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Abstract

We approximate an elliptic problem with oscillatory coefficients using a problem of the
same type, but with constant coefficients. We deliberately take an engineering perspective,
where the information on the oscillatory coefficients in the equation can be incomplete.
A theoretical foundation of the approach in the limit of infinitely small oscillations of
the coefficients is provided, using the classical theory of homogenization. We present a
comprehensive study of the implementation aspects of our method, and a set of numerical
tests and comparisons that show the potential practical interest of the approach. The
approach detailed in this article improves on an earlier version briefly presented in [16].

1 Introduction

1.1 Context

Consider the simple, linear, elliptic equation

´ divpAε∇uεq “ f in D, uε “ 0 on BD, (1)

in divergence-form, where D Ă R
d, d ě 1, is an open, bounded domain which delimits what we

hereafter call ’the physical medium’, and where Aε is a possibly random oscillatory matrix-
valued coefficient. We suppose that all the requirements are satisfied so that problem (1)
is well-posed. In particular, we assume that Aε is bounded and bounded away from zero
uniformly in ε. Our assumptions will be detailed in Section 2.1 below. The subscript ε

encodes the characteristic scale of variation of the matrix field Aε. For instance, one may
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think of the case Aεpxq “ Aperpx{εq for a fixed Z
d-periodic matrix field Aper, although all

what follows is not restricted to that particular case.
It is well-known that, for ε small (comparatively to the size of D), and not necessarily

infinitesimally small, the direct computation of the solution to (1) is expensive since, in order
to capture the oscillatory behavior of Aε and uε, one has to discretize the domain D with a
meshsize h ! ε. The computation becomes prohibitively expensive in a multi-query context
where the solution uεpfq is needed for a large number of right-hand sides f (think, e.g., of a
time-dependent model where (1), or a similar equation, should be solved at each time step tn

with a right-hand side fptnq, or of an optimization loop with f as an unknown variable,
where (1) would encode a distributed constraint). Alternatives to the direct computation
of uε exist. Depending on the value of ε, the situation is schematically as follows.

‚ For ε ă ε, where ε is a given, medium-dependent threshold (typically ε « sizepDq{10),
one can consider that homogenization theory [3,13,19] provides a suitable framework to
address problem (1). That theory ensures the existence of a limit problem for infinitely
small oscillations of the coefficient Aε. The limit problem reads

´ divpA‹∇u‹q “ f in D, u‹ “ 0 on BD. (2)

The matrix-valued coefficient A‹ is (i) non-oscillatory, (ii) independent of f , and (iii)
given by an abstract definition that can become more or less explicit, depending on the
assumptions concerning the structure of Aε (and the probabilistic setting in the random
case). The solution to the homogenized problem (2) can be considered an accurate L2-
approximation of the oscillatory solution to (1) as soon as the size ε of the oscillations
of Aε is sufficiently small.

There are several cases for which the abstract definition giving A‹ can be made explicit.
The simplest examples are (i) periodic coefficients of the form Aεpxq “ Aperpx{εq,
with Aper a Z

d-periodic matrix field, and (ii) stationary ergodic coefficients of the form
Aεpx, ωq “ Astopx{ε, ωq, with Asto a (continuous or discrete) stationary matrix field. In
both cases, one can prove that A‹ is a deterministic constant (i.e. independent of x)
matrix, for which a simple explicit expression is available. Whenever a corrector (in the
terminology of homogenization theory, see [3,13,19] and (12)–(13) below) exists, it is in
addition possible to reconstruct an H1-approximation of the solution to (1), using the
solutions to the corrector problem and to the homogenized problem (2).

Practically, whenever an explicit definition is available for A‹, one can compute an ap-
proximation of the oscillatory solution to (1) by solving the non-oscillatory problem (2).
The advantage is obviously that the latter can be solved on a coarse mesh. The cost of
the method then lies in the offline computation of A‹.

‚ For ε ě ε, the size of the oscillations is too large to consider that homogenization theory
provides a suitable framework to approximate problem (1), and one may use, in order
to efficiently compute an approximation of uε, dedicated numerical approaches.

Classical examples include the Variational Multiscale Method (VMM) introduced by
Hughes et al. [12], and the Multiscale Finite Element Method (MsFEM) introduced by
Hou and Wu [11] (see also the textbook [9]). We also refer to the more recent works by
Målqvist and Peterseim [17] (on the Local Orthogonal Decomposition (LOD) method),

2



or Kornhuber and Yserentant [14], on localization and subspace decomposition. Many
more examples of approaches are available in the literature.

The MsFEM approach (as well as the LOD approach) is essentially based on an of-
fline/online decomposition of the computations. In the first step, local problems are
solved at the microscale, in order to compute oscillatory basis functions. Each basis
function is obtained by solving an oscillatory problem posed on a macro-element or on
a patch of macro-elements. These oscillatory problems do not depend on the right-hand
side f , and are independent one from another. In the second step, the global problem,
which depends on the right-hand side f , is solved. The second step is performed, e.g., by
considering a Galerkin approximation on the multiscale discrete space built in the offline
step. The original online cost of solving an oscillatory problem on a fine mesh (using a
discrete space at one single fine scale) is reduced to solving an oscillatory problem on a
coarse mesh consisting of macro-elements (using a multiscale discrete space).

These methods provide an H1-approximation of the oscillatory solution uε. Note that
they are (a priori) applicable without any restriction on the structure of Aε, and are also
applicable, and indeed applied, in the regime ε ă ε. Note also that, in the stochastic
setting, the computations must be performed ω by ω, for “each” realization ω of the
random environment.

The finite element Heterogeneous Multiscale Method (HMM) introduced by E and En-
gquist [8] is another popular multiscale technique. It is however based on a different
perspective. Its aim is to compute an approximation of the coarse solution u‹ by means
of local averages of the oscillatory coefficient Aε.

One way or another, all these approaches rely on the knowledge of the coefficient Aε. It
turns out that there are several contexts where such a knowledge is incomplete, or sometimes
merely unavailable. From an engineering perspective (think, e.g., of experiments in Mechan-
ics), there are numerous prototypical situations where the response uεpfq can be measured
for some loadings f , but where Aε is not completely known. In these situations, it is thus
not possible to use homogenization theory, nor to proceed with any MsFEM-type approach
or with the similar approaches mentioned above.

We have discussed above two possibilities to address multiscale problems such as (1), using
either the homogenization theory or dedicated numerical approaches. Restricting our discus-
sion to homogenization theory, we can identify three limitations, quite different in nature, to
the practical application of the theory:

‚ First, homogenization theory has been developed in order to address the case of infinitely
small oscillations of the coefficients, and is hence not appropriate for media such that
ε ě ε. In practice, one may for instance want to evaluate the effective coefficients (such
as the Poisson ratio and the Young modulus for problems in Mechanics) of a medium
for which ε ě ε. It is always possible (if an explicit definition is available) to compute
A‹, considering on purpose the (fictitious) limit of infinitely small oscillations, but there
is no reason for that A‹ to be an accurate approximation of the medium it is supposed
to describe.

‚ Assume that an explicit expression is available for A‹. A practical limitation is that,
in most cases except for the somewhat ideal case of periodic coefficients (with a known
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period), the computation of A‹ by classical methods is expensive. For instance, in the
stochastic setting, the computation of A‹ requires to solve, many times, a corrector
problem set on a truncated approximation of an asymptotically infinitely large domain.
This is especially challenging in the stationary ergodic case with long-range correlations.
Note that equivalent limitations appear for MsFEM-type or similar approaches in the
stochastic setting.

‚ Another evident limitation shows up when one examines the homogenized limit of (1)
for a coefficient Aε such that no explicit expression is available for A‹ (although Aε

is well-known, and although the homogenized limit of (1) is known to read as (2)).
This case might occur as soon as Aε is not the rescaling Ap¨{εq of a simple (periodic,
quasi-periodic, random stationary, . . . ) function A.

Finding a pathway alternate to standard approaches is thus a practically relevant question.
Given our discussion above, we are interested in approaches valid for the different regimes of ε,
which make no use of the knowledge on the coefficient Aε, but only use some (measurable)
responses of the medium (obtained for certain given solicitations). Questions similar in spirit,
but different in practice, have been addressed two decades ago by Durlofsky in [7]. They are
similar in spirit because the point is to define an effective coefficient only using outputs of
the system. They are however different in practice because the effective matrix is defined by
upscaling, and hence the approach of [7] is local. This approach is indeed based on consider-
ing, in a representative elementary volume, some particular problems (with zero loading and
suitable boundary conditions), for which the solutions in the case of homogeneous coefficients
are affine and write as independent of these homogeneous coefficients. Considering d choices
of such problems (that is, d choices of boundary conditions), and postulating the equality
of the fluxes respectively resulting from the original oscillatory and homogeneous equivalent
problems, one determines the coefficients of an “effective” matrix. Several variants exist in the
literature, as well as many other approaches.

The original approach we introduce in this article improves on an earlier version briefly
presented in [16]. Our approach is global, in the sense that it uses the responses of the system
in the whole domain D. Note of course that it can be used locally as an upscaling technique,
for instance in problems featuring a prohibitively large number of degrees of freedom.

In passing, we note that our approach provides, at least in some settings, a characterization
of the homogenized matrix which is an alternative to the standard characterization of homoge-
nization theory (see Proposition 5 below). To the best of our knowledge, this characterization
has never been made explicit in the literature.

Throughout this article, we restrict ourselves to cases when problem (1) admits (possibly
up to some extraction) a homogenized limit that reads as problem (2), where the homogenized
matrix coefficient

A‹ is deterministic and constant.

This restrictive assumption on the class of A‹ (and thus on the structure of the coefficient
Aε in (1), and on the probabilistic setting in the random case) is useful for our theoretical
justifications, but not mandatory for the approach to be applicable (see Section 1.3 below).
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1.2 Presentation of our approach

We now sketch, for a coefficient Aε that we take for simplicity deterministic, the idea un-
derlying our approach. Let S denote the set of real-valued d ˆ d positive-definite symmetric
matrices.

For any constant matrix A P S, consider generically the problem with constant coefficients

´ divpA∇uq “ f in D, u “ 0 on BD. (3)

We investigate, for any value of the parameter ε, how we may define a constant matrix Aε P S
such that the solution uε to problem (3) with matrix A “ Aε best approximates the solution uε
to (1). Note that, since Aε is constant, its skew-symmetric part plays no role in (3). We hence
cannot hope for characterizing the skew-symmetric part of Aε. Without loss of generality, we
henceforth make the additional assumption that the homogenized matrix A‹ is symmetric and
that we seek a best (constant) symmetric matrix. Should A‹ not be symmetric, it is replaced
in the sequel by its symmetric part. In [16], the constant matrix Aε is defined as a minimizer
of

inf
APS

sup
fPL2pDq, ‖f‖

L2pDq“1

‖uεpfq ´ upfq‖2L2pDq, (4)

where we have emphasized the dependency upon the right-hand side f of the solutions to (1)
and (3). The use of a L2 norm in (4) (and not of e.g. a H1 norm) is reminiscent of the fact
that, for sufficiently small ε, we wish the best constant matrix to be close to A‹, and that uε
converges to u‹ in the L2 norm but not in the H1 norm.

Note that problem (4) is only based on the knowledge of the outputs uεpfq (that could be,
e.g., experimentally measured), and not on that of Aε itself. Note also that, in practice, we
cannot maximize upon all right-hand sides f in L2pDq (with unit norm). We therefore have
to replace the supremum in (4) by a maximization upon a finite-dimensional set of right-hand
sides, which we will have to select thoughtfully (see Section 3.1.1).

In this article, we keep the same type of characterization for Aε as in [16] (that is, through
an inf-sup problem), but we use a slightly different cost function than in (4). The constant
matrix Aε is here defined as a minimizer of

inf
APS

sup
fPL2pDq, ‖f‖

L2pDq“1

∥

∥p´∆q´1
`
divpA∇uεpfqq ` f

˘∥
∥

2

L2pDq
, (5)

where p´∆q´1 is the inverse laplacian operator supplied with homogeneous Dirichlet boundary
conditions: for any g P H´1pDq, z “ p´∆q´1g is the unique solution in H1

0 pDq to

´∆z “ g in D, z “ 0 on BD.

The cost function of (5) is related to the one of (4) through the application, inside the
L2 norm of the latter, of the zero-order differential operator p´∆q´1

`
divpA∇¨q

˘
. Note that,

in sharp contrast with (4), the function
∥

∥p´∆q´1
`
divpA∇uεpfqq ` f

˘∥
∥

2

L2pDq
used in (5) is a

polynomial function of degree 2 in terms of A, a property which brings stability and signifi-
cantly speeds up the computations. The specific choice (5) has been suggested to us by Albert
Cohen (Université Pierre et Marie Curie).

Remark 1. The reason to choose f P L2pDq in (5), rather than f P H´1pDq, is discussed in
Remark 4 below.
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Several criteria can be considered to assess the quality and the usefulness of our approach:

(i) asymptotic consistency: does the sequence
 
Aε

(
εą0

of best matrices, defined as mini-
mizers of (5), converge, when ε goes to 0, to the homogenized matrix A‹? If this is
indeed the case, the approach provides an approximation for the homogenized matrix
alternate to standard homogenization (note, in particular, that our approach does not
require solving a corrector problem).

(ii) efficiency: practically, is this best matrix Aε efficiently computable? In particular, how
many right-hand sides does its computation really require?

(iii) L2-approximation: for any fixed ε, not necessarily small, how well does the solution uε
to (3) with matrix Aε approximate the reference solution uε to (1) in the L2 norm?

(iv) H1-approximation: using Aε, is it possible to reconstruct (if possible for a marginal
additional cost) an accurate approximation of uε in the H1 norm? Recall that in ho-
mogenization theory, a corrector problem must be solved to compute the homogenized
matrix, but once this is performed, one can reconstruct an H1-approximation of uε using
the solution of the latter problem at no additional cost.

1.3 Outline and perspectives

The article is organized as follows. To begin with, we introduce in Section 2 the assumptions
we will make throughout the article, and we recall the basics of homogenization. We formalize
our approach in Section 3. We establish an asymptotic consistency result (thereby positively
answering to Question (i) above, see Proposition 5), and we explain how the best matrix
we compute can be used to construct an approximation in the H1 norm of the oscillatory
solution (hence addressing Question (iv) above). We also detail how to approximate the

infinite-dimensional space
!
f P L2pDq, ‖f‖L2pDq “ 1

)
present in (5) by a finite-dimensional

space of the form Span tfp, 1 ď p ď P u for some appropriate functions fp (see (21) below).
In Section 4, we explain how the problem of finding the best constant matrix can be efficiently
solved in practice (thereby answering to Question (ii)).

Finally, in Section 5, we present, as a practical answer to Questions (i), (ii), (iii) and (iv),
a number of representative numerical experiments, both in the periodic and stationary ergodic
settings, and we provide some comparison with the classical homogenization approach. We
show in particular that choosing a small number P of right-hand sides (in practice, we often
set P “ dpd ` 1q{2) is sufficient for our approach to provide accurate results.

We emphasize that the aim of the numerical experiments described in Section 5 is different
in the periodic setting and in the stochastic setting. In the former case, computing the
homogenized matrix is inexpensive, and thus we cannot hope for our approach (which requires
solving highly oscillatory equations) to outperform the classical homogenization approach in
terms of efficiency. The periodic setting is hence to be considered as a validation setting.

The situation is entirely different in the stochastic setting, which is much more challenging.
In that setting, our approach can compete as far as Questions (ii), (iii) and (iv) are concerned.
We show that, for an essentially identical computational cost compared to the standard ho-
mogenization approach, our approach allows us to compute a more accurate approximation of
the solution uε to the highly oscillatory equation, both in L2 and in H1 norms.
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More importantly, the reader should bear in mind that our approach targets practical situ-
ations where the information on the oscillatory coefficients in the equation may be incomplete.
The comparison with standard homogenization approaches which is performed in Section 5 is
hence somewhat unfair for our approach, as the former approaches need a complete knowledge
of the coefficient Aε, whereas ours does not.

There are several possible follow-ups for this work:

• First, one can perform a detailed study of the robustness of the approach with respect to
imprecise data, assuming for instance that we only have access locally to coarse averages
of the outputs uεpfq or ∇uεpfq.

• Second, the extension to nonlinear equations may be studied, where the oscillatory
problem is formulated as the optimization problem

inf

"ż

D
K

´x
ε
,∇upxq

¯
dx ´

ż

D
fpxqupxqdx, u P W

1,p
0 pDq

*
,

where the function ξ P R
d ÞÑ Kp¨, ξq is strictly convex. In a multi-query context, our

approach (and this is also true for other approaches) is even more interesting for nonlinear
equations than for linear ones. Indeed, however large the parameter ε is, solving a
nonlinear oscillatory equation for a large number of right-hand sides is prohibitively
expensive. In contrast, in the linear case, as soon as the LU decomposition of the
stiffness matrix can be computed and stored, i.e. as soon as ε is not too small, the
cost for computing several solutions becomes almost equal to the cost for computing
one. The computational workload thus remains affordable. This is not the case in a
nonlinear context.

• Third, the approach may be extended to homogenized matrices that are not constant.
Indeed, as soon as some additional information is available on A‹, one could adequately
modify the search space for A in (4) or (5). For instance, the case of a slowly varying
matrix A‹pxq, depending upon x P D in a sense to be made precise, can be considered.
Following a suggestion by Albert Cohen, it may also be possible to balance the dimension
of the space in which A is searched with the amount of noise present in the problem
(which is related to the value of ε) and the number of fine-scale solutions that are
available (here the dimension P of the space (21) introduced below).

2 Preliminaries

We describe the stationary ergodic setting we adopt. This setting includes, as a particular
case, the periodic case. For a more detailed presentation of the particular stochastic setting we
here consider, we refer to the theoretically-oriented articles [4, 5], to the numerically-oriented
articles [6,15], and to the review article [2] (as well as to the extensive bibliography contained
therein). For more insight on stochastic homogenization in general, we refer the reader to
the seminal contribution [18], to [10] for a numerically-oriented presentation, as well as to the
classical textbooks [3, 13]. The reader familiar with that theory may easily skip this section
and directly proceed to Section 3.
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2.1 Assumptions

Recall that D denotes an open, bounded subset of R
d, d ě 1. Let pΩ,Z,Pq be a probability

space, on which we assume an ergodic structure, and let EpXq “
ż

Ω

XpωqdPpωq be the

expectation of any random variable X P L1pΩ,dPq. We consider problem (1), which reads, in
the stochastic setting, as

´ divpAεp¨, ωq∇uεp¨, ωqq “ f a.s. in D, uεp¨, ωq “ 0 a.s. on BD, (6)

where the function f P L2pDq is independent of ε and deterministic (see Remark 4 below for
a discussion on the choice of taking f in L2pDq).

We assume that
Aεpx, ωq “ Astopx{ε, ωq, (7)

where Asto is such that there exist deterministic real numbers α, β ą 0 such that

Astop¨, ωq P L8pRd;Sα,βq almost surely, (8)

with

Sα,β “
!
M P R

dˆd, M is symmetric, α |ξ|2 ď ξTMξ ď β |ξ|2 for any ξ P R
d
)
.

In addition, we assume that Asto is a discrete stationary matrix field. A complete description
of the discrete stationary ergodic setting we here consider can be found, e.g., in the review
article [2, Section 2.2]. For brevity, we only mention here that the purpose of this setting
is to formalize the fact that, even though realizations may vary, the matrix Asto at point
y P R

d and the matrix Asto at point y `k, k P Z
d, share the same probability law. The local,

microscopic environment (encoded in the oscillatory matrix field Aεpx, ωq “ Astopx{ε, ωq) has
a εZd-periodic structure on average.

Assumption (8) ensures the existence and uniqueness of the solution to (6) in H1
0 pDq,

almost surely. Furthermore, almost surely, the solution uεp¨, ωq to (6) converges (strongly in
L2pDq and weakly in H1pDq) to some u‹ P H1

0 pDq solution to (2), where the homogenized
matrix A‹ is deterministic, constant and belongs to Sα,β. As is well-known, A‹ is independent
of the right-hand side f in (6).

Remark 2. The above discussion is not restricted to the discrete stationary setting. We could
as well have considered the continuous stationary setting, where the probability law of Apy, ωq
does not depend on y.

Remark 3. The form of the homogenized equation (2) is in this context identical to that of
the original equation (1). This is not a general fact. Although definite conclusions are yet
to be obtained, there are all reasons to believe that the practical approach we introduce in this
article carries over to cases where the homogenized equation is of a different form.

The periodic setting is a particular case of the above discrete stationary setting, when A

is independent of ω. This amounts to assuming that

Aεpxq “ Aperpx{εq, (9)

with Aper a Z
d-periodic matrix field such that

Aper P L8pRd;Sα,βq. (10)
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2.2 Classical homogenization approach

We briefly recall here the basics of homogenization. We focus the presentation on the sta-
tionary ergodic setting. The easy adaptation to the periodic setting is briefly commented
upon.

Let Q “ p0, 1qd. In the discrete stationary ergodic setting, the (deterministic, constant
and symmetric) homogenized matrix A‹ reads, for all 1 ď i, j ď d, as

rA‹si,j “ E

ˆż

Q

pei ` ∇weipy, ¨qqT Astopy, ¨q
`
ej ` ∇wej py, ¨q

˘
dy

˙
, (11)

where pe1, . . . ,edq denotes the canonical basis of R
d, and where, for any p P R

d, wp is the
solution (unique up to the addition of a random constant) to the so-called corrector equation

$
’&
’%

´div
`
Astop¨, ωqpp ` ∇wpp¨, ωqq

˘
“ 0 a.s. in R

d,

∇wp is stationary, E

ˆż

Q

∇wppy, ¨qdy
˙

“ 0.
(12)

In the periodic case Aεpxq “ Aperpx{εq, the corrector equation reads as
$
&
%

´div pAperpp ` ∇wpqq “ 0 in R
d,

wp is Z
d-periodic,

(13)

and the homogenized matrix A‹ is given by

rA‹si,j “
ż

Q

pei ` ∇weipyqqT Aperpyq
`
ej ` ∇wej pyq

˘
dy.

In sharp contrast with the periodic case where, precisely by periodicity, it is sufficient
to solve the corrector equation (13) on the unit cell Q, the corrector equation (12) must be
solved in the discrete stationary ergodic setting on the entire space R

d. As pointed out in the
introduction, this is computationally challenging. In practice, one often considers a truncated
corrector equation posed, for an integer N ‰ 0, on a large domain QN “ p´N,Nqd:

´ div
`
Astop¨, ωqpp ` ∇wN

p p¨, ωqq
˘

“ 0 a.s. in QN , wN
p p¨, ωq is a.s. QN -periodic. (14)

The random matrix AN
‹ pωq, approximation of the deterministic homogenized matrix A‹ given

by (11), is defined, for all 1 ď i, j ď d, by

“
AN

‹ pωq
‰
i,j

“ 1

|QN |

ż

QN

`
ei ` ∇wN

ei
py, ωq

˘T
Astopy, ωq

´
ej ` ∇wN

ej
py, ωq

¯
dy. (15)

Almost surely, it converges, in the limit of infinitely large domains QN , i.e. when N Ñ
`8, to the (deterministic) matrix A‹ (see [6]). Since AN

‹ pωq is random, it is natural to
consider M independent and identically distributed (i.i.d.) realizations of the field Asto, say 
Astop¨, ωmq

(
1ďmďM

, solve (14) and compute (15) for each of them, and define

AN,M
‹ “ 1

M

Mÿ

m“1

AN
‹ pωmq (16)

as a practical approximation to A‹. Owing to the strong law of large numbers, we have that
lim

NÑ8
lim

MÑ8
AN,M

‹ “ A‹ almost surely.
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3 Formalization of our approach

The approach we introduce below applies, up to minor changes, to both the periodic and
the stationary ergodic settings. We however recall from Section 1.3 that only the stochastic
setting (and more difficult cases) is practically relevant for our approach. For simplicity and
clarity, we first present the full study of the approach in the periodic setting (see Sections 3.1,
3.2 and 3.3). We next discuss its extension to the stationary ergodic setting in Section 3.4.

3.1 Inf sup formulation

As exposed in the introduction and expressed in formula (5), we are going to seek a constant,
symmetric, positive-definite matrix Aε, so that problem (3) with matrix Aε best approximates
problem (1). To do so, we consider the problem introduced in (5), that is

Iε “ inf
APS

sup
fPL2

n
pDq

ΦεpA, fq, (17)

where L2
npDq “

!
f P L2pDq, ‖f‖L2pDq “ 1

)
and where, for any A P R

dˆd
sym (the space of d ˆ d

real symmetric matrices) and any f P L2pDq,

ΦεpA, fq “
∥

∥p´∆q´1
`
divpA∇uεpfqq ` f

˘∥
∥

2

L2pDq
. (18)

Note that formula (18) is well-defined since divpA∇uεpfqq clearly belongs to H´1pDq for
all A P R

dˆd
sym and f P L2pDq. We observe, as briefly mentioned in Section 1.2, that the

cost function Φεp¨, fq depends quadratically upon A. From a computational viewpoint, in an
iterative algorithm solving (5) or (17) that successively optimizes on f and A, minimizing Φε

with respect to A for a fixed f P L2
npDq thus reduces to the simple inversion of a small linear

system with dpd`1q{2 unknowns (see Section 4.3.3). This is in sharp contrast with our former
formulation (4). Of course, in both formulations (4) or (5), for ε fixed, it is not guaranteed
that our numerical algorithm captures the value Iε defined by (17). It only captures an
approximation of it.

For both approaches (4) and (5), one can prove an asymptotic consistency result for the
sequence

 
Aε

(
εą0

: see Proposition 5 below in the case of (5) and [16] in the case of (4). As the
proof is essentially identical for both approaches, we only detail it for the present choice (5)
(see Appendix A below) and briefly point out to the case (4) considered in [16] in Remark 6
below.

In order to gain further insight, and before stating the asymptotic consistency result, we
first study, separately and for a fixed value of ε, the maximization and minimization problems
involved in (17).

3.1.1 The sup problem

We show here that, for any fixed A P S, the maximization problem over f that is involved
in (17), namely sup

fPL2
n

pDq
ΦεpA, fq, is attained, and discuss how it can be solved in practice.

Let A P S be given. We introduce the notation

∆A “ divpA∇¨q,

10



and let p´∆Aq´1 be the operator defined by: for any g P H´1pDq, z “ p´∆Aq´1g is the
unique solution in H1

0 pDq to

´divpA∇zq “ g in D, z “ 0 on BD.

We denote by L´1
ε the linear, compact and positive-definite operator from L2pDq to L2pDq

such that, for any f P L2pDq, L´1
ε f “ uεpfq, where uεpfq is the unique solution in H1

0 pDq
to (1). Starting from (18), it can be easily shown that

ΦεpA, fq “
ż

D
HA

ε pfq f, (19)

where

HA
ε pfq “

´ `
L´1
ε

˘‹
∆A p´∆q´1 ` p´∆q´1

¯´
p´∆q´1 ∆A L´1

ε ` p´∆q´1
¯
f (20)

is a compact, self-adjoint and positive semi-definite linear operator from L2pDq to L2pDq. The

eigenvalues of HA
ε are thus nonnegative real numbers forming a sequence that converges to

zero. We denote by λA
ε,m and fA

ε,m the largest eigenvalue of HA
ε and an associated normalized

eigenvector, respectively. In view of (19), we have

sup
fPL2

n
pDq

ΦεpA, fq “ λA
ε,m

and the supremum is attained at fA
ε,m, which is hence a solution to the sup problem involved

in (17).

In practice, instead of looking for the largest eigenvalue (and the associated eigenvector)

of HA
ε in the infinite-dimensional space L2

npDq, our approach consists in approximating this
space L2

npDq by a finite-dimensional subspace of the form

V P
n pDq “

#
f P L2

npDq s.t. there exists c “ tcpu1ďpďP P R
P , |c|2 “ 1, f “

Pÿ

p“1

cpfp

+
, (21)

where pf1, . . . , fP q is an orthonormal family of functions in L2pDq.
We discuss the choice of the dimension P and of the family of functions tfpu1ďpďP . First

of all, in the light of Lemma 15 below (see also Section 3.2), it seems in order to choose the
dimension of V P

n pDq such that P ě dpd ` 1q{2.
We now proceed, considering the regime ε small. Let A ‰ A‹ be fixed. Homogenization

theory states that, for ε sufficiently small, the operator L´1
ε (considered as an operator from

L2pDq to L2pDq) is close to the operator p´∆A‹q´1. Thus the operator HA
ε defined by (20) is

expected to be well-approximated by

HA
‹ “

´
p´∆A‹q´1 ∆A p´∆q´1 ` p´∆q´1

¯´
p´∆q´1∆A p´∆A‹q´1 ` p´∆q´1

¯
. (22)

Up to the extraction of a subsequence, the eigenvector fA
ε,m we are seeking thus satisfies, by

homogenization theory on eigenvalue problems,

lim
εÑ0

∥

∥

∥

fA
ε,m ´ fA

‹,m

∥

∥

∥

L2pDq
“ 0,

11



where fA
‹,m is a normalized eigenvector associated with the largest eigenvalue of HA

‹ . In view of
the expression (22) of the limit operator, it seems natural to choose for the family of functions
tfpu1ďpďP the first P (normalized) eigenvectors of the laplacian operator in the domain D. For
small values of ε, say ε ă ε, we show that considering P “ dpd`1q{2 functions fp is sufficient.
This threshold dpd ` 1q{2 is at least intuitive thinking at the case of a constant symmetric

matrix A and the set of equations
ÿ

1ďi,jďd

´Ai,j Bijup “ fp. In order to determine the dpd`1q{2

coefficients Ai,j, the correct number of right-hand sides fp to consider is dpd ` 1q{2. The fact
that it is indeed sufficient is made precise in the proof of Proposition 5 below (see in particular
Lemma 15) and in Remark 8 below.

When the parameter ε takes larger values, say ε ě ε, the operator HA
ε cannot be anymore

approximated by the operator (22) (with constant coefficients), and it may thus be necessary
in that case to consider a larger number P ą dpd ` 1q{2 of functions. We refer to Section 5
for concrete examples.

Remark 4. We discuss here why we have chosen to work with right-hand sides f of the equa-

tion (e.g. (6)) in L2pDq rather than in H´1pDq. We have here considered sup
fPL2pDq

ΦεpA, fq
}f}2

L2pDq

,

and we could have considered sup
fPH´1pDq

ΦεpA, fq
}f}2

H´1pDq

.

Since L2pDq Ă H´1pDq, we of course have sup
fPH´1pDq

ΦεpA, fq
}f}2

H´1pDq

ě sup
fPL2pDq

ΦεpA, fq
}f}2

H´1pDq

.

Using the density of L2pDq in H´1pDq and the continuity of ΦεpA, ¨q in H´1pDq, we actually
get

sup
fPH´1pDq

ΦεpA, fq
}f}2

H´1pDq

“ sup
fPL2pDq

ΦεpA, fq
}f}2

H´1pDq

. (23)

The right-hand side of (23) is of course different from the quantity sup
fPL2pDq

ΦεpA, fq
}f}2

L2pDq

, which we

have considered in this article. Our choice is motivated by the fact that it is easier in practice
to manipulate functions of unit L2-norm. From the theoretical viewpoint, similar results would
have been obtained with the left-hand side of (23).

3.1.2 The inf problem

We discuss here how to efficiently solve the minimization problem over A that is involved
in (17), namely

inf
APS

ΦεpA, fq. (24)

Let f P L2
npDq be fixed. It can be easily shown, starting from (18) and using the linearity of

both the divergence and inverse laplacian operators, that

ΦεpA, fq “ 1

2

ÿ

1ďi,j,k,lďd

rBεpfqsi,j,k,l Ai,j Ak,l ´
ÿ

1ďi,jďd

rBεpfqsi,j Ai,j ` bpfq, (25)

12



where the fourth-order tensor Bεpfq, the matrix Bεpfq and the scalar bpfq, which all depend
on f , are given, for integers 1 ď i, j, k, l ď d, by

rBεpfqsi,j,k,l “ 2

ż

D

“
p´∆q´1pBijuεpfqq

‰ “
p´∆q´1pBkluεpfqq

‰
,

rBεpfqsi,j “ ´2

ż

D

“
p´∆q´1pBijuεpfqq

‰ “
p´∆q´1f

‰
,

bpfq “
∥

∥p´∆q´1f
∥

∥

2

L2pDq
.

Practically, the inf problem (24) (with fixed f) is solved on the whole set R
dˆd
sym of symmetric

matrices, instead of considering the subset S of positive-definite symmetric matrices. Under
this simplification, solving the inf problem (24) amounts to considering the linear system

@ 1 ď i, j ď d,
ÿ

1ďk,lďd

rBεpfqsi,j,k,l Ak,l “ rBεpfqsi,j . (26)

This system is low-dimensional and inexpensive to solve. In our numerical experiments, we
have observed that the problem (26) always has a unique solution in R

dˆd
sym , for all the functions

f that our algorithm explores. In addition, this solution is in S.

3.2 Asymptotic consistency

We study here problem (17) in the limit of a vanishing parameter ε. We introduce the notation

ΦεpAq “ sup
fPL2

npDq
ΦεpA, fq. (27)

Note that Φε is nonnegative. Consequently, for any ε, problem (17) admits a quasi-minimizer,

namely a matrix A
5
ε P S such that

Iε ď ΦεpA5
εq ď Iε ` ε ď ΦεpAq ` ε for any A P S. (28)

The following proposition holds.

Proposition 5 (Asymptotic consistency, periodic case). Consider problem (17), that is

Iε “ inf
APS

sup
fPL2

n
pDq

ΦεpA, fq.

In the periodic setting, namely under the assumptions (9) and (10), the following convergence
holds:

lim
εÑ0

Iε “ 0. (29)

Furthermore, for any sequence
!
A

5
ε P S

)
εą0

of quasi-minimizers of (17), we have

lim
εÑ0

A
5
ε “ A‹. (30)

The proof of these results, which is postponed until Appendix A, relies on two facts:

13



1. The homogenized matrix A‹ P Sα,β Ă S can be used as a test-matrix in (28). In view of
Lemma 14 below, it satisfies lim

εÑ0
ΦεpA‹q “ 0, which directly implies (29);

2. We show in Lemma 15 below that there exist dpd ` 1q{2 right-hand sides f‹,k P L2
npDq

such that the knowledge of f‹,k and of u‹,k solution to (2) with right-hand side f‹,k,
1 ď k ď d pd ` 1q{2, is sufficient to uniquely reconstruct the constant symmetric matrix
A‹. The proof of (30) relies on this argument and on (29). We denote

F “
!
f‹,k, 1 ď k ď dpd ` 1q{2

)
(31)

this set.

We do not know whether, for ε fixed, the infimum in (17) is attained, unless ε is sufficiently
small (see Remark 17 in Appendix A.2 below). We will proceed throughout the article ma-
nipulating quasi-minimizers in the sense of (28).

Remark 6. The analysis of the approach (4) introduced in [16] relies on the same arguments
as the approach introduced here: Lemma 15, and the equivalent of Lemma 14 for the functional
considered in [16], that is lim

εÑ0
ΨεpA‹q “ 0, where, for any A P S,

ΨεpAq “ sup
fPL2

n
pDq

‖uεpfq ´ upfq‖2L2pDq.

Remark 7. Note that the assumptions (9) and (10) are not necessary to prove the results (29)
and (30). All that needs to be assumed is that the sequence of matrices tAεuεą0 converges, in
the sense of homogenization, to a constant and symmetric homogenized matrix A‹. In that
vein, we will see in Section 3.4 below that the conclusions of Proposition 5 carry over to the
specific stochastic case we consider there.

Remark 8. Consider the set F defined by (31), and let

Imax
ε “ inf

APS
max
fPF

ΦεpA, fq. (32)

This problem is, in principle, easier to solve than (17), as we replaced the supremum over
f P L2

npDq by a maximization over the finite set F . Let Φmax
ε pAq “ max

fPF
ΦεpA, fq. For any

quasi-minimizer A
max,5
ε P S of (32), we have

Imax
ε ď Φmax

ε pAmax,5
ε q ď Imax

ε ` ε ď Φmax
ε pA‹q ` ε ď ΦεpA‹q ` ε.

Since lim
εÑ0

ΦεpA‹q “ 0, we get that lim
εÑ0

Imax
ε “ 0. In addition, one can show that A

max,5
ε Ñ A‹

as ε Ñ 0 (we refer to Remark 16 below for details). Similarly to (17), the approach (32) is
therefore asymptotically consistent. Note however that, in practice, the functions of the set F
defined by (31) are unknown.

We note that Proposition 5 provides, in the setting described in Section 2.1, a characteri-
zation of the homogenized matrix which is an alternative to the standard characterization of
homogenization theory. To the best of our knowledge, this characterization has never been
made explicit in the literature.
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3.3 Approximation of uε in the H1 norm

As a consequence of Proposition 5, we note that uε, solution to (3) with matrix Aε, is an
accurate approximation of uε in the L2 norm, but not in the H1 norm. Indeed, when ε goes to
zero, Aε converges to A‹. Hence, for ε sufficiently small, uε is an accurate H1-approximation
of u‹ solution to (2). In addition, from homogenization theory, we know that u‹ is an accurate
L2-approximation of uε. This implies that lim

εÑ0
}uε ´ uε}L2pDq “ 0.

Note also that u‹ and uε are not close to each other in the H1 norm, and hence uε is not
an accurate approximation of uε in the H1 norm. We present here an approach to reconstruct
such an approximation.

In many settings of homogenization theory (and in particular in the periodic setting we
consider here), once the corrector problems are solved to compute the homogenized matrix,
one can consider the two-scale expansion (truncated at the first-order)

u1,θε pxq “ u‹pxq ` ε

dÿ

i“1

wθi
ei

px{εq Biu‹pxq, (33)

where wθi
ei

is the unique solution with mean value θi P R to the periodic corrector equation (13)
for p “ ei. It is well-known that this two-scale expansion approximates uε in the H1 norm,
in the sense that, under some regularity assumptions (see e.g. [1]), we have

∥

∥

∥

uε ´ u1,θε

∥

∥

∥

H1pDq
ď C

?
ε (34)

for a constant C independent of ε.

Remark 9. From the theoretical perspective, the mean value θ of the correctors is irrele-
vant, and the estimate (34) holds for any fixed θ. From the numerical perspective, the error
∥

∥

∥

uε ´ u
1,θ
ε

∥

∥

∥

H1pDq
slightly depends on θ, in particular when ε is not asymptotically small. In

view of the numerical tests described in Section 5 below (see e.g. (68)), we keep track of this
parameter.

Computing the gradient of (33), we deduce from (34) that

∇uε “ Cε∇u‹ ` h.o.t., (35)

where the d ˆ d matrix Cε is given by

rCεsi,i “ 1 ` Biweip¨{εq, rCεsi,j “ Biwejp¨{εq if j ‰ i. (36)

Our idea for constructing an approximation of ∇uε is to mimick formula (35) and seek an
approximation under the form Cε∇uε. Once the best matrix Aε has been computed, we
compute a surrogate Cε of Cε by solving the least-squares problem

inf
CPpL2pDqqdˆd

Rÿ

r“1

∥

∥∇uεpfrq ´ C ∇uεpfrq
∥

∥

2

L2pDqd
(37)

for a given number R of right-hand sides.
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In practice, the right-hand sides fr selected for (37) are the first R basis functions of the
space V P

n pDq defined by (21), with R such that

R ď P.

This choice makes the H1-reconstruction an inexpensive post-processing procedure once the
best matrix is computed, as we already have at our disposal uεpfrq for 1 ď r ď R.

Remark 10. In our numerical experiments, we have observed that the surrogate Cε that we
construct is indeed oscillatory, and essentially periodic when Aε is periodic. This is expected
since Cε is meant to be an approximation of Cε.

In practice, we independently identify each row of Cε, by considering (for any 1 ď i ď d)
the least-squares problem

inf
ciPpL2pDqqd

Rÿ

r“1

∥

∥Biuεpfrq ´ ci ¨ ∇uεpfrq
∥

∥

2

L2pDq
.

We next define the matrix Cε by
“
Cε

‰
i,j

“
“
ciε
‰
j
. In our numerical experiments, the functions

uε and uε are approximated by uε,h and uε,h using a P
1 Finite Element Method, and ciε is

searched as a piecewise constant function. The value of ciε on an element T is defined by the
problem

inf
ciT PRd

Rÿ

r“1

ˇ̌
ˇrBiuε,hpfrqs|T ´ ciT ¨ r∇uε,hpfrqs|T

ˇ̌
ˇ
2

, (38)

where the restrictions of Biuε,h and ∇uε,h to any element T are constant. This problem is
ill-posed if R ă d, since, in this case, there exists vectors in R

d orthogonal to all r∇uε,hpfrqs|T ,

1 ď r ď R. We thus always take R ě d. To avoid technicalities related to the P
1 discretiza-

tion of uε, only mesh elements not contiguous to the boundary of D are considered in the
minimization (38).

3.4 The stationary ergodic setting

We have focused in Sections 3.1, 3.2 and 3.3 on the periodic setting. We now briefly turn to
the stochastic ergodic setting. We introduce the modified cost function Φsto

ε defined, for any
A P R

dˆd
sym and f P L2pDq, by

Φsto
ε pA, fq “

∥

∥p´∆q´1
“
div

`
A∇Epuεpfqq

˘
` f

‰∥
∥

2

L2pDq
. (39)

Note that Φsto
ε is a deterministic quantity. The difference with the cost function Φε defined

by (18) in a deterministic context is that Φsto
ε involves Epuεpfqq rather than uεpfq.

We next amend the inf sup problem (17) in the following way. For a given value of ε, we
look for a best deterministic matrix Aε P S that solves the problem

Istoε “ inf
APS

sup
fPL2

npDq
Φsto
ε pA, fq. (40)

All the considerations of Sections 3.1, 3.2 and 3.3 carry over, up to minor adjustments, to
the present stochastic setting. Under assumptions (7) and (8), asymptotic consistency can be
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proved for any sequence tA5
ε P Suεą0 of quasi-minimizers of (40). The adaptation of the proof

of Proposition 5 to the stochastic setting is straightforward. It relies on the fact that, for any
f P L2pDq, Epuεpfqq is bounded in H1pDq. Indeed, using that α ď Aεp¨, ωq ď β almost surely,

we have ‖uεp¨, ωq‖H1pDq ď C

α
‖f‖L1pDq almost surely (where C is a deterministic constant only

depending on D), hence E

”
‖uε‖

2
H1pDq

ı
is bounded. Using the Cauchy-Schwarz inequality, we

infer that Epuεpfqq is indeed bounded in H1pDq. We eventually get that ∇Epuεpfqq weakly
converges, and Epuεpfqq strongly converges, in L2pDq and when ε goes to zero, to ∇u‹pfq and
u‹pfq, respectively, where u‹pfq is the solution to (2).

The H1-reconstruction procedure presented in Section 3.3 is adapted to the stationary
ergodic setting as follows. It is known that, almost surely, uεp¨, ωq weakly converges in H1pDq
towards u‹ when ε goes to zero. As in the periodic setting, the correctors allow to obtain a
strong convergence in H1pDq, in the sense that (see [18, Theorem 3])

lim
εÑ0

E

”
∥

∥uεp¨, ωq ´ u1εp¨, ωq
∥

∥

2

H1pDq

ı
“ 0, (41)

with

u1εpx, ωq “ u‹pxq ` ε

dÿ

i“1

weipx{ε, ωq Biu‹pxq, (42)

where wei is the unique solution with vanishing mean value to the stochastic corrector equa-
tion (12) for p “ ei (in contrast to the periodic case, see Remark 9, we only consider here
correctors with vanishing mean, for the sake of simplicity).

The equations (41)–(42) imply that

E r∇uεp¨, ωqs “ Cε∇u‹ ` h.o.t.,

where the d ˆ d matrix Cε is given by

rCεsi,i “ 1 ` E rBiweip¨{ε, ωqs , rCεsi,j “ E
“
Biwejp¨{ε, ωq

‰
if j ‰ i. (43)

We have chosen to look for an approximation of Ep∇uεq as follows. Once the best matrix Aε

has been computed, we compute a surrogate Cε of Cε by solving the least-squares problem

inf
CPpL2pDqqdˆd

Rÿ

r“1

∥

∥∇E ruεpfrqs ´ C ∇uεpfrq
∥

∥

2

L2pDqd
(44)

for a given number R of right-hand sides, which are selected as in the periodic setting (see
Section 3.3). Eventually, E r∇uεp¨, ωqs is approximated by Cε∇uε.

Remark 11. Criteria (39) and (44) are arbitrary and selected upon practical considerations.
Among the possible alternatives, we could have considered

Φsto
ε pA, fq “ E

”
∥

∥p´∆q´1
“
div

`
A∇uεpfq

˘
` f

‰∥
∥

2

L2pDq

ı

instead of (39), and a similar alternative for the reconstruction (44).
We have not proceeded in any of these directions. Note also that, in [16], we defined the

minimization problems ω by ω and next took the expectation of the results. Of course, con-
sidering expectations in the cost functions results in significant computational savings, besides
actually improving accuracy and robustness.
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4 Implementation details to solve (40)

We detail here how problem (40), in the stationary ergodic setting, can be efficiently solved
in practice. Problem (17), in the periodic setting, is actually simpler to solve, and we skip the
easy adaptation to that case.

The minimizer of (40) is denoted by A
P,M
ε,h , where h ! ε denotes the size of a mesh

Th “ tT u of the domain D, P denotes the dimension of the subspace V P
n pDq of L2

npDq used
to approximate the sup problem (see (21)), and M P N

‹ denotes the number of Monte Carlo
realizations used to approximate Epuεq in (39).

The algorithm consists of three steps:

1. Compute an approximation of
!
Eruεpfpqs

)
1ďpďP

(see Section 4.1). This is the most

expensive step, as M ˆ P oscillatory problems of the type (6) are to be solved.

2. Compute an approximation of p´∆q´1fp and of
 

p´∆q´1 pBijEruεpfpqsq
(
1ďi,jďd

, for any

1 ď p ď P (see Section 4.2). This amounts to solving P p1 ` dpd ` 1q{2q problems with
constant coefficients.

3. Solve problem (40) iteratively (see Section 4.3). Each iteration involves diagonalizing a
P ˆ P matrix and solving a linear system with dpd ` 1q{2 unknowns. The cost of this
third step is negligible.

We now successively detail these three steps.

4.1 Approximation of
!
Eruεpfpqs

)
1ďpďP

For any basis function fp of V P
n pDq, 1 ď p ď P , we approximate Eruεpfpqs by the empirical

mean

uMε,hpfpq “ 1

M

Mÿ

m“1

uε,hpfp;ωmq, (45)

where, for 1 ď m ď M , uε,hpfp;ωmq is the P
1 approximation on Th of uεpfp;ωmq, unique

solution to (6) with the oscillatory matrix-valued coefficient Aεp¨, ωmq and the right-hand
side fp.

To compute (45) for all 1 ď p ď P , one has to (i) assemble M random stiffness matrices,
(ii) assemble P deterministic right-hand sides, and (iii) solve M ˆP linear systems. This step
is the only one involving Monte Carlo computations, and is therefore the most expensive part
of the whole procedure.

4.2 Precomputation of tensorial quantities

Once the computations of Section 4.1 have been performed, we assemble some tensors that
are needed to efficiently solve the sup and inf problems involved in (40).

We first compute, for any 1 ď p ď P , the approximations zhpfpq and
!
z
M,ij
ε,h pfpq

)
1ďi,jďd

on Th of p´∆q´1fp and
 

p´∆q´1 pBijEruεpfpqsq
(
1ďi,jďd

. In particular, zM,ij
ε,h pfpq is such that,
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for any P
1 function wh on Th that vanishes on BD,

ż

D
∇z

M,ij
ε,h pfpq ¨ ∇wh “ ´

ż

D
Bj

“
uMε,hpfpq

‰
Biwh.

Note that the following symmetry identity holds: z
M,ij
ε,h pfpq “ z

M,ji
ε,h pfpq.

We next assemble, for all integers 1 ď i, j, k, l ď d and 1 ď p, q ď P , the quantities

“
KM

ε,h

‰
i,j,k,l,p,q

“ 2

ż

D
z
M,ij
ε,h pfpq zM,kl

ε,h pfqq, (46)

“
K
M
ε,h

‰
i,j,p,q

“ ´
ż

D
z
M,ij
ε,h pfpq zhpfqq, (47)

rKhsp,q “
ż

D
zhpfpq zhpfqq. (48)

We emphasize that the cost of this step depends on P but is independent of the number M of
Monte Carlo realizations, and thus small in comparison to the cost of the operations described
in Section 4.1 for typical values of M and P (in the numerical results reported on in Section 5,
we have worked with M “ 100 and P ď 9).

4.3 Solution of the fully discrete problem

4.3.1 Formulation

At this stage, the original problem (40) has been approximated by its fully discrete version

I
P,M
ε,h “ inf

APS
sup

cPRP , |c|2“1

Φ
P,M
ε,h pA, cq, (49)

where, for any A P R
dˆd
sym and c “ tcpu1ďpďP P R

P ,

Φ
P,M
ε,h pA, cq “

∥

∥

∥

∥

∥

∥

Pÿ

p“1

cp

¨
˝ ÿ

1ďi,jďd

Ai,j z
M,ij
ε,h pfpq ` zhpfpq

˛
‚
∥

∥

∥

∥

∥

∥

2

L2pDq

. (50)

Problem (49) is solved by iteratively considering the problem

sup
cPRP , |c|2“1

Φ
P,M
ε,h pA, cq (51)

with A P S fixed, and the problem

inf
APS

Φ
P,M
ε,h pA, cq (52)

with c P R
P fixed. We successively explain how we solve the sup problem (51) (for A P S

fixed), the inf problem (52) (for c P R
P fixed), and next describe the iterative algorithm that

we have implemented to solve (49).
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4.3.2 The sup problem (51)

Let A P S be fixed. One can easily observe that

Φ
P,M
ε,h pA, cq “ cT GM

ε,hpAq c,

where GM
ε,hpAq is a symmetric, positive semi-definite, P ˆP matrix which can be assembled at

no additional cost using the precomputed quantities defined in (46)–(47)–(48) (see Appendix B
for its exact expression). Solving the sup problem (51) (with fixed matrix A) hence amounts
to finding a normalized eigenvector in R

P associated with the largest eigenvalue of the matrix
GM

ε,hpAq. This is reminiscent of the eigenvalue problem discussed in Section 3.1.1. Practically,
this eigenvector is computed using the power method. The cost of such a computation is
negligible, owing to the small size of the matrix GM

ε,hpAq (recall that P is typically small in

comparison to M). We denote by cpAq its solution and hence have

sup
cPRP , |c|2“1

Φ
P,M
ε,h pA, cq “ cpAqT GM

ε,hpAq cpAq. (53)

4.3.3 The inf problem (52)

Let c P R
P , |c|2 “ 1, be fixed. We observe that

Φ
P,M
ε,h pA, cq “ 1

2

ÿ

1ďi,j,k,lďd

”
B
P,M
ε,h pcq

ı
i,j,k,l

Ai,j Ak,l ´
ÿ

1ďi,jďd

”
B

P,M
ε,h pcq

ı
i,j

Ai,j ` bPh pcq,

where B
P,M
ε,h pcq is a d ˆ d ˆ d ˆ d fourth-order tensor, BP,M

ε,h pcq is a d ˆ d matrix and bPh pcq
is a scalar that can all be assembled at no additional cost using the precomputed quantities
defined in (46)–(47)–(48) (see Appendix B for their exact expressions). We recognize in Φ

P,M
ε,h

the discrete equivalent of (25). The inf problem (52) (with fixed eigenvector c) is in practice
solved as explained in Section 3.1.2, by considering the linear system (see (26))

@ 1 ď i, j ď d,
ÿ

1ďk,lďd

”
B
P,M
ε,h pcq

ı
i,j,k,l

Ak,l “
”
B

P,M
ε,h pcq

ı
i,j

. (54)

4.3.4 Iterative algorithm

In the above description, we have considered either the sup problem (on c, with fixed A) or
the inf problem (on A, for fixed c) involved in (49). We now assemble these two building
blocks to build an algorithm to solve (49). Introducing

Φ
P,M
ε,h pAq “ sup

cPRP , |c|2“1

Φ
P,M
ε,h pA, cq, (55)

we recast (49) as
I
P,M
ε,h “ inf

APS
Φ
P,M
ε,h pAq. (56)

We have seen (see (53)) that ΦP,M
ε,h pAq “ cpAqT GM

ε,hpAq cpAq, where cpAq is an eigenvector of

the matrix GM
ε,hpAq. One can easily prove that, for any 1 ď i, j ď d,

”
∇AΦ

P,M
ε,h pAq

ı
i,j

“ cpAqT BAi,j
GM

ε,hpAq cpAq,
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which reads, using the expressions (92), (93) and (94) of GM
ε,h, B

P,M
ε,h and B

P,M
ε,h given in

Appendix B, as

”
∇AΦ

P,M
ε,h pAq

ı
i,j

“
ÿ

1ďk,lďd

”
B
P,M
ε,h pcpAqq

ı
i,j,k,l

Ak,l ´
”
B

P,M
ε,h pcpAqq

ı
i,j

. (57)

Let 0 ă µ ă 1. In practice, we iterate as follows to solve problem (56). Let n P N and A
n P S.

1. We compute cn “ cpAnq solution to the sup problem (55) with fixed matrix A
n
.

2. We compute A
n`1

5 P R
dˆd
sym solution to the linear system (54) with fixed eigenvector cn.

As pointed out above, we assume that A
n`1

5 belongs to the convex subset S of R
dˆd
sym . It

has always been the case in our numerical experiments.

3. We define the next iterate as

A
n`1 “ p1 ´ µqAn ` µA

n`1

5 . (58)

For the numerical results reported on in Section 5, we have worked with µ ď 0.1.

Since A
n`1

is a convex combination of A
n P S and A

n`1

5 P S, we have A
n`1 P S. The

iterations are initialized using, say,

A
0 “ E

ˆ
1

|D|

ż

D
Aεpx, ¨qdx

˙
.

Let us briefly explain, at least formally, why the algorithm defined above enables to find
a minimizer of (56). We assume the linear system (54) to be invertible, and we denote by”
B
P,M
ε,h pcq

ı´1

its formal inverse. Since A
n`1

5 is defined as the solution to (54) with eigenvector

cn, we infer from (54) and (57) that

B
P,M
ε,h pcnqAn`1

5 “ B
P,M
ε,h pcnq “ B

P,M
ε,h pcnqAn ´ ∇AΦ

P,M
ε,h pAnq,

and thus

A
n`1

5 “ A
n ´

”
B
P,M
ε,h pcnq

ı´1

∇AΦ
P,M
ε,h pAnq.

The iteration (58) can be recast under the form

A
n`1 “ A

n ´ µ
”
B
P,M
ε,h pcnq

ı´1

∇AΦ
P,M
ε,h pAnq.

This is a quasi-Newton algorithm for the minimization of the function A ÞÑ Φ
P,M
ε,h pAq, with a

fixed step size µ and where the Hessian of ΦP,M
ε,h with respect to A is approximated by B

P,M
ε,h .

Note that each iteration of the algorithm is inexpensive in comparison with the cost of
the operations described in Sections 4.1 and 4.2. Consequently, there is no real advantage in
improving the optimization algorithm (58) (e.g. by optimizing the value of µ by a line search).
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5 Numerical results

As pointed out in Section 1, our approach targets practical situations where the information
on the oscillatory coefficients in the equation may be incomplete, and thus the other available
approaches cannot be applied. It is nevertheless a legitimate question to investigate how our
approach performs on standard test-cases in the periodic and stationary ergodic settings, and
how it compares with the classical homogenization approach for small values of ε. As already
pointed out in Section 1.3, and as detailed below (see Section 5.2.1), the aim of the numerical
tests is different in the periodic setting and in the stochastic setting. It is also different if ε is
asymptotically small or if ε takes larger values.

This section is organized as follows. In Section 5.1, we introduce the periodic and the
stationary ergodic test cases considered. In Section 5.2, we present the numerical results
obtained in the case of small values of ε. In Section 5.3, we address the case of larger values
of ε.

5.1 Test-cases

We let d “ 2 and the domain D be the unit square p0, 1q2. We fix the value of the parameter
ε to sizepDq{10 “ 10´1.

5.1.1 Periodic setting

We consider the test-case introduced in [16], namely

Aεpx, yq “ Aperpx{ε, y{εq, (59)

with Aper a Z
2-periodic symmetric matrix field given by

rAperpx, yqs1,1 “ 2 ` 1

2π
psinp2πxq ` sinp2πyqq,

rAperpx, yqs1,2 “ 1

2π
psinp2πxq ` sinp2πyqq,

rAperpx, yqs2,2 “ 1 ` 1

2π
psinp2πxq ` sinp2πyqq.

(60)

The coefficients of the corresponding homogenized matrix (obtained by solving the periodic
corrector problem (13) on a very fine mesh) are

rA‹s1,1 « 1.9806, rA‹s1,2 “ rA‹s2,1 « ´0.019345, rA‹s2,2 « 0.98065. (61)

5.1.2 Stationary ergodic setting

We consider the random checkerboard test-case (studied e.g. in [16]), namely

Aεpx, y, ωq “ astopx{ε, y{ε, ωq Id2, (62)

with asto a discrete stationary field given by (recall that Q “ p0, 1q2)
astopx, y, ωq “

ÿ

kPZ2

1Q`kpx, yqXkpωq, (63)

where the random variables Xk are i.i.d. and such that PpXk “ 4q “ PpXk “ 16q “ 1{2. An
explicit expression for the homogenized matrix is known in that case:

A‹ “ 8 Id2. (64)
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5.2 Results in the case ε ă ε

5.2.1 Objectives in the periodic case and in the stochastic case

In the regime ε ă ε, we know from Proposition 5 that our method can be seen as a practical
variational approach for computing the homogenized matrix A‹. The remaining question is
whether this approach is efficient or not, and particularly, compared with the classical approach
in homogenization.

Our approach (based on (17)–(18)) requires solving the highly oscillatory equations (1) set
on the domain D, for P “ dpd ` 1q{2 right-hand sides. In the periodic setting, the classical
homogenization approach requires solving d non-oscillatory equations set on the unit cell Q.
There is thus no hope to outperform the latter approach in terms of computational time.
This setting is nonetheless considered as a validation and we investigate how our approach
performs in terms of accuracy, for the approximation of the homogenized matrix, and for the
approximation of uε in the L2 and H1 norms.

The real, discriminating, test-case for our approach is the stationary ergodic setting. In-
deed, classical homogenization then requires solving equations that are set on a truncated
approximation QN “ p´N,Nqd of an asymptotically infinitely large domain (see (14) in Sec-
tion 2.2). The coefficients of these equations vary at scale 1. In that case, to hope for an
accurate approximation of the homogenized matrix, one has to consider a meshsize H ! 1.
On the other hand, we consider a meshsize h ! ε to solve the highly oscillatory equations (set
on the domain D) involved in our approach. We see that, up to an appropriate choice of the
parameter H such that

2N

H
“ sizepDq

h
, (65)

where sizepDq is typically the diameter of D, the classical homogenization approach and ours
involve solving linear systems of the same size. The computational workload for the two
approaches is thus of the same order of magnitude, although not identical. We have decided
to enforce (65) and to relate N in (14) and ε in (6) by

N “ sizepDq{2ε. (66)

Note that imposing (66) is equivalent to enforcing ε{h “ 1{H. We then compare the two
methods in terms of solution time and accuracy. Obviously, for the two methods, the same
number M of Monte Carlo realizations is used, and the same M realizations are considered.

Remark 12. Another possibility would have been to impose ε{h “ 1{H and to adjust the size
N of QN in (14) so that both approaches exactly share the same workload. We did not pursue
in that direction.

The numerical experiments reported in Section 5.2.4 show that, in the stochastic case, and
for all the values of ε ă ε that have been considered, the approximation of A‹ obtained by
the classical homogenization approach is slightly more accurate than that obtained with our
approach. In contrast, our approach provides a better L2-approximation and a better H1-
approximation of Epuεq. This is somewhat intuitive, as our approach is targeted toward the
approximation of uε rather than A‹. In terms of computational cost, our approach is slightly
less expensive for moderately small values of ε, and slightly more expensive for asymptotically
small values of ε (in any cases, the ratio of costs remains close to 1, see Figure 2 below).
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5.2.2 Choice of the numerical parameters

We recall that the integer M denotes the number of i.i.d. realizations used to approximate
the expectation in the cost function (39) (see (45)). We also recall that the integer P denotes
the dimension of the set V P

n pDq (defined in (21)) that is used to approximate the space L2
npDq

in the sup problem. As explained in Section 3.1.1, we consider as basis functions of the set
V P
n pDq the first P normalized eigenvectors of the laplacian operator in the domain D. Because

of the simple geometry of D, they are here analytically known. We take here P “ d pd` 1q{2,
that is P “ 3, which is the minimum dimension of the search space V P

n pDq.

5.2.3 Results in the periodic setting

We consider the parameters tεku0ďkď6 such that ε0 “ 0.4 and εk “ εk´1{2 for 1 ď k ď 6.
The associated meshsizes are thku0ďkď6 such that hk “ εk{r for r « 43, unless otherwise
mentioned. We focus on the values tεku3ďkď6, for which we have εk ă ε.

The error in the approximation of the homogenized matrix is defined by

err_per_mat “

¨
˚̊
˚̋

ř
1ďi,jďd

ˇ̌
ˇ̌
”
A

P
ε,h

ı
i,j

´ rA‹si,j
ˇ̌
ˇ̌
2

ř
1ďi,jďd |rA‹si,j |2

˛
‹‹‹‚

1{2

, (67)

where A‹ is taken equal to its reference value (61) and A
P
ε,h is the best matrix computed

by our approach. The numerical results are collected in Table 1. We observe that our ap-
proach provides an accurate approximation of the homogenized matrix. The accuracy of the
approximation improves (in the limit of spatial resolution) as ε decreases.

ε 0.05 0.025 0.0125 0.00625

err_per_mat (ε{h « 43) 1.0145 10´3 7.6477 10´4 6.6613 10´4 6.2881 10´4

err_per_mat (ε{h « 86) 6.5399 10´4 3.5074 10´4 2.3749 10´4 X

Table 1: Approximation of A‹ (err_per_mat) in function of ε (each line corresponds to a
different value of the ratio ε{h). The test cases with ε too small and ε{h too large are
prohibitively expensive to perform. They are marked with an X.

We now examine the approximation of uε in the L2 norm. We denote by

‚ uε,hpfq the discrete solution to (1) with the periodic oscillatory coefficient given by (59)–
(60) and the right-hand side f ;

‚ u‹,hpfq the discrete solution to (2) with the homogenized matrix (61) and the right-hand
side f ;

‚ u
1,θ
ε,hpfq the two-scale expansion (truncated at first-order) built from u‹,hpfq (see (33)),

where we use the periodic correctors solution to (13);
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‚ uPε,hpfq the discrete solution to (3) with the matrix A
P
ε,h and the right-hand side f (we

recall that the matrix A
P
ε,h has been computed using a small number P of right-hand

sides).

To assess the quality of the approximation of uε,h by puθh P
!
u‹,h, u

1,θ
ε,h, uPε,h

)
in the L2 norm,

we define the criterion

err_per_L2 “

¨
˚̊
˚̊
˝

inf
θPR2

«
sup

fPV Q
n pDq

∥

∥

∥

uε,hpfq ´ puθhpfq
∥

∥

∥

2

L2pDq

ff

∥

∥

∥

uε,h

´
pfε
¯∥
∥

∥

2

L2pDq

˛
‹‹‹‹‚

1{2

. (68)

Note that the supremum is taken over f P V Q
n pDq, where Q " P . We take Q “ 16, and we

have checked, in all the cases considered below, that our results do not significantly change
for a larger value of Q. The function pfε P V Q

n pDq denotes the argument of the inf sup problem
in the numerator of (68). We hence compare uε with its homogenized limit u‹, its first-order

two-scale expansion u
1,θ
ε (recall in this case that the correctors are defined up to an additive

constant θ, over which we minimize the error in (68)), and the approximation uPε provided by
our approach. The numerical results are collected in Figure 1.

We observe that the solution associated with the best matrix we compute indeed converges
towards the exact solution, in the L2 norm. We however recall that, in the present periodic
setting, computing uPε,h is much more expensive than computing u‹,h or u

1,θ
ε,h.

0.050.0250.01250.00625

10´3

10´2.5

Figure 1: Approximation of uε in the L2 norm (err_per_L2) by u‹,h (red), u1,θε,h (brown) and

uPε,h (black) in function of ε, for h such that ε{h « 43.

We next examine the H1 error. For f P L2pDq, we denote by Cε,h∇u‹,hpfq the discrete
equivalent of Cε∇u‹pfq, the homogenization-based approximation of ∇uεpfq, see (35)–(36)
in Section 3.3. We recall that, in our approach, we seek an approximation of ∇uεpfq under

the form Cε∇uεpfq (see (37)), the discrete equivalent of which is computed as C
R
ε,h∇uPε,hpfq.
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Recall that the integer R is the number of right-hand sides used to define the least-squares

minimization problem (38) giving C
R
ε,h. Here, we take R “ P “ 3. To assess the quality of

the approximation of ∇uε,h, we define, for pCε,h∇puh P
!
Cε,h∇u‹,h, C

R
ε,h∇uPε,h

)
, the criterion

err_per_H1 “

¨
˚̊
˚̋

sup
fPV Q

n pDq

∥

∥

∥

∇uε,hpfq ´ pCε,h∇puhpfq
∥

∥

∥

2

L2pDzBq

∥

∥

∥

∇uε,h

´
pfε
¯∥
∥

∥

2

L2pDzBq

˛
‹‹‹‚

1{2

, (69)

where, here again, the supremum is taken over a space V Q
n pDq much larger than V P

n pDq (we
take Q “ 16), and where pfε P V Q

n pDq denotes the argument of the sup problem. In (69),
B represents the subset of D formed by the boundary elements of the discretization Th. We
remove them in view of the discussion below (38). We thus compare ∇uε with its approx-

imation Cε∇u‹ provided by the two-scale expansion and with the approximation C
R
ε ∇uPε

provided by our approach. The numerical results are collected in Table 2.

We observe that our approach provides an accurate H1-approximation of uε. As ε goes to
zero, the surrogate we compute is (roughly) a first-order convergent approximation of ∇uε in
the L2 norm. As far as the homogenization-based approximation is concerned, we expect it to
converge with order at least one half (see (34)). This is what we observe in practice, as long
as ε is not too small. Otherwise, the error due to the meshsize dominates, and the error (69)
does not decrease anymore when ε decreases.

ε 0.05 0.025 0.0125 0.00625

err_per_H1 for Cε,h∇u‹,h 2.0906 10´2 1.6461 10´2 1.2513 10´2 X

err_per_H1 for C
R
ε,h∇uPε,h 1.5550 10´2 7.6055 10´3 3.7549 10´3 X

Table 2: Approximation of ∇uε in the L2 norm (err_per_H1) by Cε,h∇u‹,h and C
R
ε,h∇uPε,h

in function of ε, for h such that ε{h « 86. The test cases with ε too small are prohibitively
expensive to perform. They are marked with an X.

5.2.4 Results in the stationary ergodic setting

We consider the parameters tεku0ďkď5 such that εk “ 2´pk`1q for 0 ď k ď 5. In agreement
with formula (66), we couple these parameters to the parameters tNku0ďkď5 (defining the
domain on which we solve the corrector problems (14)) such that Nk “ 2k. The associated
meshsizes thku0ďkď5 and tHku0ďkď5 are computed respectively letting hk “ εk{r for r « 27

(unless otherwise stated) and using (65). We focus on the values tεku3ďkď5 and tNku3ďkď5,
for which we have εk ă ε. We consider M “ 100 Monte Carlo realizations.

Before discussing the accuracy of our approach, we first compare its cost with that of the

classical approach. We show on Figure 2 the ratio of the time needed to compute A
P,M
ε,h using

our approach divided by the time needed to compute A
N,M
‹,H by the classical homogenization

approach. To compare the computational times, we make use of an implementation that does
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not exploit parallelism, and we solve the linear systems by means of an iterative solver. In view
of Figure 2, for the choice of parameters discussed in Section 5.2.1, our method is slightly faster
than the standard homogenization approach for values of N up to approximately 14. This
observation can be explained as follows. For the number M “ 100 of Monte Carlo realizations
that we consider, we can neglect, in our procedure, the cost of the precomputation and final
optimization stages, in comparison to the Monte Carlo step (see Section 4). Hence, to compute

A
P,M
ε,h , we have to (i) assemble M “ 100 stiffness matrices, (ii) assemble P “ 3 right-hand

sides, and (iii) solve P ˆ M “ 300 linear systems. In contrast, to compute A
N,M
‹,H , one has to

solve dˆ M “ 200 approximate corrector equations (14), that is to say (i) assemble M “ 100

stiffness matrices, (ii) assemble d ˆ M “ 200 right-hand sides, and (iii) solve d ˆ M “ 200

linear systems. Consequently, our approach necessitates solving 100 more linear systems,
but assembling 200 less right-hand sides, than the classical homogenization approach. This
explains what we observe. When the value of N is not too large, the assembly cost is higher
than the inversion cost, and our approach is faster.

8 16 32
0.75

1.25

1

Figure 2: Ratio of the computational times between our approach and the classical homoge-
nization approach, in function of N (here M “ 100 and ε{h « 27).

We adapt to the stationary ergodic setting the accuracy criteria (67), (68) and (69) intro-
duced in the periodic setting. The error in the approximation of the homogenized matrix is

defined, for pAM P
!
A

N,M
‹,H , A

P,M
ε,h

)
, by

err_sto_mat “

¨
˚̊
˚̋

ř
1ďi,jďd

ˇ̌
ˇ̌
”
pAM

ı
i,j

´ rA‹si,j
ˇ̌
ˇ̌
2

ř
1ďi,jďd |rA‹si,j |2

˛
‹‹‹‚

1{2

,

where A‹ is taken equal to the exact value (64). We recall that AN,M
‹,H is the practical approxi-

mation of AN,M
‹ defined in (16), and that our approach consists in computing the best matrix

A
P,M
ε,h following the procedure described in Section 3.4.
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The numerical results are collected in Figure 3, for several choices of the meshsizes. We
observe that the matrix we compute converges to the homogenized matrix as N increases.
However, for any value of N in the range we consider, the approximation of A‹ obtained by
the classical homogenization approach is slightly more accurate than the one obtained with
our approach. As shown on Figure 2, the former approach is as expensive as our approach for
N « 14, and slightly less expensive for larger values of N .

8 16 32

10´2

10´1.5

Figure 3: Approximation of A‹ by the classical homogenization approach (blue) and by our
approach (black) in function of N , for M “ 100 realizations. Since M is finite, the error
err_sto_mat is actually random. We compute it 100 times. The thick line corresponds to the
mean value over the 100 computations of the error. The dashed lines show the 95% confidence
interval. Results obtained with h such that ε{h « 27 (resp. ε{h « 108) are denoted with x

(resp. o).

Turning to the approximation of Epuεq in the L2 norm, we denote by

‚ uMε,hpfq the expectation, as defined in (45), of the discrete solutions to (6) with the
oscillatory coefficients given by (62)–(63) and the right-hand side f ;

‚ u‹,hpfq the discrete solution to (2) with the exact homogenized matrix (64) and the
right-hand side f (note that the exact matrix is usually unknown);

‚ u
N,M
‹,h pfq the discrete solution to (2) with the matrix A

N,M
‹,H and the right-hand side f ;

‚ u
P,M
ε,h pfq the discrete solution to (3) with the matrix A

P,M
ε,h and the right-hand side f .

The M realizations of the field Ap¨, ωq we consider to compute uMε,hpfq, uN,M
‹,h pfq and u

P,M
ε,h pfq

are identical.
To assess the quality of the approximation of uMε,h by puh P

!
u‹,h, u

N,M
‹,h , u

P,M
ε,h

)
in the L2
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norm, we define the criterion

err_sto_L2 “

¨
˚̊
˝

sup
fPV Q

n pDq

∥

∥uMε,hpfq ´ puhpfq
∥

∥

2

L2pDq

∥

∥

∥
uMε,h

´
pfε
¯∥
∥

∥

2

L2pDq

˛
‹‹‚

1{2

. (70)

As in the periodic case, the supremum is taken over f P V Q
n pDq with Q “ 16 " P , and

pfε P V Q
n pDq denotes the argument of the sup problem. The numerical results are collected in

Figure 4, for several choices of the meshsizes and of the total number M of realizations.
We observe that the solution associated with the best matrix we compute is a better

L2-approximation (for the range of parameters considered here) of Epuεq than the solutions
associated with the exact or approximate homogenized matrices. Again, due to the small

number P of right-hand sides we consider to compute A
P,M
ε,h , this good accuracy is not an

immediate consequence of our practical procedure (it would have been if we had taken P

extremely large). We also observe that the accuracy of the three approximations u‹,h, u
N,M
‹,h

and u
P,M
ε,h improves when h decreases or when M increases, in somewhat a complex manner.

In terms of cost, our approach is again less expensive than the classical approach for N ď 14.

8 16 32
10´2.2

10´2

10´1.8

10´1.6

10´1.4

Figure 4: Approximation of Epuεq in the L2 norm (err_sto_L2) by u‹,h (red), uN,M
‹,h (blue)

and u
P,M
ε,h (black) in function of N (curves with x: ε{h « 27 and M “ 100; curves with o:

ε{h « 108 and M “ 100; curves with +: ε{h « 27 and M “ 400; curves with ˝: ε{h « 54 and
M “ 400).

We next turn to the H1-error. We denote by C
N,M
ε,h the approximation of the deterministic

matrix Cε defined by (43) by an empirical mean over M realizations of the corrector functions,
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solution to (14):
”
C

N,M
ε,h

ı
i,j

“ δij ` 1

M

Mÿ

m“1

BiwN
ej

p¨{ε, ωmq.

For f P L2pDq, we denote by C
N,M
ε,h ∇u‹,hpfq and C

N,M
ε,h ∇u

N,M
‹,h pfq the two discrete equivalents

of Cε∇u‹pfq, the homogenization-based approximation of E p∇uεpfqq, obtained by using the
exact homogenized matrix (64) and the matrix A

N,M
‹,H , respectively, to compute an approxima-

tion of u‹pfq. In our approach, we seek a discrete approximation of E p∇uεq under the form

C
R,M
ε,h ∇u

P,M
ε,h , with R “ P “ 3. For

pCM
ε,h∇puh P

!
C

N,M
ε,h ∇u‹,h, C

N,M
ε,h ∇u

N,M
‹,h , C

R,M
ε,h ∇u

P,M
ε,h

)
,

we define the criterion

err_sto_H1 “

¨
˚̊
˚̋

sup
fPV Q

n pDq

∥

∥

∥
∇uMε,hpfq ´ pCM

ε,h ∇puhpfq
∥

∥

∥

2

L2pDzBq

∥

∥

∥
∇uMε,h

´
pfε
¯∥
∥

∥

2

L2pDzBq

˛
‹‹‹‚

1{2

, (71)

where, here again, the supremum is taken over the space V Q
n pDq for Q “ 16 " P , pfε P V Q

n pDq
denotes the argument of the sup problem, and boundary elements B are removed from the
evaluation criterion, as in the periodic case (69). We recall that, in (71), uMε,hpfq is the empirical
mean (45) over M realizations of uε,hpf ;ωq. It is thus an approximation to E ruεpfqs.

The numerical results are collected in Table 3. We see that our surrogate defines an
approximation of Ep∇uεq which is systematically better than that provided by the classical
homogenization approach, for any choice of h and M .

5.3 Results in the case ε ě ε

In the regime ε ě ε, we quantitatively investigate whether the best constant matrix provided
by our approach allows for an accurate approximation of the exact solution, in the L2 norm
in the sense of the criteria (68) or (70), and in the H1 norm in the sense of the criteria (69)
or (71).

We also consider below the criterion (67), only in the periodic setting. It is indeed inter-
esting to quantify the threshold value of ε above which Aε is significantly different from A‹

(let alone to understand the practical limitation of homogenization theory).
When considering large values of the parameter ε, it is necessary to consider P right-hand

sides with P larger than dpd ` 1q{2 “ 3, as pointed out in Section 3.1.1. This value depends
on ε and is denoted P pεq.

5.3.1 Results in the periodic setting

We consider the set tεku0ďkď2 of parameters introduced in Section 5.2.3. For 0 ď k ď 2, we
have εk ě ε. We choose the number of right-hand sides as P pε0q “ 9 and P pε1q “ P pε2q “ 5

(we recall that P pεkq “ 3 for 3 ď k ď 6). Considering less right-hand sides significantly
alters the approximation results, while considering more right-hand sides does not significantly
improve these results.
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N 8 16 32

err_sto_H1 for C
N,M
ε,h ∇u‹,h (ε{h « 27, M “ 100) 1.043 10´1 9.635 10´2 9.394 10´2

(ε{h « 108, M “ 100) 8.648 10´2 8.120 10´2 8.010 10´2

(ε{h « 27, M “ 400) 8.542 10´2 7.828 10´2 7.298 10´2

(ε{h « 54, M “ 400) 6.599 10´2 6.222 10´2 6.067 10´2

err_sto_H1 for C
N,M
ε,h ∇u

N,M
‹,h (ε{h « 27, M “ 100) 9.799 10´2 9.095 10´2 8.961 10´2

(ε{h « 108, M “ 100) 8.620 10´2 8.022 10´2 7.952 10´2

(ε{h « 27, M “ 400) 7.605 10´2 7.173 10´2 6.780 10´2

(ε{h « 54, M “ 400) 6.142 10´2 5.957 10´2 5.872 10´2

err_sto_H1 for C
R,M
ε,h ∇u

P,M
ε,h (ε{h « 27, M “ 100) 6.000 10´2 4.542 10´2 3.018 10´2

(ε{h « 108, M “ 100) 5.912 10´2 4.657 10´2 3.596 10´2

(ε{h « 27, M “ 400) 3.030 10´2 3.814 10´2 2.625 10´2

(ε{h « 54, M “ 400) 5.157 10´2 3.613 10´2 2.849 10´2

Table 3: Approximation of Ep∇uεq in the L2 norm (err_sto_H1) by C
N,M
ε,h ∇u‹,h,

C
N,M
ε,h ∇u

N,M
‹,h and C

R,M
ε,h ∇u

P,M
ε,h in function of N (the various lines correspond to various

values of h and M).

We consider the evaluation criteria (67), (68) and (69). We keep Q “ 16 functions in the
test-space V Q

n pDq. For the H1-reconstruction, we choose the number of right-hand sides Rpεq
such that Rpε0q “ Rpε1q “ 5 and Rpε2q “ 3 (which satisfies Rpεq ď P pεq). The numerical
results for the approximation of the homogenized matrix, the L2-approximation and the H1-
approximation, are respectively collected in Table 4, Figure 5 and Table 5.

We observe on Table 4 that the approximation of the homogenized matrix provided by
our approach highly improves when decreasing ε from ε “ 0.4 to ε “ 0.2. For ε ě 0.4, the
homogenized matrix does not correctly describe the medium.

ε 0.4 0.2 0.1

err_per_mat 3.8420 10´2 3.7056 10´3 1.8623 10´3

Table 4: Approximation of A‹ (err_per_mat) in function of ε (here ε{h « 43).

Figure 5 confirms this observation when it comes to the solution itself. We have seen that,
for ε “ 0.4, A‹ and Aε are significantly different. The solutions u‹ and uε “ upAεq are also
significantly different, the latter being a much better L2-approximation of uε than the former
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or the first-order two-scale expansion. For smaller values of ε, we already observe the behavior
we have described in Section 5.2.3. Similar comments apply to the approximation of ∇uε (see
Table 5).

0.40.20.1

10´2

10´1.8

10´1.6

10´1.4

Figure 5: Approximation of uε in the L2 norm (err_per_L2) by u‹,h (red), u1,θε,h (brown) and

uPε,h (black) in function of ε (here ε{h « 43). These quantities are defined in Section 5.2.3.

ε 0.4 0.2 0.1

err_per_H1 for Cε,h∇u‹,h 9.5890 10´2 4.8421 10´2 3.3923 10´2

err_per_H1 for C
R
ε,h∇uPε,h 8.7591 10´2 5.8225 10´2 3.2373 10´2

Table 5: Approximation of ∇uε in the L2 norm (err_per_H1) by Cε,h∇u‹,h and C
R
ε,h∇uPε,h

in function of ε (here ε{h « 43). See Section 5.2.3 for a definition of these quantities.

5.3.2 Results in the stationary ergodic setting

We consider the sets tεku0ďkď2 and tNku0ďkď2 of parameters introduced in Section 5.2.4,
for which we have εk ą ε. We choose the number of right-hand sides as P pε0q “ 9 and
P pε1q “ P pε2q “ 5, and fix the number of Monte Carlo realizations to M “ 100.

We consider the evaluation criteria (70) and (71), with Q “ 16 functions in the test-
space V Q

n pDq. For the H1-reconstruction, the number of right-hand sides is chosen to be
Rpε0q “ Rpε1q “ 5 and Rpε2q “ 3. Note that again Rpεq ď P pεq. The numerical results for
the L2- and H1-approximation are respectively collected in Figure 6 and Table 6.

Remark 13. We note that, when working with ε “ ε0 “ 1{2, we have, in view of (66),
N “ N0 “ 1. In view of (62)–(63), it turns out that, in this case, there are only 16 different
realizations of the field asto. For this value of ε, the expectation is computed by a simple
enumeration of all the possible realizations. For ε “ ε1 “ 1{4, there are already 65,536
realizations, and expectations are computed by empirical means over M realizations.
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On Figure 6, we observe that the solution associated with the best matrix we compute is an
approximation of Epuεq (in the L2 norm) generally more accurate than the solution associated
with the exact homogenized matrix (since here N is small, the approximate matrix A

N,M
‹ is

not expected to be an accurate approximation of A‹). Table 6 shows that our surrogate defines
an approximation of Ep∇uεq, the accuracy of which is comparable, and often much better, to
that provided by the homogenization approach. For the small values of N considered here,
our approach is less expensive than the classical homogenization approach.

1 2 4
10´1.6

10´1.4

10´1.2

10´1

10´0.8

Figure 6: Approximation of Epuεq in the L2 norm (err_sto_L2) by u‹,h (red) and u
P,M
ε,h (black)

in function of N . For N ě 2, all expectations are approximated by an empirical mean over
M “ 100 realizations. Since M is finite, results are random. We have performed the overall
computation 10 times and show the corresponding 95% confidence interval (here ε{h « 27).

N 1 2 4

err_sto_H1 for C
N,M
ε,h ∇u‹,h 1.4947 10´1 1.3091 10´1 1.0720 10´1

err_sto_H1 for C
R,M
ε,h ∇u

P,M
ε,h 1.0955 10´1 1.4595 10´1 6.9334 10´2

Table 6: Approximation of Ep∇uεq in the L2 norm (err_sto_H1) by C
N,M
ε,h ∇u‹,h and

C
R,M
ε,h ∇u

P,M
ε,h in function of N , for M “ 100 and ε{h « 27 (see Section 5.2.4 for a defini-

tion of these quantities).
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A Proof of Proposition 5

A.1 Preliminary results

Before we are in position to show Proposition 5, we first need to prove the following two
preliminary lemmas, namely Lemma 14 and Lemma 15.

Lemma 14. Under the assumptions (9) and (10), the following convergence holds:

lim
εÑ0

ΦεpA‹q “ 0. (72)

We recall that Φε is defined by (27): for any A,

ΦεpAq “ sup
fPL2

n
pDq

ΦεpA, fq “ sup
fPL2

n
pDq

∥

∥p´∆q´1
`
divpA∇uεpfqq ` f

˘∥
∥

2

L2pDq
.

Proof of Lemma 14. We use the notations and results of Section 3.1. Let f ε
‹ P L2

npDq such
that

ΦεpA‹q “
∥

∥p´∆q´1 pdivpA‹∇uεpf ε
‹ qq ` f ε

‹ q
∥

∥

2

L2pDq
, (73)

and let CP ą 0 be a Poincaré constant for D, namely a constant such that, for any v P H1
0 pDq,

we have ‖v‖L2pDq ď CP‖∇v‖L2pDq.

Using standard a priori estimates, we have, for any f P L2pDq, that

∥

∥p´∆q´1f
∥

∥

L2pDq
ď C2

P ‖f‖L2pDq. (74)

Using that α ď Aε ď β (see (10)), we likewise get that, for any f P L2pDq,

‖∇uεpfq‖L2pDq ď CP

α
‖f‖L2pDq. (75)

We now estimate zε “ p´∆q´1 pdivpA‹∇uεpfqqq. We recall that (10) implies that

α ď A‹ ď β. (76)

From the variational formulation satisfied by zε, we obtain ‖∇zε‖L2pDq ď |A‹| ‖∇uεpfq‖L2pDq,
which implies, using (75) and (76), that ‖∇zε‖L2pDq ď CP β{α ‖f‖L2pDq, hence

∥

∥p´∆q´1 pdivpA‹∇uεpfqqq
∥

∥

L2pDq
ď C2

P

β

α
‖f‖L2pDq. (77)

Using (73), (77), (74) and the fact that ‖f ε
‹‖L2pDq “ 1 for all ε ą 0, we deduce that the

sequence tΦεpA‹quεą0 is uniformly bounded. There thus exists a subsequence, that we still
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denote by tΦεpA‹quεą0, that converges in R. Let us denote by Φ its limit. We prove in the
sequel that Φ “ 0, which implies (72).

Since tf ε
‹ uεą0 is uniformly bounded in L2pDq, there exists a subsequence, again denoted

tf ε
‹ uεą0, that weakly converges in L2pDq when ε Ñ 0 to some function f0

‹ P L2pDq which
satisfies

∥

∥f0
‹

∥

∥

L2pDq
ď 1. From (73), we infer, by the triangle inequality,

pΦεpA‹qq1{2 ď Iε1 ` Iε2 ` Iε3 , (78)

with

Iε1 “
∥

∥p´∆q´1
`
divpA‹∇uεpf ε

‹ ´ f0
‹ qq

˘∥
∥

L2pDq
,

Iε2 “
∥

∥p´∆q´1
`
divpA‹∇uεpf0

‹ qq ` f0
‹

˘∥
∥

L2pDq
,

Iε3 “
∥

∥p´∆q´1pf ε
‹ ´ f0

‹ q
∥

∥

L2pDq
.

We successively show that Iε1 , I
ε
2 and Iε3 vanish with ε.

Step 1: estimation of Iε1 . Let zε “ p´∆q´1
`
div

“
A‹∇puεpf ε

‹ ´ f0
‹ qq

‰˘
P H1

0 pDq. We have

‖∇zε‖
2
L2pDq “ ´

ż

D
A‹∇puεpf ε

‹ ´ f0
‹ qq ¨ ∇zε ď β

∥

∥∇puεpf ε
‹ ´ f0

‹ qq
∥

∥

L2pDq
‖∇zε‖L2pDq,

where we have used (76). Using the Poincaré inequality, we deduce

Iε1 “ ‖zε‖L2pDq ď CP β
∥

∥∇puεpf ε
‹ ´ f0

‹ qq
∥

∥

L2pDq
,

thus, using (1), we get that

pIε1q2 ď C2
P

β2

α

ż

D
Aε∇puεpf ε

‹ ´f0
‹ qq ¨∇puεpf ε

‹ ´f0
‹ qq “ C2

P

β2

α

ż

D
pf ε

‹ ´f0
‹ q uεpf ε

‹ ´f0
‹ q. (79)

From (75), we also deduce

∥

∥∇puεpf ε
‹ ´ f0

‹ qq
∥

∥

L2pDq
ď CP

α

∥

∥f ε
‹ ´ f0

‹

∥

∥

L2pDq
ď 2

CP

α
.

Using the Poincaré inequality, we obtain that the sequence
 
uεpf ε

‹ ´ f0
‹ q
(
εą0

is uniformly

bounded in H1pDq. There thus exists a subsequence, that we again denote
 
uεpf ε

‹ ´ f0
‹ q
(
εą0

,
which is strongly convergent in L2pDq. The right-hand side of (79) is therefore the L2 product
of a sequence that weakly converges to 0 times a sequence that strongly converges. We hence
deduce from (79) that

lim
εÑ0

Iε1 “ 0. (80)

Step 2: estimation of Iε2 . Let wε “ divpA‹∇uεpf0
‹ qq ` f0

‹ , rε “ p´∆q´1wε P H1
0 pDq and

pε “ p´∆q´1rε P H1
0 pDq. Using the definition of pε, we have

pIε2q2 “
ż

D
r2ε “

ż

D
∇rε ¨ ∇pε. (81)

Using the definition of rε, we have, for any φ P H1
0 pDq,

ż

D
∇rε ¨ ∇φ “ ´

ż

D
A‹∇uεpf0

‹ q ¨ ∇φ `
ż

D
f0

‹ φ. (82)

35



Using (82) for φ ” pε, (81) reads as

pIε2q2 “ ´
ż

D
A‹∇uεpf0

‹ q ¨ ∇pε `
ż

D
f0

‹ pε. (83)

In order to pass to the limit ε Ñ 0 in (83), we establish some bounds. Using (82) with φ ” rε
and the bounds (76), we deduce

‖∇rε‖L2pDq ď β
∥

∥∇uεpf0
‹ q
∥

∥

L2pDq
` CP

∥

∥f0
‹

∥

∥

L2pDq
,

which (together with the Poincaré inequality and (75)) implies that rε is uniformly bounded
in H1pDq. There thus exists r0 P H1

0 pDq such that, up to some extraction, rε converges to r0,
weakly in H1pDq and strongly in L2pDq.

Passing to the limit ε Ñ 0 in (82), and using that ∇uεpfq weakly converges to ∇u‹pfq,
we deduce that, for any φ P H1

0 pDq,
ż

D
∇r0 ¨ ∇φ “ ´

ż

D
A‹∇u‹pf0

‹ q ¨ ∇φ `
ż

D
f0

‹ φ “ 0,

in view of the variational formulation of (2). We hence get that r0 ” 0.
We now turn to pε. We have pε “ p´∆q´1rε P H1

0 pDq and rε converges to r0 “ 0, weakly
in H1pDq and strongly in L2pDq. Hence pε converges to 0 strongly in H1

0 pDq.
We now pass to the limit ε Ñ 0 in (83), and obtain

lim
εÑ0

Iε2 “ 0. (84)

Step 3: estimation of Iε3 . Let kε “ p´∆q´1pf ε
‹ ´ f0

‹ q. We have

‖∇kε‖
2
L2pDq “

ż

D
pf ε

‹ ´ f0
‹ qkε, (85)

hence, using the Poincaré inequality,

‖∇kε‖L2pDq ď CP

∥

∥f ε
‹ ´ f0

‹

∥

∥

L2pDq
ď 2CP.

The sequence tkεuεą0 is thus uniformly bounded in H1pDq and there exists a subsequence,
that we again denote tkεuεą0, which is strongly convergent in L2pDq. Using that f ε

‹ ´ f0
‹

weakly converges to 0 in L2pDq, we deduce from (85) that lim
εÑ0

‖∇kε‖
2
L2pDq “ 0, thus, again

using the Poincaré inequality,

lim
εÑ0

Iε3 “ lim
εÑ0

‖kε‖L2pDq “ 0. (86)

Conclusion. Collecting (78), (80), (84) and (86), we obtain that ΦεpA‹q converges to zero as
ε Ñ 0. We thus have shown that Φ “ 0. The limit being independent of the subsequence that
we have considered, we eventually deduce that the whole sequence tΦεpA‹quεą0 converges to
zero. This completes the proof of Lemma 14.

In what follows, we identify the set of indices tpi, jq, 1 ď i ď j ď du with the set of indices"
m, 1 ď m ď dpd ` 1q

2

*
.
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Lemma 15. There exist
d pd ` 1q

2
functions f‹,k P L2

npDq and
d pd ` 1q

2
functions ϕ‹,k P

C8
0 pDq such that the matrix Z‹ P R

dpd`1q
2

ˆ dpd`1q
2 defined by

@ 1 ď k ď d pd ` 1q
2

, @ 1 ď i ă j ď d,

$
’’&
’’%

rZ‹sk,pi,iq “
ż

D
u‹,k Biiϕ‹,k,

rZ‹sk,pi,jq “ 2

ż

D
u‹,k Bijϕ‹,k,

(87)

where u‹,k “ u‹pf‹,kq is the solution to (2) with right-hand side f‹,k, is invertible.

Proof of Lemma 15. In the Steps 1 and 2 below, we construct f‹,k P L2
npDq and ϕ‹,k P C8

0 pDq
inductively for 1 ď k ď dpd ` 1q{2, such that the vector Ek

‹ P R
dpd`1q

2 defined by

@ 1 ď i ă j ď d,

$
’’&
’’%

”
Ek

‹

ı
pi,iq

“
ż

D
u‹,k Biiϕ‹,k,

”
Ek

‹

ı
pi,jq

“ 2

ż

D
u‹,k Bijϕ‹,k,

(88)

does not belong to SpanpE1
‹, . . . ,E

k´1
‹ q. The vectors E1

‹, . . . , E
dpd`1q{2
‹ being the rows of the

matrix Z‹, we deduce that Z‹ is invertible.

Step 1: Construction of E1
‹. Choose f‹,1 P L2

npDq and ϕ‹,1 P C8
0 pDq such that

ż

D
f‹,1 ϕ‹,1 ‰

0, and consider E1
‹ P R

dpd`1q
2 defined by (88) (where we recall that u‹,1 is the solution to (2)

with right-hand side f‹,1). Recalling that A‹ is symmetric and constant, we have

ÿ

1ďiďjďd

rA‹si,j
“
E1

‹

‰
pi,jq

“ ´
ż

D
A‹∇u‹,1 ¨ ∇ϕ‹,1 “ ´

ż

D
f‹,1 ϕ‹,1 ‰ 0,

hence E1
‹ ‰ 0.

Step 2: Induction. We assume that we have constructed f‹,1, . . . , f‹,k´1 and ϕ‹,1, . . . ,
ϕ‹,k´1 such that the family E1

‹, . . . , Ek´1
‹ is free, for k ď dpd ` 1q{2. We now construct

f‹,k P L2
npDq and ϕ‹,k P C8

0 pDq such that the vector Ek
‹ P R

dpd`1q
2 defined in (88) does not

belong to SpanpE1
‹, . . . ,E

k´1
‹ q.

We proceed by contradiction and assume that, for any such f‹,k and ϕ‹,k, there exist
λℓpf‹,k, ϕ‹,kq P R, 1 ď ℓ ď k ´ 1, such that

Ek
‹ “

k´1ÿ

ℓ“1

λℓpf‹,k, ϕ‹,kqEℓ
‹.

For any vector S‹ P R
dpd`1q

2 , we have

ÿ

1ďiďjďd

ż

D

”
pS‹

ı
pi,jq

Biju‹,k ϕ‹,k “
ÿ

1ďiďjďd

rS‹spi,jq

”
Ek

‹

ı
pi,jq

“
k´1ÿ

ℓ“1

λℓpf‹,k, ϕ‹,kqS‹ ¨ Eℓ
‹,
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where, for any S P R
dpd`1q

2 and E P R
dpd`1q

2 , we denote S ¨ E “
dpd`1q{2ÿ

m“1

rSsm rEsm, and where

xS‹ P R
dpd`1q

2 is defined, for any 1 ď i ă j ď d, by

”
pS‹

ı
pi,iq

“ rS‹spi,iq ,
”
pS‹

ı
pi,jq

“ 2 rS‹spi,jq .

Since k ´ 1 ă dpd ` 1q{2, there exists S‹ P R
dpd`1q

2 , S‹ ‰ 0, such that S‹ ¨ Eℓ
‹ “ 0 for all

1 ď ℓ ď k ´ 1, and thus

@ϕ‹,k P C8
0 pDq,

ÿ

1ďiďjďd

ż

D

”
pS‹

ı
pi,jq

Biju‹,k ϕ‹,k “ 0.

Since S‹ (and thus pS‹) only depends on E1
‹, . . . , Ek´1

‹ and not on ϕ‹,k, this implies

ÿ

1ďiďjďd

”
pS‹

ı
pi,jq

Biju‹,k “ 0 in the sense of distributions,

thus
0 “ ´

ÿ

1ďiďjďd

”
pS‹

ı
pi,jq

Bijdiv rA‹∇u‹,ks “
ÿ

1ďiďjďd

”
pS‹

ı
pi,jq

Bijf‹,k,

for any f‹,k P L2
npDq. Since

”
pS‹

ı
pi,jq

does not depend on f‹,k, this shows that pS‹, and thus

S‹, vanishes. We reach a contradiction. We thus obtain the existence of f‹,k P L2
npDq and

ϕ‹,k P C8
0 pDq such that the vectors E1

‹, . . . , Ek´1
‹ , Ek

‹ form a free family.

A.2 Proof of Proposition 5

We can now perform the proof of Proposition 5. The convergence (72) proved in Lemma 14
readily shows (29). We are left with showing (30). Using the functions f‹,k P L2

npDq and

ϕ‹,k P C8
0 pDq defined by Lemma 15, we introduce the matrix Zε P R

dpd`1q
2

ˆ dpd`1q
2 defined by

@ 1 ď k ď dpd ` 1q
2

, @ 1 ď i ă j ď d,

$
’’&
’’%

rZεsk,pi,iq “
ż

D
uε,k Biiϕ‹,k,

rZεsk,pi,jq “ 2

ż

D
uε,k Bijϕ‹,k,

where uε,k “ uεpf‹,kq is the solution to (1) with right-hand side f‹,k. Note that, for the second

index of Zε, we have again identified the sets tpi, jq, 1 ď i ď j ď du and

"
m, 1 ď m ď dpd ` 1q

2

*
.

Since uε,k converges to u‹,k in L2pDq, the matrix Zε converges to the matrix Z‹ defined
by (87) when ε goes to zero. We have proved in Lemma 15 that the matrix Z‹ is invertible.
This implies that the matrix Zε is invertible for ε sufficiently small, and that Z´1

ε is bounded
independently of ε.

We now introduce the vectors V
5
ε and V ‹ in R

dpd`1q
2 such that

@ 1 ď i ď j ď d,
”
V

5
ε

ı
pi,jq

“
”
A

5
ε

ı
i,j

, rV ‹spi,jq “ rA‹si,j ,
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where we recall that A
5
ε is a quasi-minimizing sequence of the functional (27) (see (28)). It can

easily be seen that, for any A P S, denoting V P R
dpd`1q

2 the vector such that rV spi,jq “ Ai,j

for any 1 ď i ď j ď d, the following holds: for any 1 ď k ď dpd ` 1q{2,
“
Zε V

‰
k

“
ż

D
uε,k divpA∇ϕ‹,kq “

ż

D
divpA∇uε,kq ϕ‹,k “ ´

ż

D
p´∆q´1

“
divpA∇uε,kq

‰
∆ϕ‹,k,

(89)

where Zε V P R
dpd`1q

2 is the product of the matrix Zε P R
dpd`1q

2
ˆ dpd`1q

2 by the vector V P
R

dpd`1q
2 : for any 1 ď k ď dpd ` 1q{2,

“
Zε V

‰
k

“
ÿ

1ďiďjďd

rZεsk,pi,jq rV spi,jq.

Now, for any f P L2
npDq, we observe that

∥

∥

∥
p´∆q´1

”
div

´
A

5
ε∇uεpfq

¯
´ div

´
A‹∇uεpfq

¯ı∥
∥

∥

2

L2pDq
ď 2

´
ΦεpA5

εq ` ΦεpA‹q
¯

ď 2 pIε ` ε ` ΦεpA‹qq
ď 2 p2ΦεpA‹q ` εq .

(90)

Hence, applying this to f ” f‹,k, and owing to Lemma 14,
∥

∥

∥
p´∆q´1

”
div

´
A

5
ε∇uε,k

¯ı
´ p´∆q´1

”
div

´
A‹∇uε,k

¯ı∥
∥

∥

L2pDq

vanishes with ε, for any 1 ď k ď dpd ` 1q{2.
We next deduce from (89) that ZεpV 5

ε´V ‹q vanishes as ε Ñ 0. Since Zε is invertible when

ε is sufficiently small (with Z´1
ε bounded independently of ε), we obtain that lim

εÑ0
V

5
ε “ V ‹,

which is exactly the claimed convergence (30). This concludes the proof of Proposition 5.

Remark 16. Since the above proof uses (90) precisely for the functions f‹,k, 1 ď k ď dpd`1q{2
(and not for all functions f P L2

npDq), we observe that, in the inf max formulation introduced

in Remark 8, we have A
max,5
ε Ñ A‹ when ε Ñ 0.

Remark 17. We recall that our approach consists in considering the problem (17), that is

Iε “ inf
APS

ΦεpAq,

where Φε is defined by (27): for any A,

ΦεpAq “ sup
fPL2

n
pDq

ΦεpA, fq “ sup
fPL2

n
pDq

∥

∥p´∆q´1
`
divpA∇uεpfqq ` f

˘∥
∥

2

L2pDq
.

We show here that, when ε is sufficiently small, the minimum Iε is attained.

Consider indeed a minimizing sequence A
η
ε , satisfying, for any η ą 0,

Iε ď ΦεpAη
εq ď Iε ` η. (91)

Similarly to (90), we observe that, for any f P L2
npDq,

∥

∥

∥

p´∆q´1
”
div

`
A

η
ε∇uεpfq

˘
´ div

´
A‹∇uεpfq

¯ı∥
∥

∥

2

L2pDq
ď 2

`
ΦεpAη

εq ` ΦεpA‹q
˘

ď 2 pIε ` η ` ΦεpA‹qq
ď 2 p2ΦεpA‹q ` ηq .
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Using (89), we have

ˇ̌
ˇZε

`
V

η
ε ´ V ‹

˘ ˇ̌
ˇ ď C sup

fPL2
n

pDq

∥

∥

∥

p´∆q´1
”
div

`
A

η
ε∇uεpfq

˘
´ div

´
A‹∇uεpfq

¯ı∥
∥

∥

L2pDq

where C is a constant independent of ε and η and where the vector V
η
ε P R

dpd`1q
2 is defined

by
“
V

η
ε

‰
pi,jq

“
“
A

η
ε

‰
i,j

for any 1 ď i ď j ď d. When ε is sufficiently small, the matrix Zε is

invertible with Z´1
ε bounded independently of ε. We thus deduce from the two above estimates

that ˇ̌
ˇV η

ε ´ V ‹

ˇ̌
ˇ
2

ď C pΦεpA‹q ` ηq

for some C independent of ε and η. The vector V
η
ε (resp. V ‹) is the representation (as a

vector in R
dpd`1q

2 ) of the symmetric matrix A
η
ε P R

dˆd (resp. A‹). We hence equivalently write
that ˇ̌

ˇAη
ε ´ A‹

ˇ̌
ˇ
2

ď C pΦεpA‹q ` ηq .

This shows that the sequence A
η
ε is bounded independently of η. Up to the extraction of a

subsequence (that we still denote η for the sake of simplicity), it thus converges to some sym-

metric matrix A
0

ε when η Ñ 0. Since A‹ is positive definite and since lim
εÑ0

ΦεpA‹q “ 0, we get

that A
0

ε is also positive-definite.
Passing to the limit η Ñ 0 in (91), and temporarily assuming that Φε is continuous, we

get that Iε “ ΦεpA0

εq. This concludes the proof that the minimum Iε is indeed attained when
ε is sufficiently small.

We are left with showing the continuity of A ÞÑ ΦεpAq. For any two matrices A1 and A2

and any f P L2pDq, we compute that

ΦεpA1, fq ´ ΦεpA2, fq “
∥

∥p´∆q´1
“
div

`
pA1 ´ A2q∇uεpfq

˘‰∥
∥

2

L2pDq

` 2
@

p´∆q´1
“
div

`
pA1 ´ A2q∇uεpfq

˘‰
, p´∆q´1

“
div

`
A2∇uεpfq

˘
` f

‰D
L2pDq

,

hence

ˇ̌
ΦεpA1, fq ´ ΦεpA2, fq

ˇ̌
ď C

ˇ̌
A1 ´ A2

ˇ̌2
‖f‖2L2pDq ` C

ˇ̌
A1 ´ A2

ˇ̌
‖f‖2L2pDq,

where C is independent of f and A1. Taking the supremum over f P L2
npDq, we thus deduce

that ˇ̌
ΦεpA1q ´ ΦεpA2q

ˇ̌
ď C

ˇ̌
A1 ´ A2

ˇ̌2 ` C
ˇ̌
A1 ´ A2

ˇ̌
,

which implies that lim
A1ÑA2

ΦεpA1q “ ΦεpA2q, and thus the continuity of Φε.

B Details on the algorithm to solve the discrete problem (49)

Let Φ
P,M
ε,h pA, cq be given by (50). Using the fact that Φ

P,M
ε,h pA, cq is quadratic with respect to

c P R
P , one can easily observe that

Φ
P,M
ε,h pA, cq “ cT GM

ε,hpAq c,
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where GM
ε,hpAq is the P ˆ P matrix defined, for any 1 ď p, q ď P , by

“
GM

ε,hpAq
‰
p,q

“ 1

2

ÿ

1ďi,j,k,lďd

“
KM

ε,h

‰
i,j,k,l,p,q

Ai,j Ak,l

´
ÿ

1ďi,jďd

´“
K
M
ε,h

‰
i,j,p,q

`
“
K
M
ε,h

‰
i,j,q,p

¯
Ai,j ` rKhsp,q , (92)

where KM
ε,h, K

M
ε,h and Kh are defined by (46), (47) and (48), respectively.

Using the fact that Φ
P,M
ε,h pA, cq is also quadratic with respect to A, we have that

Φ
P,M
ε,h pA, cq “ 1

2

ÿ

1ďi,j,k,lďd

”
B
P,M
ε,h pcq

ı
i,j,k,l

Ai,j Ak,l ´
ÿ

1ďi,jďd

”
B

P,M
ε,h pcq

ı
i,j

Ai,j ` bPh pcq,

where B
P,M
ε,h pcq is the d ˆ d ˆ d ˆ d fourth-order tensor defined by

”
B
P,M
ε,h pcq

ı
i,j,k,l

“
ÿ

1ďp,qďP

“
KM

ε,h

‰
i,j,k,l,p,q

cp cq, (93)

B
P,M
ε,h pcq is the d ˆ d matrix defined by

”
B

P,M
ε,h pcq

ı
i,j

“
ÿ

1ďp,qďP

´“
K
M
ε,h

‰
i,j,p,q

`
“
K
M
ε,h

‰
i,j,q,p

¯
cp cq, (94)

and
bPh pcq “

ÿ

1ďp,qďP

rKhsp,q cp cq,

where KM
ε,h, K

M
ε,h and Kh are defined by (46), (47) and (48), respectively. We remark, in light

of the expressions (46) and (47), that

”
B
P,M
ε,h pcq

ı
i,j,k,l

“
”
B
P,M
ε,h pcq

ı
k,l,i,j

,
”
B
P,M
ε,h pcq

ı
i,j,k,l

“
”
B
P,M
ε,h pcq

ı
j,i,k,l

,

and
”
B

P,M
ε,h pcq

ı
i,j

“
”
B

P,M
ε,h pcq

ı
j,i

.
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