at 1/β = 1), for the observable A(x) = exp(x). On Fig. 6, we compare the
same quantities, now as functions of the temperature, for N = 100 and for N = 10.
We here work with A(x) = x2, for which 〈A〉N = 〈A〉approx

N .
As expected, the thermodynamic limit strategies (iii) and (iv) better agree with the

full atom calculation, whatever the temperature, provided the number of eliminated
atoms is large (note that the strategy (iv) is very accurate even for the small value N =
10, at the temperature 1/β = 1). Approximation (ii) is clearly ineffective for high
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Fig. 5 Convergence, as N increases, of 〈A(uN )〉N (exact), of 〈A(uN )〉approx
N

(refined LLN) and of

〈A(uN )〉HA
N

(HA) and comparison to A(y∗) (LLN) (temperature 1/β = 1, observable A(x) = exp(x);
we have performed computations for N = 10, 25, 50, and 100; on the right graph, we only plot the most
accurate results with error bars)

Fig. 6 We plot 〈A(uN )〉N = 〈A(uN )〉approx
N

(exact), 〈A(uN )〉HA
N

(HA) and A(y∗) (LLN) as functions of

the temperature 1/β : on the left graph, N = 100; on the right graph, N = 10 (observable A(x) = x2)

temperatures. On the other hand, for a sufficiently small temperature and a sufficiently
small number of eliminated atoms, this approximation is close to the full atom result.
However, even for the small values N = 10 and 1/β = 0.2, our asymptotic result
〈A(uN)〉approx

N = 1.6299 (for A(x) = exp(x)) is closer to the exact result 〈A(uN)〉N =
1.6303 ± 0.0008 than the harmonic approximation result 〈A(uN)〉HA

N = 1.6469.

Remark 10 As in Remark 3, we emphasize that the computations reported on here do
not account for constraints on the positions of atoms. Analogous computations, that
account for constraints, may be performed, using the potential Wc defined by (2.6)–
(2.37). They provide similar conclusions, as can be seen on Fig. 7, which is very
similar to Fig. 6.

We now turn to the case of the free energy FN . We are going to compare differ-
ent approximations of its derivative. The full atom value F ′

N(x) is computed as the
ensemble average (2.36). We compare this quantity with
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Fig. 7 We plot
〈A(uN )〉N = 〈A(uN )〉approx

N

(exact), 〈A(uN )〉HA
N

(HA) and
A(y∗) (LLN) as functions of the
temperature 1/β (N = 100,
observable A(x) = x2). The
potential energy is of type (2.6):
it is equal to W(x) defined by
(2.37) if x > 0, and +∞
otherwise

(i) its large N limit F ′∞(x), where F∞ is defined by (2.22), on the one hand,
(ii) and, on the other hand, its harmonic type approximation F ′

HA(x), where FHA is
defined by (2.33). We have

F ′
HA(x) = W ′(x) + 1

2β

W ′′′(x)

W ′′(x)
.

We briefly detail how we compute F ′∞(x). Let ξx be the unique real number at which
the supremum in (2.22) is attained. We have

F ′∞(x) = ξx

β
.

The Euler–Lagrange equation solved by ξx is (2.28), that we recast as

z−1
∫

R

(x − y) exp(ξxy) exp
(−βW(y)

)
dy = 0.

Let us introduce G(y, ξ) = (x − y) exp(ξy). We hence look for ξx such that
Eμ[G(Y, ξx)] = 0, where the scalar random variable Y is distributed according to
the probability measure μ(y) = z−1 exp(−βW(y)). The Robbins–Monroe algorithm
(Kushner and Clark 1978) can be used to compute ξx , hence F ′∞(x).

We first study the convergence of F ′
N(x) to F ′∞(x) as N increases, for a fixed

chain length x = 1.4 and a fixed temperature 1/β = 1. Results are shown on Fig. 8.
We indeed observe that F ′

N(x) → F ′∞(x) when N → +∞.
We now compare the two approximations (i) and (ii) of F ′

N(x), for N = 100 and
1/β = 1. Results are shown on Fig. 9. We observe that F ′∞(x) is a very good ap-
proximation of F ′

N(x). As expected, the temperature is too high for the harmonic
approximation to provide an accurate approximation of F ′

N(x).
On Fig. 10, we plot F ′∞(x) for several temperatures, as well as its zero temperature

limit, which is W ′(x) (see Remark 7).
Up to here, we have used the convex potential (2.37). For the sake of completeness,

we now briefly consider the case of a nonconvex potential W . We choose the toy-
model

W(x) = (
x2 − 1

)2
, (2.38)



262 J Nonlinear Sci (2010) 20: 241–275

Fig. 8 Convergence of F ′
N

(x)

(shown with error bars) to
F ′∞(x) as N increases
(temperature 1/β = 1, fixed
chain length x = 1.4)

Fig. 9 We plot F ′
N

(x), F ′∞(x),

and F ′
HA(x), for the temperature

1/β = 1 and N = 100. On the
scale of the figure, F ′

N
(x) and

F ′∞(x) are on top of each other

Fig. 10 F ′∞(x) for different
temperatures

which corresponds to a double-well potential. We first study the convergence of
F ′

N(x) to F ′∞(x) as N increases, for a fixed chain length x = 0.5 and a fixed tem-
perature 1/β = 1. Results are shown on Fig. 11. As for the convex potential case, we
observe that F ′

N(x) → F ′∞(x) when N → +∞. On Fig. 12, we plot F ′∞(x) for sev-
eral temperatures. Numerical results are consistent with the small temperature limit
limT →0 F ′∞(x) = (W ∗)′(x), where W ∗ is the convex envelop of W .

Note that, in view of its definition (2.22), F∞ is always a convex function. Hence,
as in the zero temperature case, we observe, in this one-dimensional setting, that the
macroscopic constitutive law 
 �→ F∞(
) is a convex function.
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Fig. 11 Convergence of F ′
N

(x)

(shown with error bars) to
F ′∞(x) as N increases
(temperature 1/β = 1, fixed
chain length x = 0.5), in the
case of the double-well potential
(2.38)

Fig. 12 F ′∞(x) for different
temperatures, in the case of the
double-well potential (2.38)

3 The NNN Case and Some Extensions

In this section, we first consider the case of a NNN interacting system. The analysis
is detailed in Sect. 3.1. In Sect. 3.2, we point out some possible extensions, first the
NNNN case (still for one-dimensional systems) and second the case of linear polymer
chains, where atoms sample the physical space R

3.

3.1 The Next-to-Nearest Neighbor (NNN) Case

We now consider the next-to-nearest neighbor case. It turns out that, for the compu-
tation of ensemble averages as well as for other questions, this case is significantly
more intricate than the NN case. Our strategy, based on the law of large numbers, will
be similar to that used for the NN case, but the object manipulated are not indepen-
dent random variables any longer. Markov chains are the right notion formalizing the
situation mathematically.

We begin by introducing the rescaled atomistic energy, similarly to (2.1):

E
(
u1, . . . , uN

) =
N∑

i=1

W1

(
ui − ui−1

h

)
+

N−1∑

i=1

W2

(
ui+1 − ui−1

h

)
.
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As above, we set u0 = 0, and we introduce the change of variables (2.3), re-
placing (ui − ui−1)/h by the interatomic distances yi . Recall from (2.4) that

uN = 1
N

∑N
i=1 yi . The ensemble average 〈A〉N of an observable that depends only

on the right-end atom therefore writes

〈A〉N = Z−1
∫

RN

A
(
uN

)
exp

(−βE
(
u1, . . . , uN

))
du1 · · ·duN

= Z−1
∫

RN

A

(
1

N

N∑

i=1

yi

)

× e−β(
∑N

i=1 W1(yi )+∑N−1
i=1 W2(yi+yi+1)) dy1 · · ·dyN . (3.1)

The key ingredient is now to see the above expression, as N goes to infinity, as an
asymptotics for a discrete-time Markov chain. The asymptotics of Markov chains
being a mathematical problem much more involved than that of i.i.d. sequences, we
restrict ourselves to the computation of the average of an observable. The asymptotic
behavior of the free energy may be studied, applying a large deviations principle for
Markov chains (see, for instance den Hollander 2000, Theorem IV.3). We will not
pursue in this direction.

Section 3.1.1 deals with the case of two repatoms (namely u0 = 0 and uN ), while
Sect. 3.1.2 indicates the changes in order to deal with more than two repatoms. Nu-
merical results will be reported in Sect. 3.1.3.

3.1.1 Limit of the Average, the Case of Two Repatoms

In order to compute limN→+∞〈A〉N , we introduce the notation

f (x, y) := exp
(−βW2(x + y)

)
exp

(−βW1(y)
)
.

Equation (3.1) rewrites

〈A〉N = Z−1
∫

RN

A

(
1

N

N∑

i=1

yi

)

e−βW1(y1)

× f (y1, y2) · · ·f (yN−1, yN)dy1 · · ·dyN . (3.2)

Our method consists in considering the sequence of variables (y1, . . . , yN) in (3.2)
as a realization of a Markov chain with kernel f (·, ·). However, the slight tech-
nical difficulty at this stage is that the kernel f is not normalized, since in gen-
eral

∫

R

f (y1, y2) dy2 =
∫

R

exp
(−βW2(y1 + y2)

)
exp

(−βW1(y2)
)
dy2 �= 1.

A standard trick of probability theory allows to circumvent this difficulty. Intro-
duce

f (x, y) := exp

[
−βW2(x + y) − β

2
W1(x) − β

2
W1(y)

]
.
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Note that f is a symmetric function (whereas f is not), hence the operator

Pφ(y) =
∫

R

f (y, z)φ(z) dz (3.3)

is self-adjoint on L2(R). Consider then the variational problem

max
ψ∈L2(R)

{∫

R2
ψ(y)ψ(z)f (y, z) dy dz;

∫

R

ψ2(y) dy = 1

}
. (3.4)

Using standard tools of spectral theory of self-adjoint compact operators (Dunford
and Schwartz 1963), it is possible to prove that this problem has a maximizer (we
denote it by ψ1), and that up to changing ψ1 into −ψ1, the maximizer is unique. In
addition, one can choose ψ1 such that ψ1 > 0. The Euler–Lagrange equation of (3.4)
reads

λψ1(y) =
∫

R

f (y, z)ψ1(z) dz

for some λ, and we recognize an eigenvalue problem, Pψ1 = λψ1, for the op-
erator (3.3). Multiplying the above equation by ψ1(y) and integrating, we ob-
tain

λ =
∫

R2
ψ1(y)ψ1(z)f (y, z) dy dz > 0.

We now define

g(y, z) := ψ1(z)

λψ1(y)
f (y, z). (3.5)

By construction,
∫

R

g(y, z) dz = 1,

∫

R

ψ2
1 (y)g(y, z) dy = ψ2

1 (z).

The average (3.2) now reads

〈A〉N = Z−1
g

∫

RN

A

(
1

N

N∑

i=1

yi

)

ψ1(y1)e
− β

2 W1(y1)

× g(y1, y2) · · ·g(yN−1, yN)
e− β

2 W1(yN )

ψ1(yN)
dy1 · · ·dyN,

with

Zg =
∫

RN

ψ1(y1)e
− β

2 W1(y1)g(y1, y2) · · ·g(yN−1, yN)
e− β

2 W1(yN )

ψ1(yN)
dy1 · · ·dyN,

and where (y1, . . . , yN) may now be seen as a realization of a normalized Markov
chain of kernel g, with invariant probability measure ψ2

1 . We assume that f decays
fast enough at infinity (which ensures for instance that (3.4) is well posed) and that
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it is positive. This latter assumption ensures that the Markov chain satisfies the fol-
lowing accessibility condition: for any x ∈ R, and for any measurable set B ⊂ R of
positive Lebesgue measure, we have

∫
B g(x, y) dy > 0. Under this property, com-

bined with the existence of an invariant probability measure (ψ2
1 (y) dy in the present

case), it is known (see Meyn and Tweedie 1993, Theorem 17.1.7) that the invariant
measure is unique, and that the Markov chain satisfies a law of large numbers with
respect to it. We now state a direct corollary of this general result that applies to our
context.

Theorem 3 Assume that A is continuous, and satisfies the following conditions:

∃p ≥ 0, ∃C > 0, ∀x ∈ R,
∣∣A(x)

∣∣ ≤ C
(
1 + |x|p).

Under the assumptions that W1,W2 ∈ L1
loc(R) are bounded from below that

e−βW1 , e−βW2 ∈ W
1,1
loc (R) and that

∀q ≥ 0,

∫

R

|x|qe−βW1(x) dx < +∞ and
∫

R

|x|qe−βW2(x) dx < +∞, (3.6)

the ergodic theorem for Markov chains (Meyn and Tweedie 1993) yields

lim
N→+∞〈A〉N = A

(
y∗) where y∗ :=

∫

R

yψ2
1 (y) dy.

Remark 11 Note that, for the result to hold true, (3.6) is not needed. The existence
of the moment of order p is sufficient. However, assumption (3.6) will be useful for
Theorem 4 below.

Remark 12 It might sound a little strange that ψ1 is the eigenvector of the transition
operator P defined by (3.3), whereas the invariant measure of the chain is ψ2

1 . This
is explained by the following fact: the expectation value of yi is equal to

E(yi) =
∫

R

x
(
P i−1ϕ0

)
(x)

(
P N−iϕ1

)
(x) dx,

for some initial laws ϕ0 and ϕ1, where P i is recursively defined by P iϕ = P [P i−1ϕ]
(recall that P is the operator defined by (3.3)). Hence, if 1 � i � N , then both
P i−1ϕ0 and P N−iϕ1 converge to the eigenvector of P associated with the largest
eigenvalue, that is, ψ1 (hence the appearance of ψ2

1 rather than ψ1). This is explained
in more details in Sect. 3.2.1 below in the case of a non self-adjoint transition opera-
tor P .

Here again, it is possible to compute the next terms in the expansion of 〈A〉N in
powers of 1/N . However, the computations are much more intricate than in the i.i.d.
case. The terms of the expansion here contain covariance terms, together with terms
containing the initial state of the Markov chain. As an example, we give the first term
of the expansion in the following theorem.
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Theorem 4 Assume that A is of class C3. Then under the assumptions of Theorem 3,
we have

〈A〉N = A
(
y∗) + 1

N
A′(y∗)∑

i≥1

E
(
Yi − y∗) + σ 2

2N
A′′(y∗) + O

(
1

N2

)
, (3.7)

with

σ 2 =
∫

R

(
x − y∗)2

ψ2
1 (x) dx + 2

∑

i≥2

E
((

Ỹi − y∗)(Ỹ1 − y∗)), (3.8)

where (Yi)i≥1 and (Ỹi )i≥1 are Markov chains of initial law Z−1
1 ψ1e

− β
2 W1 and ψ2

1
respectively, and of transition kernel g. Moreover, the series appearing in (3.7)
and (3.8) converge exponentially fast.

Remark 13 Let us mention that σ 2 defined by (3.8) is exactly the variance appear-
ing in the central limit theorem for Markov chains (Meyn and Tweedie 1993, Theo-
rem 17.0.1).

In addition, we see that in the special case of i.i.d. random variables, the second
term of (3.8) vanishes, together with the term proportional to A′(y∗) in (3.7). We then
recover estimate (2.11)–(2.12).

Remark 14 The assumptions of Theorems 3 and 4 are not sharp. However, they allow
for simple proofs, and for a wide variety of interaction potentials W1 and W2.

Remark 15 Again, as in Remark 3, constraints on the positions of the atoms may be
accounted for.

Note that Theorem 4 suggests a strategy for numerically computing the terms of
(3.7). Indeed, it is possible to compute numerically ψ1 by discretizing (3.4). Numer-
ical integration then allows to compute y∗ and the variance

∫
R
(x − y∗)2ψ2

1 (x) dx.

The computation of the infinite sums in (3.7)–(3.8) is then performed using a simula-
tion of the corresponding Markov chains and taking the expectation value. Note that
the law of Yi converges exponentially fast (when i → ∞) to the invariant measure
ψ2

1 due to the existence of a spectral gap for the transition operator. Hence, the terms

E(Yi − y∗) and E((Ỹi − y∗)(Ỹ1 − y∗)) that appear in both sums decay exponentially
fast, and only a few terms are needed in practice. We will observe in Sect. 3.1.3 that,
on our test example, A(y∗) is already a good approximation of 〈A〉N . Hence, we have
not implemented the strategy just described.

3.1.2 More than Two Repatoms

We explain in this section how the results of Sect. 3.1.1 can be adapted to the case
when more than two repatoms are considered.

We thus consider the following setting: we have N + M + 1 atoms of positions
ui , 0 ≤ i ≤ M + N , and u0, uN and uN+M are the repatoms. We assume that N and
M are such that N/(N + M) = L1 is fixed. To remove translation invariance, we set
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u0 = 0. Since the atoms on the right of uN will not play the same role as those on the
left, we denote their distance differently:

yi := ui − ui−1

h
∀1 ≤ i ≤ N,

zi := ui+1+N − ui+N

h
∀0 ≤ i ≤ M − 1,

where h = 1/(N + M). We assume that the observable A is a function of uN − u0

and uN+M − uN . Hence, the expectation value of A reads

〈A〉N,M = Z−1
∫

RN+M

A

(
1

N + M

N∑

i=1

yi,
1

N + M

M−1∑

i=0

zi

)

e− β
2 W1(y1)

×
N−1∏

i=1

f (yi, yi+1)e
− β

2 W1(yN )e−βW2(yN+z0)e− β
2 W1(z0)

×
M−2∏

i=0

f (zi, zi+1)e
− β

2 W1(zM−1) dy dz, (3.9)

where, as before, we have set f (x, y) = exp[−βW2(x + y) − β
2 W1(x) − β

2 W1(y)].
Here again, we may use ψ1 that solves (3.4) in order to rewrite (3.9) as the expecta-
tion value of a function of two independent Markov chains. Indeed, ψ1 and g being
defined as before (see (3.4) and (3.5)), we have

〈A〉N,M = Z−1
∫

RN+M

A

(
1

N + M

N∑

i=1

yi,
1

N + M

M−1∑

i=0

zi

)

ψ1(y1)e
− β

2 W1(y1)

×
N−1∏

i=1

g(yi, yi+1)
e− β

2 W1(yN )

ψ1(yN)
e−βW2(yN+z0)ψ1(z0)e

− β
2 W1(z0)

×
M−2∏

i=0

g(zi, zi+1)
e− β

2 W1(zM−1)

ψ1(zM−1)
dy dz

= E

[

A

(
1

N + M

N∑

i=1

Yi,
1

N + M

M−1∑

i=0

Zi

)

× e− β
2 W1(YN )− β

2 W1(ZM−1)−βW2(YN+Z0)

ψ1(YN)ψ1(ZM−1)

]

×
(

E

[
e− β

2 W1(YN )− β
2 W1(ZM−1)−βW2(YN+Z0)

ψ1(YN)ψ1(ZM−1)

])−1

, (3.10)
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where the sequences (Yi)i≥1 and (Zi)i≥0 are two independent realizations of a

Markov chain of initial law ψ1e
− β

2 W1 , and of transition kernel g. These Markov
chains have exactly the same properties as the chain of Sect. 3.1.1. Hence, we may
use again the ergodic theorem as before to prove that

1

N + M

N∑

i=1

Yi −→ L1y
∗, 1

N + M

M−1∑

i=0

Zi −→ L2y
∗,

almost surely, with L1 = N/(N + M) and L2 = M/(N + M). Thus, the expectation
values in (3.10) simplify, allowing to prove the following theorem.

Theorem 5 Assume that A, W1 and W2 satisfy the assumptions of Theorem 3. As-
sume in addition that L1 = N

N+M
is fixed, and set L2 = M

N+M
= 1 − L1. Then we

have

lim
N,M→+∞〈A〉N,M = A

(
L1y

∗,L2y
∗) with y∗ =

∫

R

yψ2
1 (y) dy.

Here again, it is possible to use an expansion in powers of 1/N and 1/M of the ex-
pectation value 〈A〉N,M . For simplicity, we restrict ourselves to the expansion at first
order, and consider the case N = M . We assume that the hypotheses of Theorem 4
and Theorem 5 are satisfied. We then have

〈A〉N,N = A
(
L1y

∗,L2y
∗) + σ 2

2N
�A

(
L1y

∗,L2y
∗)

+ 1

N

[
∂1A

(
L1y

∗,L2y
∗) + ∂2A

(
L1y

∗,L2y
∗)]∑

i≥1

E
(
Yi − y∗)

+ O

(
1

N2

)
,

with L1 = L2 = 1/2 and where σ is defined by (3.8). We have not implemented this
formula, since on our test example, A(L1y

∗,L2y
∗) is already a good approximation

of 〈A〉N,N .

3.1.3 Numerical Results

For the NNN model, we choose the potentials

W1(x) = 1

2
(x − 1)4 + 1

2
x2 and W2(x) = 1

4
(x − 2.1)4.

Note that other choices are possible, such as W1 ≡ W2, or W2(x) = W1(x/2) (such
that the equilibrium distances of W1 and W2 are compatible). We have chosen W2

such that we observe a significant dependence of ensemble averages (for instance of
the mean length 〈uN 〉N of the chain) with respect to temperature.
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Fig. 13 Left graph: convergence, as N increases, of 〈A(uN )〉N (exact) to A(y∗) (LLN), at the temperature
1/β = 1, for A(x) = exp(x). Right graph: convergence, as N increases, of 〈A(uN ,u2N −uN )〉2N (exact)
to A(y∗/2, y∗/2) (LLN), at the temperature 1/β = 1, for A(x,y) = exp(2x(x + y))

It is important that W1 and W2 grow fast enough at infinity, such that assumptions
of Theorem 3 are satisfied (in particular assumption (3.6)). As in the NN case, we do
not need any convexity assumption on W1 and W2.

We consider two cases:

• the chain consists of N + 1 atoms, there are two repatoms u0 = 0 and uN , and
the observable only depends on the right-end atom uN . We aim at computing
〈A(uN)〉N . This is the situation of Sect. 3.1.1.

• the chain consists of 2N + 1 atoms, there are three repatoms u0 = 0, uN and
u2N , and the observable depends on uN and u2N − uN . We aim at computing
〈A(uN,u2N − uN)〉2N . This is a situation covered by Sect. 3.1.2.

Theorems 3 and 5, respectively, provide the asymptotics limN→+∞〈A(uN)〉N =
A(y∗) and limN→+∞〈A(uN,u2N − uN)〉2N = A( 1

2y∗, 1
2y∗).

We first study the convergence of ensemble averages at the temperature 1/β = 1,
as N increases. Results are shown on Fig. 13, for a particular choice of observable (we
have performed the same tests with other observables, with similar conclusions). We
indeed observe that the ensemble averages of the full atom system converge to their
Law of Large Numbers (LLN) limit, in both cases of two and three repatoms. Note
that the exact result for N = 10 is already very well approximated by the asymptotic
limit, namely A(y∗) in the two repatoms case, A(y∗/2, y∗/2) in the three repatoms
case.

We next study the averages as functions of the temperature, for N = 100. Results
are shown on Fig. 14. We observe an excellent agreement between the full atom
value and the asymptotic limit, in both cases of two and three repatoms, whatever the
temperature.

3.2 Extensions

In this section, we briefly explain that our strategy carries out to more general cases.
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Fig. 14 Left graph: we plot 〈A(uN )〉N (exact), 〈A(uN )〉HA
N

(HA) and A(y∗) (LLN) as functions of

the temperature 1/β (N = 100, A(x) = exp(x)). Right graph: we plot 〈A(uN ,u2N − uN )〉2N (exact),
〈A(uN ,u2N − uN )〉HA

2N
(HA) and A(y∗/2, y∗/2) (LLN) as functions of the temperature 1/β (N = 100,

A(x,y) = exp(2x))

3.2.1 The NNNN Case

The case of any finite range interaction may be treated in the same way as we treated
the NNN case in Sect. 3.1.1. Indeed, consider for instance the case of next to next to
nearest neighbor interaction (NNNN). In such a case, we are lead to consider (we go
back here to the case of 2 repatoms for the sake of clarity):

〈A〉N = Z−1
∫

RN

A

(
1

N

N∑

i=1

yi

)

exp

[

−β

N∑

i=1

W1(yi)

− β

N−1∑

i=1

W2(yi + yi+1) − β

N−2∑

i=1

W3(yi + yi+1 + yi+2)

]

dy1 · · ·dyN

= Z−1
∫

RN

A

(
1

N

N∑

i=1

yi

)

b(yN−1, yN)

N−2∏

i=1

f (yi, yi+1, yi+2) dy1 · · ·dyN,

where we have set f (x, y, z) = exp[−βW1(x)−βW2(x +y)−βW3(x +y +z)], and
used the notation b(yN−1, yN) = exp[−βW1(yN−1)−βW1(yN)−βW2(yN−1 +yN)]
for the boundary term. We assume, for the sake of simplicity, that N is even, i.e.,

N = 2M,

and define the new variables

ξi = (y2i−1, y2i ), 1 ≤ i ≤ M.

Hence, we have

〈A〉N = Z−1
∫

R2M

A

(
1

2M

M∑

i=1

ξi · (1,1)

)

b(ξM)

M−1∏

i=1

f̃ [ξi, ξi+1]dξ1 · · ·dξM, (3.11)
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where

f̃
[
(x, y), (z, t)

] = f (x, y, z)f (y, z, t).

Hence, this change of variables allows to manipulate again a Markov chain, but in
dimension 2. However, the renormalization trick we have used in the NNN case (see
Sect. 3.1.1) cannot be used here, because it relies on the fact that the transition opera-
tor is self-adjoint. It is nevertheless possible to use the above structure in the following
way: define the operator (on L2(R2))

[Pϕ](z, t) =
∫

R2
f̃

[
(x, y), (z, t)

]
ϕ(x, y) dx dy,

together with its adjoint

[
P ∗ϕ

]
(z, t) =

∫

R2
f̃

[
(z, t), (x, y)

]
ϕ(x, y) dx dy.

Before studying the average (3.11), let us consider the average

〈B〉 = Z−1
∫

R2M

B(ξi)b(ξM)

M−1∏

i=1

f̃ [ξi, ξi+1]dξ1 · · ·dξM

for a continuous and bounded function B . Then

〈B〉 = Z−1
∫

R2
B(ξ)

[
P i−2ϕ

]
(ξ)

[(
P ∗)M−i−1

ψ
]
(ξ) dξ, (3.12)

where

ϕ(z, t) =
∫

R2
f̃

[
(x, y), (z, t)

]
dx dy,

ψ(t, z) =
∫

R2
b(y, x)f̃

[
(t, z), (y, x)

]
dx dy.

We assume that the operators P and P ∗ have a simple and isolated largest eigen-
value (which can be proved for many interactions, using for instance Krein–Rutman
theorem, Schaefer and Wolff 1999). Let us denote by φ and φ∗ the corresponding
eigenvectors in L2(R2), namely

Pφ = λφ, P ∗φ∗ = λφ∗,

where λ = sup Spectrum(P ) = sup Spectrum(P ∗). If 1 � i � M , we infer from
(3.12) that

〈B〉−→Z−1∞
∫

R2
B(ξ)φ(ξ)φ∗(ξ) dξ,
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Fig. 15 An example of polymer chain. The corresponding model is the same as the one studied in this
article, except that the positions ui are in R

3

where Z∞ = ∫
R2 φ φ∗. This argument may be adapted to prove that the expectation

value 〈A〉N defined by (3.11) converges:

〈A〉N −→
N→+∞A

(
y∗),

where

y∗ =
∫

R2(ξ1 + ξ2)φ(ξ1, ξ2)φ
∗(ξ1, ξ2) dξ1 dξ2∫

R2 φ(ξ1, ξ2)φ∗(ξ1, ξ2) dξ1 dξ2
.

3.2.2 Polymer Chains

The considerations of Sect. 2 and Sect. 3.1 may be easily generalized to the case when
the positions ui of the atoms are not restricted to be in the real line, but are vectors of
R

2 or R
3. The only important thing here is that they are indexed by a one-dimensional

parameter (here, 1 ≤ i ≤ N ). This is the case for instance if one considers a polymer
chain (see Fig. 15). In such a case, NN or NNN approximations are commonly used,
in order to compute the average length of the chain (see Bird et al. 1987 for instance).
Our approximation strategy carries out to this case.
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