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Abstract

We address multiscale elliptic problems with random coefficients that are a perturbation of multiscale determin-

istic problems. Our approach consists in taking benefit of the perturbative context to suitably modify the classical

Finite Element basis into a deterministic multiscale Finite Element basis. The latter essentially shares the same ap-

proximation properties as a multiscale Finite Element basis directly generated on the random problem. The specific

reference method that we use is the Multiscale Finite Element Method. Using numerical experiments, we demon-

strate the efficiency of our approach and the computational speed-up with respect to a more standard approach. We

provide a complete analysis of the approach, extending that available for the deterministic setting.

1 Overview of our approach and results

The Multiscale Finite Element Method (henceforth abbreviated as MsFEM) is a popular numerical approach for
multiscale problems (see [37, 38, 30, 32, 31, 3, 39, 20, 18, 11]). It consists in a Galerkin approximation of the original
problem over a finite dimensional space generated by basis functions that are specifically adapted to the problem under
consideration.

This approach is popular for a twofold reason. First, its use is not restricted to multiscale problems that converge
to a homogenized problem in the limit of vanishing ratio between the small scale and the macroscopic scale. It may be
applied to much more general situations. Second, when the problem does converge to a homogenization problem, the
MsFEM approach is meant to approximate the solution of the problem with the small scale ε at its actual small value
and not ”only” in the asymptotic regime ε→ 0, which is the regime addressed by homogenization theory.

To fix the ideas, consider the problem of finding uε solving

− div [Aε∇uε] = f in D, uε = 0 on ∂D, (1)

on a bounded domain D ⊂ R
d, with f ∈ L2(D), and where Aε is a uniformly bounded, coercive matrix that varies at

scale ε. A standard Finite Element Method (FEM) would require a space discretization of the domain at the scale ε
in order to capture the oscillations of uε at scale ε. This is prohibitively expensive. The MsFEM aims at accurately
approximating uε using a limited number of degrees of freedom. It does not require the matrix Aε to be periodic
(namely Aε(x) = Aper(x/ε) for a fixed periodic matrix Aper) or stationary.

We now briefly describe the approach and present the aim of this article. Starting from a coarse mesh Th with a

standard (say P1) Finite Element basis set of functions
{
φ0i
}L
i=1

, generating the associated space

Vh := span(φ0i , i = 1, · · · , L),

we first numerically build the MsFEM basis functions φεi . Several definitions of these basis functions have been proposed
in the literature (yielding different numerical methods), and we detail this in the sequel (see e.g. (10)-(11)-(12)). For
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the moment, it is sufficient to know that, to each φ0i , which varies at the macroscopic scale, is associated a function φεi ,
with variations at the scale ε. In practice, φεi is numerically computed (in fact, pre-computed), using the specificities of
the problem addressed. These highly oscillatory functions φεi generate the finite dimensional space

Wh := span(φεi , i = 1, · · · , L).

Note that Wh and Vh share the same dimension.
We next define the MsFEM solution uM using a Galerkin approximation of (1) on Wh, instead of Vh. Again, details

will be given below. The MsFEM solution uM provided by the approach reads

uM (x) =
L∑

i=1

(UM )i φ
ε
i (x),

for some coefficients {(UM )i}Li=1. Of course, these coefficients depend on ε, but this dependency is kept implicit in the
sequel.

We now turn our attention to the stochastic problem

− div [Aε(·, ω)∇uε(·, ω)] = f in D, uε(·, ω) = 0 on ∂D, (2)

and a typical quantity of interest E [uε(x, ·)], which is traditionally approximated using a Monte Carlo method. In-
troducing a set of M realizations of the stochastic matrix {Aε,m}1≤m≤M, a direct, näıve application of the MsFEM

paradigm would consist in first computing for each realization m the stochastic MsFEM basis functions φε,mi (x, ω),
next performing a Galerkin approximation of (2) using this MsFEM basis set to compute {umM (x, ω)}1≤m≤M, and

eventually approximating E [uε(x, ·)] by

E [uε(x, ·)] ≈ 1

M

M∑

m=1

umM (x, ω).

Such an approach is unpractical because of the prohibitively expensive computational load.

To reduce the computational cost and make the MsFEM approach practical in such a stochastic context, a natural
idea we investigate in this article is to consider a less generic setting, for which a dedicated, more computationally
affordable approach, can be designed. One possibility is to consider matrices Aε(x, ω) ≡ Aε(x)+B(x, ω) in (2) that are
not highly oscillatory in their stochastic part. In such cases, dedicated approaches have been proposed, we refer to [35]
for more details. Another approach is to reduce the number of Monte-Carlo simulations used for the computation of
the multiscale basis functions. In [1, 26], the authors assume that their coefficient can be written as a Karhunen-Loève
type expansion, and apply a collocation method to a priori choose some sparse realizations for which they compute
the multiscale basis functions.

In this article, we consider one of the many alternate variants of problem (2). We suppose that Aε(x, ω) is highly
oscillatory in both its deterministic and stochastic components, but that it is a perturbation of a deterministic matrix.
More precisely, we assume that

Aε(x, ω) ≡ Aε
η(x, ω) = Aε

0(x) + ηAε
1(x, ω), (3)

where Aε
0 is a deterministic matrix and η is a small deterministic parameter. This model may be well suited for

heterogeneous materials (or, more generally, media) that, although not periodic, are not fully stochastic, in the sense
that they may be considered as a perturbation of a deterministic material. We call this setting the weakly stochastic
setting. Note that many practical situations, involving actual materials or media, can be considered, at a good level of
approximation, as perturbations of a deterministic (often periodic) setting (see e.g. [41]).

In a series of recent works (see [14, 15, 25] and [6, 7, 8]; see also [5] for a unified presentation), we have considered
such a setting, in the context of homogenization theory (the matrix Aε

η(x, ω) in (2)-(3) reads Aε
η(x, ω) = Aη(x/ε, ω) for

a stationary matrix Aη(x, ω), which is, in a sense to be made precise, a perturbation of a periodic matrix). We have
shown there that, in such a case, the workload for computing the homogenized solution is significantly lighter than
for generic stochastic homogenization, and actually comparable to the workload for periodic homogenization. We will
show in the sequel that the MsFEM can be adapted to this weakly stochastic setting, providing an approximation of
the solution uεη to (2)-(3), for fixed ε, at a much smaller computational cost than the direct approach.
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The main idea of our proposed approach is to compute a set of deterministic MsFEM basis functions using Aε
0, the

deterministic part of Aε
η in the expansion (3), and then to perform Monte Carlo realizations at the macroscale level

using a set of M realizations of the random matrix
{
Aε,m

η (x, ω)
}
1≤m≤M (see Section 2 for a detailed presentation).

Note that, for each of these realizations, we solve the original problem, with the complete matrix Aε
η, and not only its

deterministic part. Only the basis set is taken deterministic. By construction, the approach provides an approximation

uS(x, ω) =

L∑

i=1

(US(ω))i φ
ε
i (x)

of uεη(x, ω), where the basis functions φεi are deterministic. These basis functions are computed only once, hence the
cost to compute {umS (x, ω)}1≤m≤M is much smaller than the cost to compute {umM (x, ω)}1≤m≤M. This is especially

true if (2) has to be solved for many right-hand sides f . We expect that this approximation uS is as accurate as uM
for small η. We show below that this is indeed the case, when Aε

η is a perturbation of Aε
0 (see Section 3 for numerical

tests).

We would like to note that the MsFEM is not the only multiscale technique based on finite elements. The bottom
line of our approach, consisting of generating suitable multiscale functions for the discretization of a weakly stochastic
problem, using for this purpose the deterministic reference problem, can in principle be applied to other multiscale
techniques. Another popular technique is the HMM method [27, 28, 29], for which our approach could in principle be
easily adapted.

In the numerical tests reported on in Section 3, we compare, in the H1 norm, uεη (the exact solution to (2) with
the matrix Aε ≡ Aε

η given by (3)) with uS (the solution provided by our approach) and uM (the solution provided by
the ideal, expensive approach). The quantity ‖uεη − uM‖H1(D) somewhat represents the best possible accuracy that we
can achieve, in the sense that our approach inherits the limitations of the MsFEM approach. We thus cannot expect
our approximation uS to be more accurate than uM . We can only hope to compute an approximation of comparable
quality with a much reduced workload. The numerical results we obtain confirm that, for small η in (3), the quantity
‖uS − uεη‖H1(D) is of the same order of magnitude as ‖uM − uεη‖H1(D), although, we repeat it, the computational cost
to compute uS is much smaller than that to compute uM .

We next derive error bounds for our approach in Section 4. We recall that, in the deterministic setting, a classical
context for proving convergence of the MsFEM approach is the case when, in the reference problem (1), the matrix

reads Aε(x) = Aper

(x
ε

)
for a fixed periodic matrix Aper . Likewise, to be able to perform our theoretical analysis in

the stochastic setting, we assume in Section 4 that Aε
η(x, ω) = Aη

(x
ε
, ω
)
for a fixed stationary random matrix Aη.

The problem (2)-(3) then admits a homogenized limit when ε vanishes.
Our proof follows the same lines as that in the deterministic setting, which we now briefly review (see the introduction

of Section 4 for more details on the structure of the proof). The MsFEM is a Galerkin approximation, that we assume
momentarily, for the sake of clarity, to be a conforming approximation (this is indeed the case when, for defining the
highly oscillatory basis functions φεi , oversampling is not used). The error is then estimated using the Céa lemma:

‖uε − uM‖H1(D) ≤ C inf
vh∈Wh

‖uε − vh‖H1(D),

where uε is the solution to the reference deterministic highly oscillatory problem (1), uM is the MsFEM solution and
C is a constant independent of ε and h. Taking advantage of the homogenization setting, we introduce the two-scale
expansion

vε = u⋆ + ε

d∑

i=1

w0
ei

( ·
ε

)
∂iu

⋆

of uε, where u⋆ is the homogenized solution, w0
ei is the periodic corrector associated to ei ∈ R

d, and ∂iu
⋆ denotes the

partial derivative
∂u⋆

∂xi
. We next write

‖uε − uM‖H1(D) ≤ C

(
‖uε − vε‖H1(D) + inf

vh∈Wh

‖vε − vh‖H1(D)

)
.
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The first term in the above right-hand side is estimated using standard homogenization results on the rate of convergence
of vε − uε. To estimate the second term, one considers a suitably chosen element vh ∈ Wh, for which ‖vε − vh‖H1(D)

can be directly bounded.
Following the same strategy in our stochastic setting, we estimate the distance between the solution uεη to the

reference stochastic problem (2)-(3) and the weakly stochastic MsFEM solution uS as

‖uεη(·, ω)− uS(·, ω)‖H1(D) ≤ C

(
‖uεη(·, ω)− vεη(·, ω)‖H1(D) + inf

vh∈Wh

‖vεη(·, ω)− vh‖H1(D)

)
.

We observe that a key ingredient for the proof is the rate of convergence of the difference between the reference
solution uεη and its two-scale expansion vεη. Such a result is classical in periodic homogenization, but, to the best of
our knowledge, open in the general stationary case (in dimensions higher than one). One only knows that uεη − vεη
vanishes (in some appropriate norm) when ε→ 0. However, in the particular case when Aε

η is only weakly stochastic, it
is possible to obtain such a result, as we have shown in [42]. Hence, exploiting the specificity of our weakly stochastic
setting, we are able to obtain (see our main result, Theorem 10 and estimate (63)):

√
E

[
‖uεη − uS‖2H1

h

]
≤ C

(√
ε+ h+

ε

h
+ η

( ε
h

)d/2
ln(N(h)) + η + η2C(η)

)
,

where ‖ · ‖H1

h
is a broken H1 norm, C is a constant independent of ε, h and η, C is a bounded function as η goes to

0, and N(h) is the number of elements in the mesh (roughly of order h−d in dimension d). As is often the case in
the deterministic setting, we use here (both for our numerical tests and in the analysis) the oversampling technique.
Consequently, the basis functions φεi do not belong to H1

0 (D), hence the use of a broken H1 norm in the above
estimate. As we point out below, when η = 0 in (3), our approach reduces to the standard deterministic MsFEM (with
oversampling), and the above estimates then agree with those proved in [32].

This article is organized as follows. First, in Section 2, we describe the MsFEM approach. For consistency, we begin
by the deterministic setting in Section 2.1, and point out there that the direct adaptation to the general stochastic
setting yields a prohibitively expensive approach. The adaptation of the approach to the weakly stochastic setting
is described in Section 2.2. We next turn to numerical simulations, in Section 3. Some procedures to efficiently
implement the approach are first described in Section 3.1. We next consider a one-dimensional test (see Section 3.2),
which is useful for several reasons. First, it allows to calibrate some numerical parameters, such as the number M of
independent realizations when estimating the exact expectation by an empirical mean. Second, we assess the accuracy
of our approach with respect to the magnitude of η. We demonstrate there that η does not have to be extremely small
for our method to be very efficient. For instance, on the test case considered in Section 3.2, we show that our approach
is as accurate as the expensive, direct approach as soon as η is such that

∥∥∥∥
ηaε1
aε0

∥∥∥∥
L∞(R×Ω)

is equal to or smaller than 0.1,

where aε0 is the deterministic component of the diffusion coefficient aεη and ηaε1 is the stochastic component (see
expansion (3)). Lastly, we also assess the accuracy of our approach with respect to the presence of frequencies in the
random coefficient aεη that are not taken into account in the MsFEM basis set. We next turn to two test cases in
dimension two, where we observe that our approach behaves as well as in the one-dimensional case (see Section 3.3).
In particular, in Section 3.3.2, we successfully address a classical test-case of the literature.

Section 4 is devoted to the analysis of the approach, in the homogenization setting. Our main result, Theorem 10,
is presented in Section 4.1, and proved in Section 4.2. The proofs of some technical results are collected in Appendix A.
In addition, we specifically consider the one dimensional case in Section 4.3.

2 MsFEM-type approaches

For consistency and the convenience of the reader, we present in this section the MsFEM approach to solve the original
elliptic problem (1). For clarity, we begin by presenting the approach in a deterministic setting. The reader familiar
with the MsFEM may easily skip this section and directly proceed to Section 2.2, where we present our approach in a
weakly stochastic setting.
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2.1 Description in a classical deterministic setting

Let uε ∈ H1(D) be the solution to (1), where the matrix Aε ∈ (L∞(D))d×d satisfies the standard coercivity condition:
there exists two constants a+ ≥ a− > 0 such that

∀ε, ∀x ∈ D, ∀ξ ∈ R
d, a−|ξ|2 ≤ ξTAε(x)ξ and ‖Aε‖L∞(D) ≤ a+.

Note that the MsFEM approach is not restricted to the periodic setting. We therefore do not assume that Aε(x) =
Aper(x/ε) for a fixed periodic matrix Aper .

The MsFEM approach consists in performing a variational approximation of (1) where the basis functions are
precomputed and encode the fast oscillations present in (1). In the sequel we argue on the following formulation,
equivalent to (1):

Find uε ∈ H1
0 (D) such that, for any v ∈ H1

0 (D), Aε(u
ε, v) = b(v), (4)

where

Aε(u, v) =

∫

D
(∇v(x))TAε(x)∇u(x) dx and b(v) =

∫

D
f(x) v(x) dx.

The MsFEM is a three-step approach:

1. introduce a standard discretization of the domain D using a coarse mesh as compared to the small scale oscillations
of Aε.

2. for each element K of the coarse mesh, compute the basis function φε,Ki as the solution of an elliptic equation
posed in K (see e.g. (10)-(11)-(12) below).

3. solve the Galerkin approximation of (4), for the set of basis functions defined at Step 2.

The advantage of the approach is that, for the same accuracy of the approximation as that provided by a standard
FEM, the macroscale mesh can be chosen sufficiently coarse so that the resulting discretized problem has a limited
number of degrees of freedom, and may thus be computationally solved inexpensively. This is observed in practice [37],
and proven by a theoretical analysis (see [38, 32]) when the problem (4) admits a homogenized limit. See also [30] and
references therein.

To further illustrate this fact, we reproduce here a simple one-dimensional analysis we borrow from A. Lozinsky
(see [44, Chap. 6] and [17]). This analysis explains remarkably well the interest of the approach, and, in contrast
to [38, 32], is not restricted to a homogenization setting. Consider the one-dimensional domain D = (0, 1) and the
reference problem

Lu = f, u(0) = u(1) = 0,

for the operator Lu := −(νu′)′, where f ∈ L2(0, 1) and ν ∈ L∞(0, 1) with ν(x) ≥ νmin > 0 almost everywhere on
(0, 1). The function ν may have oscillations at a small scale. The associated weak formulation reads

Find u ∈ H1
0 (0, 1) such that, for any v ∈ H1

0 (0, 1), a(u, v) = b(v), (5)

with

a(u, v) =

∫ 1

0

ν(x)u′(x)v′(x) dx and b(v) =

∫ 1

0

f(x)v(x) dx.

We now introduce the nodes 0 = x0 < x1 < · · · < xL = 1 that define the elements Ki = [xi−1, xi]. Let h =
max |xi − xi−1| be the mesh size. The multiscale finite element space

Wh =
{
vh ∈ C0(0, 1) such that Lvh = 0 on each Ki

}
, (6)

defined using the operator L, is adapted to the problem under study. We next proceed with a Galerkin approximation
of (5) using the space Wh:

Find uh ∈ Wh such that, for any vh ∈ Wh, a(uh, vh) = b(vh).

The solution uh then satisfies

‖u− uh‖E ≤ h

π
√
νmin

‖f‖L2(0,1) (7)
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where ‖ · ‖E =
√
a(·, ·) is the energy norm. The proof of this estimate goes as follows. By definition of u and uh, we

have a(u − uh, vh) = 0 for any vh ∈ Wh. Hence, uh is the orthogonal projection of u on Wh according to the scalar
product a(·, ·). Since ‖ · ‖E is the norm associated to that scalar product, we have

‖u− uh‖E = inf
vh∈Wh

‖u− vh‖E. (8)

Choose vh to be the finite element interpolant of u, which is defined by vh(xi) = u(xi) for any i = 0, 1, . . . , L, and
consider the interpolation error e = u − vh. On each element Ki, we have, precisely because the space Wh is defined
as (6),

Le = −(νe′)′ = f with e(xi−1) = e(xi) = 0.

We multiply by e, integrate by part and obtain

∫ xi

xi−1

ν(x)|e′(x)|2 dx =

∫ xi

xi−1

f(x)e(x) dx ≤ ‖f‖L2(Ki)‖e‖L2(Ki). (9)

Since e vanishes on the boundary of Ki, the Poincaré inequality with the best constant (xi − xi−1)/π yields

‖e‖L2(Ki) ≤
xi − xi−1

π
‖e′‖L2(Ki) ≤

h

π
√
νmin

(∫ xi

xi−1

ν(x)|e′(x)|2 dx
)1/2

.

By substitution in (9), we obtain ∫ xi

xi−1

ν(x)|e′(x)|2 dx ≤ h2

π2νmin
‖f‖2L2(Ki)

.

Summing over the elements and using (8) yields (7). Using again that ν is bounded from below, we deduce from (7)
that

‖u− uh‖H1(0,1) ≤
h

CD π νmin
‖f‖L2(0,1),

where CD is the Poincaré constant of the domain D = (0, 1). As pointed out in [44, Chap. 6], the interest of the above
estimate (or of estimate (7)) lies in the fact that the constant in the right-hand side only depends on ν through νmin,
and remains the same even if ν oscillates at a small scale. In contrast, for a standard finite element method, the error
is also proportional to h, but with a constant that depends on the H2 norm of the exact solution u. With a standard
finite element space Wh, we indeed classically deduce by Céa’s lemma that

‖u− uh‖H1(0,1) ≤
‖ν‖L∞(0,1)

CD νmin
inf

vh∈Wh

‖u− vh‖H1(0,1) =
‖ν‖L∞(0,1)

CD νmin
‖u−Rhu‖H1(0,1),

where CD is the Poincaré constant of the domain D = (0, 1), and Rhu is the projection of u on Wh according to the
H1 scalar product. We thus obtain that

‖u− uh‖H1(0,1) ≤ Ch
‖ν‖L∞(0,1)

νmin
‖D2u‖L2(0,1),

where C is independent from the functions ν and u. If ν oscillates at a small scale (e.g. ν(x) = ν̄(x/ε) for a fixed
function ν̄), the H2 norm of u may be large (of the order of ε−1). A FEM approach then requires h to be smaller than
ε to reach a good accuracy.

We conclude this illustration by noting that such a general analysis of the MsFEM approach is not available in
dimension d ≥ 2. The analysis presented in [38, 32], which is performed without any restriction on the dimension,
additionally assumes that the matrix Aε in (4) reads Aε(x) = Aper(x/ε) for a fixed periodic matrix Aper .

We now describe the MsFEM in a multidimensional setting.
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Definition of the coarse mesh For simplicity (see Remark 1 below), we consider a classical P1 discretization of
the domain D. We denote by Th the corresponding mesh, with L nodes. Let φ0i , i = 1, · · · , L, be the basis functions.
We introduce the finite element space

Vh := span(φ0i , i = 1, · · · , L),
and define the restriction

φ0,Ki := φ0i
∣∣
K

of these functions in each element K.

Remark 1. We refer to [3] for a presentation of a MsFEM method that uses P2 macroscale basis functions.

Definition of the MsFEM basis Several definitions of the MsFEM basis functions have been proposed in the
literature (see e.g. [37, 38, 32, 3, 30, 39]). They all follow the same pattern but they give rise to various methods. We
present in the following the particular method that we have implemented. It makes use of the oversampling technique
introduced in [37] and developed in [36].

For any element K, we consider a domain S ⊃ K (see Figure 1), obtained from K by an homothetic transformation
of center the centroid of K, and of ratio larger than 1.

Figure 1: Definition of S (in 2D for clarity)

Let xSj denote the coordinate of the vertex j of the domain S. For any vertex i of S, we introduce the affine function

χ0,S
i (defined on S) that satisfies the condition χ0,S

i (xSj ) = δij for all j. Let χε,S
i ∈ H1(S) be the unique solution to the

problem

− div
[
Aε(x)∇χε,S

i (x)
]
= 0 in S, χε,S

i = χ0,S
i on ∂S, (10)

which, in practice, is numerically solved e.g. using a finite element method with a mesh size adapted to the small
scale ε. We then define the local basis functions

φε,Ki =

d+1∑

j=1

αij χ
ε,S
j

∣∣∣
K

(11)

as linear combinations of the restrictions of χε,S
i on K, with αij chosen such that

∀1 ≤ i, j ≤ d+ 1, φ0,Ki (xKj ) =

d+1∑

j=1

αijχ
0,S
j (xKj ) = δij , (12)

where xKj denotes the coordinate of the jth vertex of the element K. Note that the condition (12) is enforced on the

function φ0,Ki , and not on φε,Ki . The coefficients αij are consequently independent from ε. As φ0,Ki and χ0,S
j

∣∣∣
K

are

both affine on K, condition (12) implies that

∀1 ≤ i ≤ d+ 1, ∀x ∈ K, φ0,Ki (x) =
d+1∑

j=1

αijχ
0,S
j (x). (13)
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We next introduce the functions φεi defined on D by φεi |K = φε,Ki for all elements K.
Note that the problems (10), indexed by S, are all independent from one another. They may be solved in parallel.

Macroscale problem We now introduce the finite dimensional space

Wh := span(φεi , i = 1, · · · , L),

and proceed with the approximation

Find uM ∈ Wh such that, for any v ∈ Wh, Ah
ε (uM , v) = b(v), (14)

of (4), where

Ah
ε (u, v) =

∑

K

∫

K

(∇v(x))TAε(x)∇u(x) dx and b(v) =

∫

D
f(x) v(x) dx.

Observe that φεi has jumps across the edges of the triangulation (due to the use of the oversampling technique), hence
Wh 6⊂ H1(D), thus the broken integral used to define Ah

ε (u, v). On the other hand, since Wh ⊂ L2(D), the linear
form b is well defined for v ∈ Wh. The formulation (14) is a non-conforming Galerkin approximation of (4). This
brings additional error terms in the error estimation (see Lemma 12 in Section 4). On another note, remark that the
dimension of Wh is equal to L. The formulation (14) hence requires solving a linear system with only a limited number
of degrees of freedom.

We are now in position to substantiate our claim in the introduction, where we briefly mentioned that, in the
stochastic setting, a direct application of the MsFEM to approximate the solution to (2) is unpractical. It would indeed
lead to compute, for each realization of Aε(x, ω), first a basis set and second a macroscale solution. This approach has
been briefly examined theoretically in [21]. It is prohibitively expensive. We therefore turn to an alternate approach.

2.2 A weakly stochastic setting

We now restrict the general setting and propose a dedicated, practical MsFEM type approach. Following up on
previous works (see [5, 13, 24, 41]) and as announced in (3), we assume here that the random matrix Aε(x, ω) in (2)
is a perturbation of a deterministic matrix, in the sense that

Aε(x, ω) ≡ Aε
η(x, ω) = Aε

0(x) + η Aε
1(x, ω), (15)

where η ∈ R is a small deterministic parameter, Aε
0 and Aε

1 are bounded matrices, and Aε
0 is coercive, uniformly in ε.

We also assume that the matrix Aε
η itself satisfies the coercivity and boundedness assumptions, uniformly in η and ε

(we refer to [6, 7, 8] and [15, 25] for other perturbative settings).
The principle of the proposed approach is to compute the MsFEM basis set of functions with the deterministic part

Aε
0 of the matrix Aε

η, and next to perform Monte-Carlo realizations for the macroscale problem (2)-(15), where we keep
the exact matrix Aε

η (and not only its deterministic part). Following the approach sketched in Section 2.1, we first
solve (10), with Aε(x) ≡ Aε

0(x), and build the deterministic finite dimensional space

Wh := span(φεi , i = 1, · · · , L)

following (11)-(12). We next proceed with a standard Galerkin approximation of (2)-(15) using Wh. For each m ∈
{1, · · · ,M}, we consider a realization Aε,m

η (·, ω) and compute umS (·, ω) ∈ Wh such that

∀v ∈ Wh,
∑

K

∫

K

(∇v(x))TAε,m
η (x, ω)∇umS (x, ω) dx =

∫

D
f(x) v(x) dx. (16)

Since the MsFEM basis functions are only computed once (rather than for each realization of Aε
η(x, ω)), a large

computational gain is expected, and obtained, in comparison to the direct approach described above.
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3 Numerical simulations

This section is devoted to the many numerical simulations we have performed. We first discuss some implementation
details. Next, we numerically estimate the performance of our approach on various test cases, and assess its sensitivity
with respect to the magnitude of η. We consider in Section 3.2 a test case in dimension one. In Section 3.3, we next
study two test cases in dimension two. We also study how the presence in Aε

1 (the random component of the matrix
Aε

η) of high frequencies that are not present in the deterministic component Aε
0, and that are thus not encoded in the

highly oscillatory basis functions, affects the accuracy of our approach.

Let uεη be the reference solution to (2)-(3) obtained using a finite element method with a mesh size adapted to the
small scale ε, uS be the approximation given by our approach (described in Section 2.2) and uM be the approximation
given by the direct approach (in which the MsFEM basis set is recomputed for each realization Aε,m

η (x, ω), as explained
at the end of Section 2.1). Our goal is to compare the error uS − uεη of our numerical approximation with the error
uM − uεη of the direct and expensive approach. When η is small, we expect the approximation uS to be essentially as
accurate as the approximation uM , and we show below that this is indeed the case.

In the sequel, we assess the accuracy using the estimators

eL2(u1, u2) = E

(‖u1 − u2‖L2(D)

‖u2‖L2(D)

)
and eH1 (u1, u2) = E

(
‖u1 − u2‖H1

h

‖u2‖H1

h

)
, (17)

where u1 and u2 are the solutions obtained with any two different methods, and

‖u‖H1

h
:=

(
∑

K∈Th

‖u‖2H1(K)

)1/2

(18)

is the broken H1 norm. The expectation is in turn computed using a Monte-Carlo method. ConsideringM realizations

{Xm(ω)}1≤m≤M of a random variable, e.g. X(ω) =
‖u1(·, ω)− u2(·, ω)‖H1

h

‖u2(·, ω)‖H1

h

, we compute the empirical mean µM and

the empirical standard deviation σM as

µM (X) =
1

M

M∑

m=1

Xm(ω), σ2
M (X) =

1

M − 1

M∑

m=1

(Xm(ω)− µM (X))2 . (19)

As a classical consequence of the Central Limit Theorem, the following estimate is commonly employed:

|E(X)− µM (X)| ≤ 1.96
σM√
M
.

It provides a practical evaluation of E(X) from the knowledge of µM (X) and σM (X). The numerical parameters
have been determined by an empirical study of convergence. For instance, for the reference solution, we choose the

mesh size h such that the quantity
‖uε,hη − u

ε,h/2
η ‖H1(D)

‖uε,h/2η ‖H1(D)

is smaller than 0.03 %, thereby formally admitting that the

approximation has converged in h. The MsFEM parameters are determined likewise.

All the computations have been performed using FreeFem++ [33], with the MPI tools.

3.1 Implementation details

In the deterministic version of the MsFEM, the same matrix Aε appears in the definition (10) of the basis functions
and in the macroscale variational formulation (14). This can be used to expedite the computation of the stiffness
matrix associated with (14). In our approach, described in Section 2.2, the matrix that appears in the definition of the
basis functions is Aε

0, whereas the macroscale variational problem involves Aε
η ≡ Aε

0 + ηAε
1. An additional numerical

computation is thus needed.
To solve (16), we need to compute, for each element K and each realization Aε,m

η (x, ω), the integrals

Kη,m
ij (ω) =

∫

K

(
∇φε,Ki (x)

)T
Aε,m

η (x, ω)∇φε,Kj (x) dx, (20)
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where φε,Ki are deterministic functions. We recall that Aε
η(x, ω) = Aε

0(x)+ηA
ε
1(x, ω) (see (15)). To allow for an efficient

evaluation of (20), we assume henceforth that Aε
1 is of the form

Aε
1(x, ω) =

∑

k∈Zd

1Q+k

(x
ε

)
Xk(ω) B

k
ε (x), (21)

where Q = (0, 1)d, where (Xk)k∈Zd are scalar random variables, and for any k ∈ Z
d, x 7→ Bk

ε (x) ∈ R
d×d are some

deterministic functions. We comment on this assumption in Remark 2 below. The important consequence of (21) is
that we can write the integral (20) as a linear combination of deterministic integrals over cells of size ε, with random
coefficients. To simplify the notation, we assume that the spatial dimension is d = 2. We define

p =
⌊
min

(yi
ε
,
yj
ε
,
yk
ε

)⌋
, q =

⌊
max

(yi
ε
,
yj
ε
,
yk
ε

)⌋
+ 1,

and likewise, we define the integers l and m (see Fig. 2). We can then write (20) as

Kη,m
ij (ω) =

∫

K

(
∇φε,Ki (x)

)T
Aε,m

η (x, ω)∇φε,Kj (x) dx = K0,K
ij + η

q−1∑

α=p

m−1∑

β=l

Xm
α,β(ω)K1,K

αβij , (22)

where

K0,K
ij =

∫

K

(
∇φε,Ki (x)

)T
Aε

0(x)∇φε,Kj (x) dx, (23)

K1,K
αβij =

(α+1)ε∫

αε

(β+1)ε∫

βε

1K(x)
(
∇φε,Ki (x)

)T
Bk

ε (x)∇φε,Kj (x) dx. (24)

Figure 2: To practically compute the integral (20), we write that each element K (here in dimension d = 2) is a subset
of a quadrangle (here [lε,mε]× [pε, qε]) composed of cells of size εd.

We thus compute once the deterministic integrals (23) and (24). Next, for each realization of Aε
η, we evaluate

the stiffness matrix elements Kη,m
ij (ω) using the right hand side of (22). No numerical quadrature is needed. As a

consequence of (21), most of the work for assembling the stiffness matrix is only performed once, independently of the
number of Monte Carlo realizations. This significantly contributes to the gain in term of computational cost.
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Remark 2. Assumption (21) is quite general, and already covers many interesting cases in practice. As explained
above, the point in (21) is that Aε

1 is a direct product (or here, a sum of direct products) of a function depending on x
with a random variable that only depends on ω. Otherwise stated, Aε

1(x, ω) depends linearly, in an explicit way, of ω.
A similar assumption is made when applying reduced basis methods [45] to a problem of the type

Find uλ such that, for any v, a(uλ, v;λ) = b(v), (25)

where a(·, ·;λ) is a bilinear form parameterized by λ. Assume this problem has been solved for some values {λi}Ii=1

of the parameter, yielding the functions {uλi
}Ii=1. Under the assumption that a(·, ·;λ) = a0(·, ·) + λa1(·, ·) (namely,

a(·, ·;λ) depends linearly on λ), one can precompute the stiffness matrix elements a0(uλi
, uλj

) and a1(uλi
, uλj

) for any
1 ≤ i, j ≤ I. This allows to next perform a very efficient Galerkin approximation of the problem (25) (for any λ) on
the space Span(uλi

, i = 1, · · · , I).

3.2 One-dimensional test-case

The purpose of this section is threefold. We first calibrate the numberM of realizations considered for the Monte-Carlo
method for the two-dimensional numerical experiments that we consider in the sequel. We next investigate how the
accuracy of our approach depends on η and on the presence of frequencies in the random coefficient aεη that are not
taken into account in the MsFEM basis set functions. The low computational costs that we face in this one-dimensional
situation allow us to test our approach more comprehensively than in the two-dimensional test-cases described below.

Let (Xk)k∈Z
denote a sequence of independent, identically distributed scalar random variables uniformly distributed

in [0, 1]. We consider the random coefficient

aεη(x, ω) =
∑

k∈Z

1(k,k+1]

(x
ε

) (
5 + 50 sin2

(πx
ε

)
+ ηXk(ω) κ sin2

(
ζπx

ε

))
,

which is a particular example of the expansion (15) with

aε0(x) = 5 + 50 sin2
(πx
ε

)
and aε1(x, ω) =

∑

k∈Z

1(k,k+1]

(x
ε

)
Xk(ω) κ sin2

(
ζπx

ε

)
,

and that satisfies the structural assumption (21). We set ε = 0.025 and choose κ such that the quantity

K(κ, ζ) =

∥∥∥∥
aε1
aε0

∥∥∥∥
L∞(D×Ω)

= SupEssω∈Ω

∥∥∥∥
aε1(·, ω)
aε0(·, ω)

∥∥∥∥
L∞(D)

(26)

has the same value K = 1 for the three different values of ζ = {1, 3, 7} we consider below. We analytically compute the
reference function uεη, solution to

− d

dx

(
aεη (x, ω)

duεη
dx

(x, ω)

)
= 1 in (0, 1), uεη(0, ω) = uεη(1, ω) = 0,

as well as the MsFEM basis functions for both approaches. Let uM and uS be the approximation of uεη by the two
MsFEM approaches described above, where the coarse mesh size is h = 1/30.

We first calibrate the number of independent realizations to accurately approximate the exact expectation in (17)
by the empirical mean (19). To this aim, we present on Fig. 3 the mean and the confidence interval computed using
(19) for an increasing number M of realizations (we compute up to 1000 independent realizations). We check that this
indicator reaches a plateau for M ≥ 30, and thus converges fast. On this example, considering 30 realizations is hence
sufficient to accurately compute the error (17). Based on this observation, we will only consider M = 30 realizations
in the two dimensional examples of Section 3.3.

Remark 3. There is no reason to think that the calibration of our parameters that we perform in the one-dimensional
situation provides an adequate adaptation of these parameters for the higher dimensional setting. We however see no
other manner to proceed and the approach has indeed provided us with good results.

Note also that the MsFEM approach is much more accurate in the one-dimensional setting than in the two-
dimensional setting (compare Tables 1, 2 and 3 with Tables 9 and 10 below). This is due to the specificity of the
one dimensional setting. However, one-dimensional examples remain relevant for e.g. assessing how the MsFEM
accuracy depends on η.
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Figure 3: Convergence of the indicator eH1(uM , u
ε
η) (see (17)), for η = 1, ζ = 1 and κ = 55. For each value of M , we

plot the empirical mean along with its confidence interval, computed from the first M realizations. We only plot the
results for the first 50 realizations.

We now check how the accuracy of our approach depends on η. In Tables 1, 2, 3, 4, 5 and 6, we report the estimators
(17), along with their confidence intervals, for various choices of (κ, ζ) that all correspond to K(κ, ζ) = 1. For η ≤ 0.1,
we observe that ‖uS − uεη‖ and ‖uM − uεη‖ are of the same order of magnitude, and are both larger than ‖uM − uS‖
(both in L2 and broken H1 norms). We thus obtain the same accuracy with the direct and the weak stochastic MsFEM
approaches, whereas the weak stochastic MsFEM is computationally (much) less expensive. For η = 1, as expected,
the accuracy of the approximation uS deteriorates. The accuracy of uM is independent of η.

Remark 4. In Section 4, we estimate in the H1 (broken) norm the error between the reference solution uεη and the
weak MsFEM solution uS. For information, we also include in Tables 1–6 the numerical comparison in the L2 norm.

We now turn to a different question. In the example considered here, some frequencies present in aε1 do not appear
in aε0, and are thus not captured in the highly oscillatory basis functions φεi . We now show that our approach can still
handle this case, provided the amplitude of these modes remains small.

We first consider the case when the amplitude κ associated to the frequency ζ is kept constant, and compare the
performance of our approach in the case ζ = 1 and ζ = 3. In the latter case, a relevant high frequency is not taken
into account in the basis set functions. Comparing Tables 1 and 4 (corresponding to ζ = 1) with Tables 7 and 8
(corresponding to ζ = 3) for a given value of η, we see that the accuracy of our approach deteriorates. This is not
unexpected, of course. Otherwise stated, to achieve a given accuracy (say an error of 15 % in the broken H1 norm),
we need to take smaller values of η (namely η ≤ 0.01) when ζ = 3 than when ζ = 1 (in which case η = 0.1 is already a
sufficiently small value).

We now run the comparison differently. As we increase the gap between the frequency present in aε1 and that
present in aε0 (i.e., as we increase ζ), we simultaneously decrease the amplitude κ of that mode. In practice, we do this
by keeping constant the parameter K(κ, ζ) defined by (26). Then the accuracy of our approach remains constant, and
is independent of ζ. See indeed the numerical results of Tables 1-6, that all correspond to the choice K(κ, ζ) = 1, for
three different values of ζ. We observe that, at fixed η, errors are comparable, and independent of the value of (κ, ζ).

In conclusion, the accuracy of our approach depends both on the amplitude κ and the value ζ of the high frequency
not taken into account in the MsFEM basis set functions. If ζ and κ are scaled so that K(κ, ζ) remains constant (which
implies that κ decreases if ζ increases), then the accuracy of our approach remains constant.
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Table 1: H1(0, 1) error (17) (in %) for κ = 55 and ζ = 1
η eH1(uM , u

ε
η) eH1(uS , u

ε
η) eH1(uS , uM )

1 0.14644± 0.00036 2.62550± 0.02696 2.44359± 0.02696
0.1 0.16001± 0.00006 0.15021± 0.00051 0.07036± 0.00044
0.01 0.16258± 0.00000 0.10837± 0.00002 0.04825± 0.00025

Table 2: H1(0, 1) error (17) (in %) for κ = 14.38 and ζ = 3
η eH1(uM , u

ε
η) eH1(uS , u

ε
η) eH1(uS , uM )

1 0.18269± 0.00030 2.38950± 0.02277 2.23869± 0.02230
0.1 0.16529± 0.00003 0.14959± 0.00055 0.08082± 0.00041
0.01 0.16314± 0.00000 0.10840± 0.00000 0.04954± 0.00001

Table 3: H1(0, 1) error (17) (in %) for κ = 8.39 and ζ = 7
η eH1(uM , u

ε
η) eH1(uS , u

ε
η) eH1(uS , uM )

1 0.17436± 0.00026 2, 34495± 0.02105 2, 27358± 0.02089
0.1 0.16465± 0.00004 0.15748± 0.00067 0.09803± 0.00053
0.01 0.16308± 0.00000 0.10846± 0.00000 0.05054± 0.00001

Table 4: L2(0, 1) error (17) (in %) for κ = 55 and ζ = 1
η eL2(uM , u

ε
η) eL2(uS , u

ε
η) eL2(uS , uM )

1 0.00018± 0.00000 0.07286± 0.00317 0.06861± 0.00306
0.1 0.00018± 0.00000 0.00045± 0.00002 0.00024± 0.00001
0.01 0.00018± 0.00000 0.00015± 0.00000 0.00002± 0.00000

Table 5: L2(0, 1) error (17) (in %) for κ = 14.38 and ζ = 3
η eL2(uM , u

ε
η) eL2(uS , u

ε
η) eL2(uS , uM )

1 0.00019± 0.00000 0.06658± 0.00270 0.06238± 0.00261
0.1 0.00018± 0.00000 0.00036± 0.00001 0.00019± 0.00001
0.01 0.00018± 0.00000 0.00015± 0.00000 0.00002± 0.00000

Table 6: L2(0, 1) error (17) (in %) for κ = 8.39 and ζ = 7
η eL2(uM , u

ε
η) eL2(uS , u

ε
η) eL2(uS , uM )

1 0.00018± 0.00000 0.08903± 0.00310 0.08410± 0.00261
0.1 0.00018± 0.00000 0.00037± 0.00002 0.00016± 0.00000
0.01 0.00018± 0.00000 0.00015± 0.00000 0.00003± 0.00000

Table 7: H1(0, 1) error (17) (in %) for κ = 55 and ζ = 3
η eH1(uM , u

ε
η) eH1(uS , u

ε
η) eH1(uS , uM )

1 0.21826± 0.00073 12.30047± 0.10647 12.01694± 0.10617
0.1 0.17142± 0.00013 0.59293± 0.00519 0.49523± 0.00489
0.01 0.16383± 0.00001 0.11448± 0.00014 0.05247± 0.00007

Table 8: L2(0, 1) error (17) (in %) for κ = 55 and ζ = 3
η eL2(uM , u

ε
η) eL2(uS , u

ε
η) eL2(uS , uM )

1 0.00022± 0.00000 1.53780± 0.03878 1.51837± 0.00385
0.1 0.00019± 0.00000 0.00503± 0.00027 0.00406± 0.00024
0.01 0.00018± 0.00000 0.00018± 0.00000 0.00005± 0.00000
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3.3 Two-dimensional test-cases

We now test our approach on two-dimensional test cases. Using the first test case, we show, similarly to the one-
dimensional situation, that the weak stochastic MsFEM yields accurate results, provided the parameter η is sufficiently
small, and provided that the amplitude associated to frequencies present in Aε

η but not encoded in the deterministic
basis functions is small (see Section 3.3.1). Next, in Section 3.3.2, we consider a test case similar to a classical benchmark
test case of the literature. We again observe that our approach is efficient. For both cases, we show that the parameter
η does not need to be extremely small for our approach to be highly competitive.

3.3.1 A multi-frequency case

In line with what we observed in the one-dimensional case, we show here that the weak stochastic MsFEM provides
interesting results even in the case when not all the frequencies present in Aε

η are captured in the deterministic basis
functions, provided their amplitude is not too large. To this aim, we consider the following numerical example.

Let (Xk,l)(k,l)∈Z2 denote a sequence of independent, identically distributed scalar random variables uniformly dis-

tributed in the interval [0, 1]. We consider the random matrix

Aε
η(x, y, ω) = aε0(x, y) Id2 + ηaε1(x, y, ω) Id2,

with

aε0(x, y) = 5 + 50 sin2
(πx
ε

)
sin2

(πy
ε

)
,

aε1(x, y, ω) =
∑

(k,l)∈Z2

1(k,k+1]

(x
ε

)
1(l,l+1]

(y
ε

)(
Xk,l(ω) κ sin2

(
ζπx

ε

)
sin2

(
ζπy

ε

))
.

Again, this choice is a particular example of the expansion (15) satisfying the structural assumption (21). We consider
two different values of ζ, namely ζ = 1 and ζ = 3. As in the previous test case, the frequency ζ is not present in the
deterministic part of Aε

η, and thus not encoded in the basis functions. In line with what we observed in Section 3.2,
we choose the amplitude κ associated to that frequency such that the quantity (26) has the same value K = 1 for both
values of ζ. We compute uεη solution to

−div
[
Aε

η(·, ω)∇uεη(·, ω)
]
= 1 in D, uεη(·, ω) = 0 on ∂D,

on the domain D = (0, 1)2 with ε = 0.025. Let uM and uS be its approximation by the two MsFEM approaches
described above. The numerical parameters for the computation are again determined using an empirical study of
convergence. We use for the reference solution uεη a fine mesh of size hf = ε/40. The MsFEM basis functions are
computed in each element K using a mesh of size hM = ε/80. The oversampling parameter (i.e. the scale ratio of the
homothetic transformation between K and S, see Fig. 1) is equal to 3. The coarse mesh size is h = 1/30. In view
of the results of Section 3.2, we consider M = 30 independent realizations, which will prove to again be sufficient to
obtain accurate results.

In Tables 9 and 10 (Tables 11 and 12 respectively), we report the estimator (17), along with its confidence interval,
for the broken H1(D) norm and for the L2(D) norm, respectively. The results obtained here confirm our observations
in the one-dimensional setting (Section 3.2):

• for given ζ and κ, we observe that, when η is sufficiently small (here, η ≤ 0.1), the alternative approach provides
a solution uS that is an approximation of uεη as accurate as uM , for a much smaller computational cost (as the
MsFEM basis set has only been computed once rather than for each independent realization of Aε

η).

• our approach yields accurate results even if the frequency ζ is not encoded in the basis functions φεi , provided the
associated amplitude κ is scaled accordingly. Figures in Table 9 (respectively Table 11) are very close to those of
Table 10 (respectively Table 12). This confirms that the error made by the weak stochastic MsFEM seems to be
independent of κ and ζ, provided these two parameters are scaled so that K(κ, ζ) remains constant. If ζ becomes
different than 1, the frequency present in aε0, then the amplitude κ associated to the frequency ζ has to decrease
to keep K(κ, ζ) (and thus the accuracy of uS) constant.

These observations again demonstrate the efficiency of the approach.
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Table 9: H1(D) error (17) (in %) for κ = 73.61 and ζ = 1
η eH1(uM , u

ε
η) eH1(uS , u

ε
η) eH1(uS , uM )

1 7.8437± 0.1350 19.8818± 0.4123 18.8662± 0.4216
0.1 6.8053± 0.0165 7.3868± 0.0276 3.1528± 0.0517
0.01 6.7338± 0.0017 6.9795± 0.0016 1.8763± 0.0013

Table 10: H1(D) error (17) (in %) for κ = 10 and ζ = 3
η eH1(uM , u

ε
η) eH1(uS , u

ε
η) eH1(uS , uM )

1 6.7224± 0.0368 12.7292± 0.2172 10.8128± 0.2442
0.1 6.7154± 0.0044 7.1069± 0.0128 2.2925± 0.0206
0.01 6.1725± 0.0004 6.9770± 0.0010 1.8504± 0.0003

Table 11: L2(D) error (17) (in %) for κ = 73.61 and ζ = 1
η eL2(uM , u

ε
η) eL2(uS , u

ε
η) eL2(uS , uM )

1 1.4355± 0.0795 4.1649± 0.1652 2.8468± 0.1694
0.1 1.0630± 0.0108 1.1369± 0.0075 0.1441± 0.0354
0.01 1.0211± 0.0011 1.1512± 0.0007 0.1351± 0.0014

Table 12: L2(D) error (17) (in %) for κ = 10 and ζ = 3
η eL2(uM , u

ε
η) eL2(uS , u

ε
η) eL2(uS , uM )

1 1.0744± 0.0127 1.8433± 0.0582 0.8426± 0.0832
0.1 1.0226± 0.0015 1.1249± 0.0038 0.1147± 0.0073
0.01 1.0170± 0.0001 1.1551± 0.0004 0.1427± 0.0003

Remark 5. In Tables 9-12, we observe that the size of the confidence interval is much smaller than the distance between
two different errors. This a posteriori validates the choice of the number M of Monte Carlo realizations according to the
calibration we performed in the one-dimensional setting. In the two-dimensional setting studied here, we observe that
considering M = 30 realizations is again sufficient. The same conclusion holds for results presented in Tables 13-16
below.

3.3.2 A classical test case

We consider in this section a test case similar to a classical test case of the literature (see e.g. [37, 39, 19, 32]). Let
(Xk,l)(k,l)∈Z2 denote a sequence of independent, identically distributed scalar random variables uniformly distributed

in the interval [0, 1]. We consider the random matrix

Aε
η(x, y, ω) =

∑

(k,l)∈Z2

1(k,k+1]

(x
ε

)
1(l,l+1]

(y
ε

)(2 + P sin(2πx/ε)

2 + P sin(2πy/ε)
+

2 + sin(2πy/ε)

2 + P sin(2πx/ε)

)
(1 + ηXk,l(ω)) Id2,

with P = 1.8 and ε = 0.025. We compute the reference solution uεη and its two approximations uM and uS with the
same numerical parameters as in Section 3.3.1.

In Tables 13 and 14, we report the estimator (17), along with its confidence interval, for the broken H1(D) norm
and for the L2(D) norm, respectively. We again see that, when η is sufficiently small, uS is an approximation of the
reference solution uεη as accurate as uM . In Tables 15 and 16, we report on the accuracy of uS, for more values of η.
Assuming that the accuracy of uM does not depend on η (which is consistent with the results reported in Tables 13
and 14), we see that our approach is as accurate as the direct, expensive MsFEM approach, as soon as η ≤ 0.1 (if we
use the broken H1 norm to assess accuracy) and η ≤ 0.25 (if we rather use the L2 norm). The parameter η hence does
not need to be extremely small for our approach to be highly competitive.
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Table 13: H1(D) error (17) (in %)
η eH1(uM , u

ε
η) eH1(uS , u

ε
η) eH1(uS , uM )

1 8.1154± 0.1913 17.3678± 0.7784 15.5113± 0.8689
0.1 7.1664± 0.0199 7.0524± 0.0705 2.5638± 0.1006
0.01 7.1453± 0.0020 7.2837± 0.0067 1.3882± 0.0020

Table 14: L2(D) error (17) (in %)
η eL2(uM , u

ε
η) eL2(uS , u

ε
η) eL2(uS , uM )

1 0.5620± 0.0803 1.6855± 0.4860 1.4739± 0.5048
0.1 0.5354± 0.0160 0.5688± 0.0630 0.1984± 0.0712
0.01 0.5347± 0.0012 0.6192± 0.0054 0.1072± 0.0032

Table 15: H1(D) error (17) (in %)

η eH1(uS , u
ε
η)

1 17.3678± 0.7784

0.5 15.9578± 0.3461

0.25 10.6130± 0.1591

0.1 7.0524± 0.0705

0.01 7.2837± 0.0067

Table 16: L2(D) error (17) (in %)

η eL2(uS , u
ε
η)

1 1.6855± 0.4860

0.5 1.0246± 0.4414

0.25 0.5291± 0.2285

0.1 0.5688± 0.0630

0.01 0.6192± 0.0054

4 Analysis

This section is devoted to the analysis of the approach introduced in Section 2.2, and to the derivation of error bounds.
As is often the case for the MsFEM (see e.g. [32]), we perform the analysis in a setting where the problem (2)-(3) that
we consider admits a homogenized limit as ε vanishes (although, we repeat it, the approach is used in practice for more
general cases). The structure of our proof is similar to that for the deterministic setting, which we now overview (we
refer to [32] for all the details).

In the case when the oversampling technique is not used, the MsFEM is a conforming Galerkin approximation, and
the error is estimated using the Céa lemma:

‖uε − uM‖H1 ≤ C inf
vh∈Wh

‖uε − vh‖H1 ,

where uε is the solution to the reference deterministic highly oscillatory problem (1), uM is the MsFEM solution, and
the constant C is independent from ε and h. In the case when the oversampling technique is used, the MsFEM is a
non-conforming Galerkin method. The error is then bounded from above by the sum of the best approximation error
(the right-hand side of the above estimate) and the non-conforming error (that we do not detail here):

‖uε − uM‖H1 ≤ C

[
inf

vh∈Wh

‖uε − vh‖H1 + non-conforming error

]
.

Note that, in the non-conforming case, the MsFEM solution uM does not belong to H1, and one should write the above
estimate with a broken H1 norm rather than the H1 norm. For the sake of clarity, we ignore this distinction in this
preliminary discussion.

Taking advantage of the homogenization setting, we introduce the two-scale expansion

vε = u⋆ + ε
d∑

i=1

w0
ei

( ·
ε

)
∂iu

⋆
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of uε, where u⋆ is the homogenized solution, w0
ei is the periodic corrector associated to ei ∈ R

d, and ∂iu
⋆ denotes the

partial derivative
∂u⋆

∂xi
. We next write

‖uε − uM‖H1 ≤ C

[
‖uε − vε‖H1 + inf

vh∈Wh

‖vε − vh‖H1 + non-conforming error

]
.

The first term in the right-hand side is estimated using standard homogenization results. To estimate the second term,
one considers a suitably chosen element vh ∈ Wh, for which ‖vε − vh‖H1 can be estimated directly. The main idea is
that the highly oscillating part of vε can be well approached by an element in Wh, since, by construction, the highly
oscillatory basis functions are defined by a problem similar to the corrector problem, and thus encode the same highly
oscillatory behavior as that present in the correctors w0

ei . We are thus left with approximating the slowly varying
components of vε, for which standard FEM estimates are used. Lastly, we again use the fact that our problem admits
a homogenized limit to estimate the third term, i.e. the non-conforming error.

In the sequel, we follow the same strategy in our stochastic setting. We hence first write (see (64) below) that

‖uεη(·, ω)− uS(·, ω)‖H1 ≤ C

[
inf

vh∈Wh

‖uεη(·, ω)− vh(·, ω)‖H1 + non-conforming error

]
, (27)

where uεη is the solution to the reference stochastic problem (2)-(3) and C is a deterministic constant independent from
ε, h and η (note that, in (64), we use a broken H1 norm rather than the H1 norm; as pointed out above, this is due
to the fact that our approach is a non-conforming Galerkin approximation; we ignore this distinction in the current
discussion). To estimate the best approximation error (the first term in the right-hand side of (27) above), we use the
triangle inequality, and write (see (84) below) that

inf
vh∈Wh

‖uεη(·, ω)− vh(·, ω)‖H1 ≤ ‖uεη(·, ω)− vεη(·, ω)‖H1 + inf
vh∈Wh

‖vεη(·, ω)− vh(·, ω)‖H1 , (28)

where vεη is the two-scale expansion of the solution uεη truncated at order ε2. A first difficulty owes to the fact that, in
the general stochastic setting, no estimate is known on ‖uεη(·, ω) − vεη(·, ω)‖H1 . One only knows that its expectation
vanishes when ε → 0. However, in the present article, we consider a weakly stochastic case. In that setting, we have
derived such a convergence rate type result in [42], and we can thus bound the first term of (28) (see Section 4.1.2
below for more details). The second term, inf

vh∈Wh

‖vεη(·, ω)− vh‖H1 , of (28), is estimated using an explicit construction

of a suitable vh (see (85)), similarly to the deterministic setting. We again use there our specific weakly stochastic
setting. Lastly, the non-conforming error (the second term in the right-hand side of (27) above) is estimated following
arguments similar to those of the deterministic case, using that our problem admits a homogenized limit and is weakly
stochastic.

This section is organized as follows. The error estimation is presented in Section 4.1. We first recall in Sec-
tion 4.1.1 the formulation of the homogenized problem, and some results specific to the weakly stochastic case. Next,
in Section 4.1.2, we establish an error bound between the reference solution uεη and its two-scale expansion vεη (see
Theorem 7), which allows to bound the first term in the right-hand side of (28). Our main result, Theorem 10, is given
in Section 4.1.3, and proved in Section 4.2. The proof essentially consists in explicitly building a function vh ∈ Wh such
that the second term of (28) can be directly estimated. It also makes use of several technical results (Lemmas 13, 14
and 16 below) to bound the non-conforming error, i.e. the second term in the right hand side of (27). The proof of
these technical results is postponed until Appendix A. Last, in Section 4.3, we specifically consider the one dimensional
case.

Before proceeding further, we recall the setting of stochastic homogenization we work with. The reader familiar
with this theory may directly proceed to Section 4.1. Let (Ω,F ,P) be a probability space. For a random variable
X ∈ L1(Ω, dP), we denote by E(X) =

∫
Ω
X(ω)dP(ω) its expectation value. We assume that the group (Zd,+) acts on

Ω. We denote by (τk)k∈Zd this action, and assume that it preserves the measure P, i.e.

∀k ∈ Z
d, ∀A ∈ F , P(τkA) = P(A).

We assume that τ is ergodic, that is,

∀A ∈ F ,
(
∀k ∈ Z

d, τkA = A
)
⇒ (P(A) = 0 or 1).
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We define the following notion of stationarity: any F ∈ L1
loc

(
R

d, L1(Ω)
)
is said to be stationary if

∀k ∈ Z
d, F (x + k, ω) = F (x, τkω) almost everywhere, almost surely. (29)

Note that we have chosen to present the theory in a discrete stationary setting, which is more appropriate for our
specific purpose, which is to consider a setting close to periodic homogenization. Random homogenization is more
often presented in the continuous stationary setting. This is only a matter of small modifications. We refer to the
bibliography for the latter.

For the sake of analysis, we assume in this section that the matrix Aε
η(x, ω) in (2)-(3) reads Aε

η(x, ω) = Aη

(x
ε
, ω
)
,

where the random matrix Aη is stationary in the sense of (29). The problem (2) now reads

− div
[
Aη

( ·
ε
, ω
)
∇uεη(·, ω)

]
= f in D, uεη(·, ω) = 0 on ∂D, (30)

where Aη(·, ω) ∈ (L∞(Rd))d×d satisfies the standard coercivity and boundedness conditions: there exists two constants
a+ ≥ a− > 0 such that

∀η, ∀ξ ∈ R
d, a−|ξ|2 ≤ Aη(x, ω)ξ · ξ a.e. on R

d, a.s. and ‖Aη(·, ω)‖L∞(Rd) ≤ a+ a.s. (31)

Due to the stationarity assumption on Aη, the problem (30) admits a homogenized limit when ε → 0. Note that, to
the best of our knowledge, all analyses of the MsFEM approach in the deterministic setting that have been proposed

in the literature are performed under a similar assumption (the matrix Aε in (1) is assumed to read Aε(x) = Aper

(x
ε

)

for a fixed periodic matrix Aper , see e.g. [38, 32]).
In addition, in line with (3) and (15), we assume that Aη is of the form

Aη(x, ω) = Aper(x) + η A1(x, ω), (32)

where η ∈ R is small parameter (we henceforth assume that |η| ≤ 1), Aper is a symmetric bounded Q-periodic matrix
(Q = [0, 1]d) satisfying the ellipticity condition almost everywhere on R

d, and A1 is a symmetric bounded stationary
matrix: |A1(x, ω)| ≤ C almost everywhere in R

d, almost surely. Since η is small, our problem is weakly stochastic.
In line with (21), we furthermore assume that A1 is of the form

A1(x, ω) =
∑

k∈Zd

1Q+k(x)Xk(ω)Bper(x), (33)

where (Xk(ω))k∈Zd is a sequence of i.i.d. scalar random variables such that

∃C, ∀k ∈ Z
d, |Xk(ω)| ≤ C almost surely,

and Bper ∈
(
L∞(Rd)

)d×d
is a Q-periodic matrix. Besides being used in Theorem 7 below, this assumption is also

used in the proof of Lemma 16, to recognize that some quantity (namely, (126) below) is a normalized sum of i.i.d.
variables, on which we can use Central Limit Theorem arguments. As mentioned in Section 3.1 above, the form (33)
is not essential. The point in (33) is that A1 is a sum of direct products of a function depending on x with a random
variable only depending on ω. Assumptions alternative to (33) could be made, that still satisfy this framework.

Finally, we assume that

Aper is Hölder continuous, (34)

Bper is Hölder continuous. (35)

We use these assumptions to obtain a rate of convergence of the two-scale expansion of uεη (see [42] and Theorem 7
below), and hence control the first term in the right-hand side of (28). Such assumptions are standard when proving
convergence rates of two-scale expansions (see e.g. [40, p. 28]). In turn, to control the second term in (28) and the
non-conforming error (the second term in (27)), we do not need Bper to be Hölder continuous, and only use the fact
that Aper is Hölder continuous (to obtain e.g. Lemmas 9, 13, 14 and 17). The numerical examples that we have
considered in Section 3 satisfy assumptions (34)-(35) (remark that assumption (34) is also satisfied in the numerical
examples considered in e.g. [30]).

Note that we have assumed Aper and Bper to be symmetric only for the sake of simplicity. The arguments used
below carry over to the non-symmetric case up to slight modifications.
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4.1 Error estimation

To bound the error between the reference solution uεη and the MsFEM solution uS, we use in many instances that
we work in a weakly stochastic homogenization setting. We first recall in Section 4.1.1 some results specific to weakly
stochastic homogenization. This setting also allows to state rates of convergence for the two-scale expansion of uεη, as
we explain in Section 4.1.2. Our main result, Theorem 10, is given in Section 4.1.3.

4.1.1 The homogenized equation

Under the conditions recalled above, it is known (see e.g. [12, 40]) that the solution uεη(·, ω) to (30) a.s. converges
weakly in H1

0 (D) as ε→ 0 to the deterministic solution u⋆η of the homogenized equation

− div
[
A⋆

η∇u⋆η
]
= f in D, u⋆η = 0 on ∂D. (36)

The homogenized matrix is given by

(
A⋆

η

)
ij
= E

(∫

Q

(ei +∇wη
ei (y, ·))TAη(y, ·)(ej +∇wη

ej (y, ·)) dy
)
, (37)

where, for any p ∈ R
d, wη

p is the unique (up to the addition of a random constant) solution to the corrector problem






−div
[
Aη (·, ω) (p+∇wη

p (·, ω))
]
= 0 in R

d,

∇wη
p is stationary in the sense of (29),

E

(∫

Q

∇wη
p(y, ·) dy

)
= 0.

(38)

The variational problem associated with (36) writes: find u⋆η ∈ H1
0 (D) such that

∀v ∈ H1
0 (D), A⋆

η(u
⋆
η, v) = b(v),

where

A⋆
η(u, v) =

∫

D
(∇v(x))T A⋆

η∇u(x) dx and b(v) =

∫

D
f(x)v(x) dx. (39)

As shown in [13, 24], in the weakly stochastic setting, the homogenized matrix A⋆
η can be expanded in terms of a

series in powers of η:
A⋆

η = A⋆
per + ηA⋆

1 + η2A⋆
2(η), (40)

where A⋆
2(η) is a deterministic matrix, that depends on η and is bounded as η → 0, and where, for any 1 ≤ i, j ≤ d,

(A⋆
per)ij =

∫

Q

(ei +∇w0
ei )

TAper(ej +∇w0
ej ), (41)

(A⋆
1)ij =

∫

Q

(ei +∇w0
ei )

T
E(A1)(ej +∇w0

ej ), (42)

where, for any p ∈ R
d, w0

p is the unique (up to the addition of a constant) solution to the deterministic corrector
problem associated to the periodic matrix Aper:

{
−div

[
Aper(p+∇w0

p)
]
= 0,

w0
p is Q-periodic.

(43)

Under the assumption (33), we have A⋆
1 = E(X0)B, with

∀1 ≤ i, j ≤ d, Bij =

∫

Q

(ei +∇w0
ei)

TBper(ej +∇w0
ej ). (44)

Remark 6. In general, when Aper is not symmetric, the expression of A⋆
1 includes additional terms. Indeed, writing

∇wη
p = ∇w0

p+η∇w1
p+O(η

2), we in general need E(∇w1
p) to compute A⋆

1 (see e.g. [24, 13]). In the symmetric case, these
additional terms vanish, see e.g. [4, Remark 4.2 p. 117]. In the non-symmetric case, the expression (42) of A⋆

1 needs to
be slightly modified, but the expansion (40) remains true. Our arguments hence carry over to the non-symmetric case.
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Using the expansion (40) of A⋆
η with respect to η, it is easy to see that the solution u⋆η to (36) can also be expanded

in a series in powers of η. We have

u⋆η = u⋆0 + ηE(X0)u
⋆
1 + η2rη with ‖rη‖H1(D) ≤ C, (45)

where C is a constant independent of η, and where u⋆0 solves

− div
[
A⋆

per∇u⋆0
]
= f in D, u⋆0 = 0 on ∂D, (46)

and u⋆1 solves
− div

[
A⋆

per∇u⋆1
]
= div

[
B∇u⋆0

]
in D, u⋆1 = 0 on ∂D. (47)

The expansion (45) will be useful in the sequel. We will also need a bound on u⋆η and rη in the H2 norm. Recall that
u⋆η is the solution to (36), whereas rη is solution to

− div
[
A⋆

η∇rη
]
= div [A⋆

2(η) (∇u⋆0 + ηE(X0)∇u⋆1) + E(X0)A
⋆
1∇u⋆1] in D, rη = 0 on ∂D. (48)

In view of (31), we have, almost surely and almost everywhere, a− Id ≤ Aη ≤ a+ Id in the sense of symmetric matrices.
Recalling that homogenization preserves the order of symmetric matrices (see e.g. [48, page 12]), we deduce that

∀η, ∀ξ ∈ R
d, a−|ξ|2 ≤ A⋆

ηξ · ξ ≤ a+|ξ|2.

In addition, the right-hand sides of (36) and (48) are bounded uniformly in η in the L2 norm. Using [34, Theorems 9.15
and 9.14], we obtain that there exists C such that

∀η, ‖u⋆η‖H2(D) ≤ C and ‖rη‖H2(D) ≤ C. (49)

4.1.2 Two scale expansion of the reference solution uεη

As recalled above, the standard error analysis for the MsFEM in the deterministic setting is performed in the case
when the matrix Aε in (1) reads Aε(x) ≡ Aper(x/ε) for a fixed periodic matrix Aper . The problem (1) then admits
a homogenized limit. To obtain bounds on the MsFEM error, one step of the proof is to approximate the oscillatory

solution uε by its two-scale expansion u⋆+ ε

d∑

i=1

w0
ei

( ·
ε

)
∂iu

⋆, where u⋆ is the homogenized solution, w0
p is the periodic

corrector associated to p ∈ R
d, and ∂iu

⋆ =
∂u⋆

∂xi
. In the deterministic case, it is known (see e.g. [12, 23, 40]) that, under

some regularity assumptions on Aper and u⋆,

∥∥∥∥∥u
ε −

[
u⋆ + ε

d∑

i=1

w0
ei

( ·
ε

)
∂iu

⋆

]∥∥∥∥∥
H1(D)

≤ C
√
ε (50)

for a constant C independent of ε.

In the stochastic case, it is known that E



∥∥∥∥∥u

ε −
[
u⋆ + ε

d∑

i=1

wei

( ·
ε
, ω
)
∂iu

⋆

]∥∥∥∥∥

2

H1(D)


 converges to 0 as ε → 0

(see [47, Theorem 3]), but no rate of convergence is known (except in some one-dimensional situations, see e.g. [10, 16,
43]). However, in the present article, and as announced above, we consider a weakly stochastic case. In this setting, we
have derived in [42] a result similar to (50). We now state this result, which will be useful for our analysis.

Theorem 7 (from [42], Theorem 2). Assume d > 1. Let uεη be the solution to (30), and assume that Aη satisfies (32)-
(33)-(34)-(35). Let A⋆

per, w
0
p, u

⋆
0 and u⋆1 be defined by (41), (43), (46) and (47). The two-scale expansion vεη of uεη

reads

vεη(·, ω) = u⋆0 + ηE(X0)u
⋆
1 + ε

d∑

i=1

[
w0

ei

( ·
ε

)
(∂iu

⋆
0 + ηE(X0)∂iu

⋆
1)

+ηE(X0)ψei

( ·
ε

)
∂iu

⋆
0 + η

∑

k∈Iε

(Xk(ω)− E(X0)) χei

( ·
ε
− k
)
∂iu

⋆
0

]
, (51)
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where
Iε =

{
k ∈ Z

d such that ε(Q+ k) ∩ D 6= ∅
}
,

and where, for any p ∈ R
d, ψp is the solution (unique up to the addition of a constant) to

{
−div [Aper∇ψp] = div

[
Bper

(
p+∇w0

p

)]
,

ψp is Q-periodic,
(52)

and χp is the unique solution to






−div [Aper∇χp] = div
[
1QBper(p+∇w0

p)
]

in R
d,

χp ∈ L2
loc(R

d), ∇χp ∈
(
L2(Rd)

)d
,

lim
|x|→∞

χp(x) = 0.
(53)

We assume that u⋆0 ∈ W 2,∞(D) and u⋆1 ∈ W 2,∞(D). Then

√
E

[
‖uεη − vεη‖2H1(D)

]
≤ C

(√
ε+ η

√
ε ln(1/ε) + η2

)
, (54)

where C is a constant independent of ε and η.

As pointed out above, and in [42], the assumptions (34)-(35) are standard assumptions when proving convergence
rates of two-scale expansions (see e.g. [40, p. 28]). Likewise, the assumption u⋆0 ∈ W 2,∞(D) (and subsequently u⋆1 ∈
W 2,∞(D)) is a standard assumption (see e.g. [2, Theorem 2.1] and [40, p. 28]). In view of (46), this assumption implies
that the right hand side f in (30) belongs to L∞(D).

In dimension d = 1, the boundary conditions of (53) need to be modified for this problem to have a solution. We
have derived in [42] the following result, which is the one-dimensional version of Theorem 7 (note that we need below
weaker assumptions than in Theorem 7, as pointed out in [42]: we do not need to assume (34)-(35), and the assumption
f ∈ L2(D) is enough):

Theorem 8 (from [42], Theorem 3). Assume that the dimension d is equal to one. Let uεη be the solution to (30) in the
domain D with f ∈ L2(D), and assume that Aη satisfies (32)-(33). Let vεη be defined by (51), where the definition (53)
is replaced by {

− [Aperχ
′]′ =

[
1(0,1)Bper(1 + (w0)′)

]′
in R,

χ ∈ L2
loc(R), χ′ ∈ L2(R),

(55)

where w0 solves (43). Then

√
E

[
‖uεη − vεη‖2L∞(D)

]
+

√
E

[
‖uεη − vεη‖2H1(D)

]
≤ C

(
ε+ η

√
ε+ η2

)
, (56)

where C is a constant independent of ε and η.

The following estimate, which is proved in [42, proof of Proposition 11] and useful to demonstrate (54), will also be
useful here:

Lemma 9 (from [42], proof of Proposition 11). We assume (34) and d > 1. For any p ∈ R
d, any k ∈ Z

d, and any
bounded domain D ⊂ R

d, the function χp defined by (53) satisfies

∥∥∥χp

( ·
ε
− k
)∥∥∥

2

L2(D)
≤ CεdRd,ε, (57)

for a constant C independent of k and ε, where Rd,ε = 1 if d > 2, and Rd,ε = 1 + ln(1/ε) if d = 2.
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4.1.3 Main result

Before presenting our main result, we need some useful notation. Following the approach presented in Section 2.2, we
recall that

Wh := span(φεi , i = 1, · · · , L),
where φεi are the highly oscillatory MsFEM basis functions. By construction, the solution uS ∈ Wh of the weak
stochastic MsFEM approach (16) satisfies

∀vh ∈ Wh, Ah
ε,η(uS , vh) = b(vh) a.s. (58)

where, for any u and v in Wh,

Ah
ε,η(u, v) =

∑

K∈Th

∫

K

(∇v(x))T Aη

(x
ε
, ω
)
∇u(x) dx and b(v) =

∫

D
f(x)v(x) dx. (59)

For future use, we also define, on the standard finite element space

Vh := span(φ0i , i = 1, · · · , L),
the forms

Ãh
ε,η(u, v) =

∑

K∈Th

∫

K

(∇ (Rε
K(v)) (x))

T
Aη

(x
ε
, ω
)
∇ (Rε

K(u)) (x) dx and b̃h(v) =
∑

K∈Th

∫

K

f(x)Rε
K(v)(x) dx, (60)

where the local, linear operators Rε
K

are defined on Vh by

∀1 ≤ i ≤ L, Rε
K
(φ0i
∣∣
K
) = φεi |K . (61)

These local operators give rise to the global operator Rε : Vh → Wh defined by

∀K, ∀v ∈ Vh, Rε(v)|
K

= Rε
K (v|

K
) . (62)

As pointed out above, the space Wh is not a subspace of H1
0 (D), as the basis functions φεi may have jumps at the

finite element boundaries (due to the use of the oversampling technique). We will hence work with the broken H1-norm
introduced in (18), that reads, we recall,

∀vh ∈ Wh, ‖vh‖H1

h
=

[
∑

K∈Th

‖vh‖2H1(K)

]1/2
.

We are now in position to present the main result of this article. We introduce the notation Qε
i = ε(i + Q) for any

i ∈ Z
d, and denote by NK the number of cells Qε

i in the element K: NK = Card(i;Qε
i ⊂ K). We make in the theorem

below a regularity hypothese on the macroscopic mesh, assuming that the volume of each element is bounded from
below by αhd, for some α > 0, and hence that NK ≥ α (h/ε)d.

Theorem 10. Assume that Aη satisfies (32)-(33)-(34)-(35). We assume that u⋆0 and u⋆1 respectively defined by (46)
and (47) satisfy u⋆0 ∈ W 2,∞(D) and u⋆1 ∈ W 2,∞(D). Let uεη be the solution to (30) and uS be the weakly stochastic
MsFEM solution to (58). Suppose that d > 1, ε ≤ h, and that there exists α > 0, independent of K, h and ε, such that

NK ≥ α

(
h

ε

)d

. We then have

√
E

[
‖uεη − uS‖2H1

h

]
≤ C

(√
ε+ h+

ε

h
+ η

( ε
h

)d/2
ln(N(h)) + η + η2C(η)

)
, (63)

where C is a constant independent of ε, h and η, N(h) is the number of elements K in the domain D (which is of
order h−d in dimension d), and C is a bounded function as η goes to 0.

The restriction to d > 1 comes from the fact that the proof of this result uses the rate of convergence on the
two-scale expansion of uεη that we stated in Theorem 7. This rate of convergence is not optimal in dimension one,
as can be seen from the comparison of (54) and (56). The one-dimensional version of the above result is stated in
Section 4.3 below (see Theorem 18), where we briefly consider the one-dimensional situation.

Remark 11. In the case η = 0, our approach reduces to the standard deterministic MsFEM and we obtain the same
estimate as in the deterministic case with oversampling (see e.g. [32, Theorem 3.1]).
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4.2 Proof of Theorem 10

The proof of Theorem 10 is the direct consequence of three lemmas. First we recall the second Strang’s lemma [22,
Theorem 4.2.2, p. 210].

Lemma 12. Consider a family of Hilbert spaces Wh with the norm ‖ · ‖H1

h
, a family of continuous bilinear forms Ah

ε,η

on Wh that are uniformly Wh-elliptic, and a continuous linear form b on Wh. For any h > 0, introduce uS solution to

∀vh ∈ Wh, Ah
ε,η(uS , vh) = b(vh)

and uεη ∈ H1
0 (D) solution to

∀v ∈ H1
0 (D), Ah

ε,η(u
ε
η, v) = b(v).

Then there exists a constant C independent of η, h and ε such that

‖uεη − uS‖H1

h
≤ C

(
inf

vh∈Wh

‖uεη − vh‖H1

h
+ sup

wh∈Wh

∣∣Ah
ε,η(u

ε
η, wh)− b(wh)

∣∣
‖wh‖H1

h

)
. (64)

The first term in the right hand side of (64) is the so-called best approximation error. The main part (step 2) of
the proof of Theorem 10 is devoted to its estimation, following up on the estimate (54) provided by Theorem 7.

The second term in the right hand side of (64) is the so-called nonconforming error, which vanishes in the case
Wh ⊂ H1

0 (D) (the method is then conforming, and we are left with the standard Céa lemma). In our case, we use the
oversampling technique, hence our approximation is not conforming, and this second term does not vanish. It will be
estimated in the step 3 of the proof of Theorem 10, using the following two results, which are proved in Appendix A.

Lemma 13. Consider the two bilinear forms A⋆
η and Ãh

ε,η respectively defined in (39) and (60). Under assumption (34),
there exists a deterministic constant C, independent of η, ε and h, such that, for any vh ∈ Vh,

sup
wh∈Vh

∣∣∣Ãh
ε,η(vh, wh)−A⋆

η(vh, wh)
∣∣∣

‖wh‖H1(D)
≤ C

( ε
h
+ ηλ(ω, h, ε) + η2C(η)

)
‖vh‖H1(D) a.s., (65)

where C is a deterministic function independent of ε and h and bounded when η → 0, and λ is defined by

λ(ω, h, ε) = max
K

max
1≤p,m≤d

∣∣∣∣∣
1

|Iε
K
|

∫

Iε
K

[
ep +∇w0

ep

(x
ε

)]T (
A1

(x
ε
, ω
)
− E

(
A1

(x
ε
, ·
))) [

em +∇w0
em

(x
ε

)]
dx

∣∣∣∣∣ , (66)

where Iε
K

is the largest domain composed of cells of size ε included in K:

Iε
K

=
⋃

Qε
i
⊂K

Qε
i , Qε

i = ε(i+Q), i ∈ Z
d.

Lemma 14. Consider the two linear forms b and b̃h respectively defined in (39) and (60). Under assumption (34),
there exists a deterministic constant C independent of η, ε and h such that

sup
wh∈Vh

∣∣∣̃bh(wh)− b(wh)
∣∣∣

‖wh‖H1(D)
≤ Cε‖f‖L2(D). (67)

Before turning to the proof of Theorem 10, we first give some properties of the random variable λ(ω, h, ε) that
appears in the right hand side of (65), and we next detail a two scale expansion of the highly oscillatory basis functions
φεi , which will be useful in the sequel.

Remark 15. We will show in Lemma 16 below that λ defined in (66) is uniformly bounded with respect to h, ε and

ω. Since A⋆
η is coercive, we deduce from (65) that Ãh

ε,η is also coercive, in the sense that there exists a deterministic
constant α > 0, independent of h, ε and η, such that

∀vh ∈ Vh, α‖vh‖2H1(D) ≤ Ãh
ε,η(vh, vh).
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4.2.1 Properties of λ(ω, h, ε)

We state here some useful properties of the random variable λ(ω, h, ε) that appears in (65). They will be proved in

Appendix A. As mentioned above, we recall that the assumption NK ≥ α (h/ε)
d
that we make below is a regularity

assumption on the macroscopic mesh (the volume of each element K is bounded from below by αhd).

Lemma 16. Let λ(ω, h, ε) be defined by (66). Then, there exists a deterministic constant C such that, for any h and
ε, we have 0 ≤ λ(ω, h, ε) ≤ C almost surely.

Assume now that the random matrix A1 satisfies (33), where the law of Xk(ω) is absolutely continuous with respect
to the Lebesgue measure. Assume furthermore that the number NK = Card(i;Qε

i ⊂ K) of cells in K satisfies NK ≥

α

(
h

ε

)d

for some α > 0 independent of the element K, h and ε. Then

E(λ(·, h, ε)2) ≤ C
εd

hd
[ln(N(h))]

2
, (68)

where, we recall, N(h) is the number of elements K in the domain D (which is of order h−d in dimension d) and C is
a deterministic constant independent of h and ε.

Because of the specific form (33) of A1, we will see in the proof of that result (see Appendix A below) that

λ(ω, h, ε) = max
K

max
1≤m,p≤d

|Sm,p
K

| , (69)

where each random variable Sm,p
K

is a normalized sum of (h/ε)d i.i.d. variables. Applying the Central Limit Theorem,
we hence know that Sm,p

K
converges, when ε→ 0, to a Gaussian random variable (up to an appropriate renormalization).

Likewise, computing the expectation of (Sm,p
K

)
2
is not difficult. However, in the above lemma, the difficulty stems from

the fact that λ(ω, h, ε) is the maximum of many such random variables Sm,p
K

(in (69), the number of elements K is
indeed of the order of h−d). Our main task is hence to control how E(λ(·, h, ε)2) depends on h. See also Remark 19.

4.2.2 Two-scale expansion of the highly oscillatory basis functions

Following [32], we recall here an expansion of φε,Ki that will be useful in the sequel. By definition (see (11) and (12)),
we have, for any 1 ≤ i ≤ d+ 1,

φε,Ki =

d+1∑

j=1

αij χ
ε,S
j

∣∣∣
K

, (70)

where αij is such that

φ0,Ki =

d+1∑

j=1

αij χ
0,S
j

∣∣∣
K

. (71)

We thus first turn to χε,S
i , which, by definition (see (10)), is the unique solution to

− div
[
Aper

(x
ε

)
∇χε,S

i (x)
]
= 0 in S, χε,S

i (x) = χ0,S
i (x) on ∂S. (72)

We introduce the function

θε,Si (x) = ε−1


χ0,S

i (x) + ε

d∑

j=1

w0
ej

(x
ε

)
∂jχ

0,S
i (x) − χε,S

i (x)


 , (73)

where w0
ei is solution to the periodic corrector problem (43). By construction, using (73), (43), (72) and the fact that

∇χ0,S
i is constant on S, we have

−div
[
Aper

(x
ε

)
∇θε,Si (x)

]
=

1

ε
div


Aper

(x
ε

)
∇


χε,S

i (x)− χ0,S
i (x)− ε

d∑

j=1

w0
ej

(x
ε

)
∂jχ

0,S
i






=
1

ε
div
[
Aper

(x
ε

)
∇χε,S

i (x)
]
− 1

ε

d∑

j=1

∂jχ
0,S
i div

[
Aper

(x
ε

)(
ej +∇w0

ej

(x
ε

))]

= 0,
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while, from (73), θε,Si (x) =

d∑

j=1

∂jχ
0,S
i (x)w0

ej

(x
ε

)
on ∂S. So, by linearity, we obtain

θε,Si (x) =

d∑

j=1

∂jχ
0,S
i ξjε(x), (74)

where ξjε ∈ H1(S) is the unique solution to

− div
[
Aper

(x
ε

)
∇ξjε(x)

]
= 0 in S, ξjε(x) = w0

ej

(x
ε

)
on ∂S. (75)

Using (73), we now obtain a useful relation between φε,Ki and φ0,Ki . Indeed, collecting (70), (71), (73) and (74), we
obtain the exact expression

φε,Ki (x) = φ0,Ki (x) + ε

d∑

j=1

(
w0

ej

(x
ε

)
− ξjε(x)

∣∣
K

)
∂jφ

0,K
i . (76)

Recall now that φε,Ki (x) = Rε
K
(φ0,Ki ), by definition of the local operator Rε

K
(see (61)). Correspondingly, the global

operator Rε, defined on Vh by (62), equivalently writes

∀u ∈ Vh, Rε(u) = u+ ε

d∑

j=1

(
w0

ej

( ·
ε

)
− ξjε

)
∂ju, (77)

where ξjε is locally defined on each element K by ξjε

∣∣∣
K

= ξjε
∣∣
K
. By construction, for each K, ξjε ∈ H1(K), but it a

priori does not belong to H1(D). The relation (77) allows to extend the operator Rε on H1(D).
We now recall the following bound on the function ξjε , that appears in (76). In [32], this lemma is stated in dimension

d = 2, but its proof, which essentially makes use of [9, Lemma 16], carries over to any dimension.

Lemma 17 (see [32], Lemma 2.1). Let ξjε be the solution to (75), with Aper satisfying (34). Consider K ⊂ S, with
diam(K) = h and dist(K, ∂S) ≥ h. Then there exists a constant C independent of h and ε such that

‖∇ξjε‖L∞(K) ≤
C

h
. (78)

4.2.3 Proof of Theorem 10

The proof is based on the bound (64) in Lemma 12, where the bilinear form Ah
ε,η and the linear form b are defined

by (59). In Step 1, we show that the bilinear form Ah
ε,η is coercive for the norm ‖ · ‖H1

h
defined by (18). Step 2 is

devoted to appropriately selecting an element vh ∈ Wh such that ‖uεη − vh‖H1

h
can be analytically estimated. This will

provide a bound on the first term in the right hand side of (64). In Step 3, we bound from above the second term in
the right hand side of (64), using Lemmas 13 and 14. Step 4 collects our estimates and concludes.

Step 1: We first show that the bilinear form Ah
ε,η defined by (59) is coercive for the norm ‖ · ‖H1

h
defined by (18).

Consider the bilinear form Ãh
ε,η defined by (60). We pointed out above (see Remark 15) that it is coercive on Vh.

Hence, there exists α > 0 such that, for all vh ∈ Wh,

α‖ṽh‖2H1(D) ≤ Ãh
ε,η(ṽh, ṽh) = Ah

ε,η(vh, vh), (79)

where ṽh ∈ Vh is such that vh = Rε(ṽh). Since, in the bilinear form Ah
ε,η, the matrix Aη is bounded, we deduce the

estimate
‖ṽh‖2H1(D) ≤ C‖vh‖2H1

h
, (80)

that we will use in the sequel. The sequel of this step is devoted to proving that there exists C̃ independent of h and
ε such that, for all ṽh ∈ Vh,

‖vh‖2H1

h
≤ C̃‖ṽh‖2H1(D) with vh = Rε(ṽh). (81)

25



Combined with (79), this shows that Ah
ε,η is coercive for the norm ‖ · ‖H1

h
.

To prove (81), we first write that, since vh = Rε(ṽh) and ṽh ∈ Vh, there exist some coefficients {βi}Li=1 such that,

for any x ∈ D, ṽh =
∑L

i=1 βiφ
0
i and vh = Rε(ṽh) =

∑L
i=1 βiφ

ε
i . Consider now an element K, and its corresponding

oversampling domain S. We know from (11) and (13) that

∀x ∈ K, ṽh(x) =

L∑

i=1

d+1∑

j=1

βiαijχ
0,S
j (x), vh(x) =

L∑

i=1

d+1∑

j=1

βiαijχ
ε,S
j (x).

Consider now the functions

w̃S

h(x) :=
L∑

i=1

d+1∑

j=1

βiαijχ
0,S
j (x), wS

h (x) :=
L∑

i=1

d+1∑

j=1

βiαijχ
ε,S
j (x),

defined on S, and that satisfy, by construction,

∀x ∈ K, ṽh(x) = w̃S

h (x), vh(x) = wS

h (x). (82)

In view of (10), we have
−div

[
Aε(x)∇wS

h (x)
]
= 0 in S, wS

h = w̃S

h on ∂S,

which implies that
‖wS

h‖H1(S) ≤ C‖w̃S

h‖H1(S).

We deduce from (82) and the above bound that

‖vh‖H1(K) = ‖wS

h‖H1(K) ≤ ‖wS

h‖H1(S) ≤ C‖w̃S

h‖H1(S). (83)

We next see that there exists C independent of h such that, for any piecewise-affine function τ on S, we have ‖τ‖H1(S) ≤
C‖τ‖H1(K), provided there exists 0 < c− ≤ c+ independent of the element such that c− ≤ |S|

|K| ≤ c+. Using this bound

for τ = w̃S

h , we infer from (83) and (82) that

‖vh‖H1(K) ≤ C‖w̃S

h‖H1(S) ≤ C̄‖w̃S

h‖H1(K) = C̄‖ṽh‖H1(K).

Summing over all elements K, we obtain (81), and this concludes this first step.

Step 2: Let Πhu⋆η be the H1 projection of u⋆η, solution to (36), on the standard FEM space Vh. We have Rε
(
Πhu⋆η

)
∈

Wh (recall Rε is defined by (62), and equivalently writes as in (77)). Our argument is based on the following triangle
inequality:

E

(
inf

vh∈Wh

‖uεη − vh‖2H1

h

)
≤ 2E

(
‖uεη − vεη‖2H1(D)

)
+ 2E

(
inf

vh∈Wh

‖vεη − vh‖2H1

h

)
(84)

≤ 2E
(
‖uεη − vεη‖2H1(D)

)
+ 2E

(
‖vεη −Rε(Πhu⋆η)‖2H1

h

)
(85)

≤ 2E
(
‖uεη − vεη‖2H1(D)

)
+ 4E

(
‖vεη −Rε(u⋆η)‖2H1

h

)
+ 4‖Rε(u⋆η)−Rε(Πhu⋆η)‖2H1

h
, (86)

where vεη(·, ω) ∈ H1(D) is defined by (51). The estimate (54) in Theorem 7 bounds the first term from above. In the
following two sub-steps, we bound the other two terms of (86).

Step 2a: bound on E

(
‖vεη −Rε(u⋆η)‖2H1

h

)

Using the expansion (45) of u⋆η in a series in powers of η, and (77), we write

Rε(u⋆η) = u⋆0 + ηE(X0)u
⋆
1 + ε

d∑

p=1

(
w0

ep

( ·
ε

)
− ξpε

)
(∂pu

⋆
0 + ηE(X0)∂pu

⋆
1) + η2gη,
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where

gη = rη + ε

d∑

p=1

(
w0

ep

( ·
ε

)
− ξpε

)
∂prη. (87)

Using (51), we thus have

vεη(·, ω)−Rε(u⋆η) = ηε
d∑

p=1

(
E(X0)ψep

( ·
ε

)
∂pu

⋆
0 +

∑

k∈Iε

(Xk(ω)− E(X0)) χep

( ·
ε
− k
)
∂pu

⋆
0

)

+ ε

d∑

p=1

ξpε (∂pu
⋆
η − η2∂prη)− η2gη. (88)

To bound E

[
∑

K

‖vεη −Rε(u⋆η)‖2H1(K)

]
, we first establish a few simple results. First, there exists δ > 0 such that, for

any 1 ≤ p ≤ d, we have
w0

ep ∈ C1,δ(Q), (89)

where w0
p is the periodic corrector, solution to (43). This is a consequence of the fact that Aper is Hölder-continuous

(see assumption (34)), in view of [34, Theorem 8.22 and Corollary 8.36]. We infer from (89) and the periodicity of w0
ep

that, for any 1 ≤ p ≤ d, we have
w0

ep ∈W 1,∞(Rd). (90)

Second, for any 1 ≤ p ≤ d, we have

∥∥∥χep

( ·
ε
− k
)∥∥∥

2

L2(D)
≤ CεdRd,ε and ∇χep ∈

(
L2(Rd)

)d
, (91)

where C is independent from ε and k, Rd,ε = 1 if d > 2 and Rd,ε = 1+ ln(1/ε) if d = 2 (see (53) and (57)). Third, we
see that, for any 1 ≤ p ≤ d, ∥∥∥ξpε

∥∥∥
L∞(D)

≤ C and ‖∇ξpε‖L∞(K) ≤
C

h
, (92)

where C is independent from ε and h. The second assertion is given by Lemma 17 above, whereas the first assertion
comes (75): using again [34, Theorem 8.22 and Corollary 8.36] and (89), we first see that, for any S, ξpε ∈ C1,δ(S)

for some δ > 0. Using next the maximum principle on (75), we have ‖ξpε‖L∞(S) ≤
∥∥∥wep

( ·
ε

)∥∥∥
L∞(Rd)

≤ C. Lastly,

using (87), (49), (90) and (92), we obtain that, for any element K,

‖gη‖H1(K) ≤ C‖rη‖H2(K)

(
1 + ε+

ε

h

)
≤ C‖rη‖H2(K),

hence
‖gη‖2L2(D) ≤

∑

K

‖gη‖2H1(K) ≤ C‖rη‖2H2(D) ≤ C. (93)

We are now in position to estimate (88). Using that u⋆0 ∈ W 1,∞(D), we deduce from (91), (92) and (93) that

E

[
‖vεη −Rε(u⋆η)‖2L2(D)

]
≤ Cη2ε2

d∑

p=1

‖∂pu⋆0‖2L∞

(
E(X0)

2
∥∥∥ψep

( ·
ε

)∥∥∥
2

L2(D)
+ Var(X0)

∑

k∈Iε

∥∥∥χep

( ·
ε
− k
)∥∥∥

2

L2(D)

)

+Cε2
d∑

p=1

∥∥∥ξpε
∥∥∥
2

L∞(D)

(
‖∇u⋆η‖2L2(D) + η4‖∇rη‖2L2(D)

)
+ Cη4‖gη‖2L2(D)

≤ Cη2ε2
(
1 + (Card Iε) ε

dRd,ε

)
+ Cε2 + Cη4

≤ C
[
η2ε2Rd,ε + ε2 + η4

]
(94)

for some constant C independent of ε, η and h, and where, we recall, Rd,ε = 1+ ln(1/ε) if d = 2 and Rd,ε = 1 if d > 2.
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We thus have a bound on vεη(·, ω)−Rε(u⋆η) in the L2 norm. To prove a bound in the broken H1 norm, we consider
∇vεη(·, ω)−∇Rε(u⋆η): we see from (88) that, in each element K,

∇vεη(·, ω)−∇Rε(u⋆η) = ηεD0 + ηD1 +D2 − η2∇gη, (95)

where

D0 =

d∑

p=1

(
E(X0)ψep

( ·
ε

)
∇∂pu⋆0 +

∑

k∈Iε

(Xk(ω)− E(X0))χep

( ·
ε
− k
)
∇∂pu⋆0

)
,

D1 =

d∑

p=1

(
E(X0)∇ψep

( ·
ε

)
∂pu

⋆
0 +

∑

k∈Iε

(Xk(ω)− E(X0))∇χep

( ·
ε
− k
)
∂pu

⋆
0

)
,

D2 = ε

d∑

p=1

(
ξpε ∇∂p(u⋆η − η2rη) +∇ξpε ∂p(u⋆η − η2rη)

)
.

Note that D0 and D1 are globally defined on D, but D2 is not (as ξpε may have jumps from one element K to the
other). We now bound these three quantities. Using (91) and the fact that u⋆0 ∈W 2,∞(D), we have

E(‖D0‖2L2(D)) ≤ C

d∑

p=1

‖∇∂pu⋆0‖2L∞

(
E(X0)

2
∥∥∥ψep

( ·
ε

)∥∥∥
2

L2(D)
+ Var(X0)

∑

k∈Iε

∥∥∥χep

( ·
ε
− k
)∥∥∥

2

L2(D)

)

≤ CRd,ε, (96)

where C is a constant independent of ε and h. We now turn to D1: using again (91) and that u⋆0 ∈ W 1,∞(D), we
obtain

E(‖D1‖2L2(D)) ≤ C

d∑

p=1

‖∂pu⋆0‖2L∞

(
E(X0)

2
∥∥∥∇ψep

( ·
ε

)∥∥∥
2

L2(D)
+ Var(X0)

∑

k∈Iε

∥∥∥∇χep

( ·
ε
− k
)∥∥∥

2

L2(D)

)

≤ C

d∑

p=1

(
1 + Var(X0)

∑

k∈Iε

εd
∥∥∇χep

∥∥2
L2(Rd)

)

≤ C, (97)

where C is a constant independent of ε and h. Turning to D2, using (92), we have in each element K that

‖D2‖2L2(K) ≤ Cε2‖u⋆η − η2rη‖2H2(K)

(
1 +

1

h2

)
≤ C

ε2

h2
‖u⋆η − η2rη‖2H2(K),

hence, using (49),
∑

K

‖D2‖2L2(K) ≤ C
ε2

h2
‖u⋆η − η2rη‖2H2(D) ≤ C

ε2

h2
. (98)

Collecting (95), (96), (97), (98) and (93), we obtain that

E

[
∑

K

‖∇vεη −∇Rε(u⋆η)‖2L2(K)

]
≤ C

(
η2ε2Rd,ε + η2 +

ε2

h2
+ η4

)
.

Collecting this bound with (94), and assuming that |η| < 1 and ε2Rd,ε ≤ 1, we deduce that

E

[
‖vεη −Rε(u⋆η)‖2H1

h

]
= E

[
∑

K

‖vεη −Rε(u⋆η)‖2H1(K)

]
≤ C

(
η2 +

ε2

h2

)
, (99)

where C is independent from ε, h and η.

Step 2b: bound on ‖Rε(u⋆η)−Rε(Πhu⋆η)‖2H1

h
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Recall that Πhu⋆η is the H1 projection of u⋆η (on the standard P1 FEM space Vh), hence ‖Πhu⋆η‖H1(D) ≤ ‖u⋆η‖H1(D).
In addition, using (49), we have, using a standard result from the theory of P1 finite elements (see [22, Theorem 3.1.6
p. 124])

‖u⋆η −Πhu⋆η‖L2(D) + h‖u⋆η −Πhu⋆η‖H1(D) ≤ Ch2‖∇2u⋆η‖L2(D) ≤ Ch2, (100)

where C is a constant independent of h and η. In view of (77), we have

Rε(u⋆η)−Rε(Πhu⋆η) = u⋆η −Πhu⋆η + ε

d∑

p=1

(
w0

ep

( ·
ε

)
− ξpε

)
∂p(u

⋆
η −Πhu⋆η).

We deduce from (90), (92) and (100) that

‖Rε(u⋆η)−Rε(Πhu⋆η)‖L2(D) ≤ C(h2 + εh). (101)

We now turn to bounding the gradients. Recall that ∇(Πhu⋆η) is constant in each element K. We thus have, using (90)
and (92), that

‖∇Rε(u⋆η)−∇Rε(Πhu⋆η)‖L2(K) ≤ ‖u⋆η −Πhu⋆η‖H1(K)

(
1 +

d∑

p=1

(∥∥∥∇w0
ep

( ·
ε

)∥∥∥
L∞(K)

+ ε‖∇ξpε‖L∞(K)

))

+ε

d∑

p=1

∥∥∥w0
ep

( ·
ε

)
− ξpε

∥∥∥
L∞(K)

‖u⋆η‖H2(K)

≤ C‖u⋆η −Πhu⋆η‖H1(K)

(
1 +

ε

h

)
+ ε‖u⋆η‖H2(K).

We then deduce, using (100) and (49), that

∑

K

‖∇Rε(u⋆η)−∇Rε(Πhu⋆η)‖2L2(K) ≤ C‖u⋆η −Πhu⋆η‖2H1(D)

(
1 +

ε

h

)2
+ ε2‖u⋆η‖2H2(D)

≤ Ch2
(
1 +

ε

h

)2
+ Cε2,

where C is a constant independent of ε, η and h. Collecting this bound and (101), we obtain

‖Rε(Πhu⋆η)−Rε(u⋆η)‖2H1

h
=
∑

K

‖Rε(u⋆η)−Rε(Πhu⋆η)‖2H1(K) ≤ C
(
h2 + ε2

)
, (102)

where C is a constant independent of ε, η and h.

Step 2c: We are now in position to bound the first term in (64). We infer from (86), (54), (99) and (102) that
√

E

(
inf

vh∈Wh

‖uεη − vh‖2H1

h

)
≤ C

(√
ε+ η

√
ε ln(1/ε) + η +

ε

h
+ h
)

≤ C
(√

ε+ η +
ε

h
+ h
)
, (103)

where we have assumed that ε ln(1/ε) ≤ 1.

Step 3: We next turn to estimating the non-conforming error, namely the second term of the right-hand side of (64).
For any wh ∈ Wh, introduce w̃h ∈ Vh such that Rε(w̃h) = wh (recall that Rε is defined by (62)). We note that b(wh) =

b̃h(w̃h), where the linear forms b and b̃h are defined by (59) and (60). Using the weak form of the homogenized equation

(see (39)), we see that b(w̃h) = A⋆
η(u

⋆
η, w̃h). In addition, by definition of Ãh

ε,η (see (60)), we have Ãh
ε,η(Πhu

⋆
η, w̃h) =

Ah
ε,η(Rε(Πhu

⋆
η), wh). For any wh ∈ Wh, we have

∣∣Ah
ε,η(u

ε
η, wh)− b(wh)

∣∣ ≤
∣∣Ah

ε,η(u
ε
η, wh)−Ah

ε,η(Rε(Πhu
⋆
η), wh)

∣∣+
∣∣Ah

ε,η(Rε(Πhu
⋆
η), wh)− b(w̃h)

∣∣+ |b(w̃h)− b(wh)|

≤ ‖Aη‖L∞‖uεη −Rε(Πhu
⋆
η)‖H1

h
‖wh‖H1

h
+
∣∣∣Ãh

ε,η(Πhu
⋆
η, w̃h)−A⋆

η(u
⋆
η, w̃h)

∣∣∣+
∣∣∣b(w̃h)− b̃h(w̃h)

∣∣∣

≤ ‖Aη‖L∞‖uεη −Rε(Πhu
⋆
η)‖H1

h
‖wh‖H1

h
+
∣∣∣Ãh

ε,η(Π
hu⋆η, w̃h)−A⋆

η(Π
hu⋆η, w̃h)

∣∣∣

+‖A⋆
η‖ ‖u⋆η −Πhu⋆η‖H1(D)‖w̃h‖H1(D) +

∣∣∣b(w̃h)− b̃h(w̃h)
∣∣∣ ,
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where we have successively used the continuity of the bilinear forms Ah
ε,η and A⋆

η. Using Lemmas 13 and 14 for the
second and the fourth terms respectively, we deduce that

∣∣Ah
ε,η(u

ε
η, wh)− b(wh)

∣∣ ≤ C‖uεη −Rε(Πhu
⋆
η)‖H1

h
‖wh‖H1

h
+ C

( ε
h
+ ηλ(ω, h, ε) + η2C(η)

)
‖Πhu⋆η‖H1(D)‖w̃h‖H1(D)

+C‖u⋆η −Πhu⋆η‖H1(D)‖w̃h‖H1(D) + Cε‖w̃h‖H1(D),

hence, using (80) and (100),

∣∣Ah
ε,η(u

ε
η, wh)− b(wh)

∣∣
‖wh‖H1

h

≤ C‖uεη −Rε(Πhu
⋆
η)‖H1

h
+ C

(
h+

ε

h
+ ηλ(ω, h, ε) + ε+ η2C(η)

)
. (104)

The first term is bounded as in Step 2:

‖uεη −Rε(Πhu
⋆
η)‖H1

h
≤ ‖uεη − vεη‖H1(D) + ‖vεη −Rε(u⋆η)‖H1

h
+ ‖Rε(u⋆η)−Rε(Πhu

⋆
η)‖H1

h
,

hence, using (54), (99) and (102), and assuming that ε ln(1/ε) ≤ 1, we have

√
E

[
‖uεη −Rε(Πhu⋆η)‖2H1

h

]
≤ C

(√
ε+ η +

ε

h
+ h
)
. (105)

Collecting (104) and (105), we thus obtain

√√√√√E



(

sup
wh∈Wh

∣∣Ah
ε,η(u

ε
η, wh)− b(wh)

∣∣
‖wh‖H1

h

)2

 ≤ C

(
h+

ε

h
+ η
√
E [λ2(·, h, ε)] +√

ε+ η + η2C(η)
)
. (106)

Step 4: Collecting (64), (103) and (106), we get

√
E

[
‖uεη − uS‖2H1

h

]
≤ C

(√
ε+ h+

ε

h
+ η
√
E [λ2(·, h, ε)] + η + η2C(η)

)

where C is a constant independent of ε, h and η, and C is a bounded function as η goes to 0. Using (68), we deduce
that √

E

[
‖uεη − uS‖2H1

h

]
≤ C

(√
ε+ h+

ε

h
+ η

( ε
h

)d/2
ln(N(h)) + η + η2C(η)

)

where N(h) is the number of elements K in the domain (which is of order h−d in dimension d). This concludes the
proof of Theorem 10.

4.3 The one dimensional case

In this section, we briefly consider the one dimensional situation. As in the multi-dimensional case, we assume here

that aεη(x, ω) = aη

(x
ε
, ω
)
, where aη is a stationary random function satisfying, for any |η| ≤ 1, the condition 0 < a− ≤

aη(x, ω) ≤ a+ almost everywhere in R, almost surely. In line with (32), we assume that

aη(x, ω) = aper(x) + η a1(x, ω), (107)

where η is a small parameter (|η| ≤ 1), aper is a 1-periodic function satisfying the condition 0 < a− ≤ aper(x) ≤ a+

almost everywhere on R, and a1 is a bounded stationary random function: |a1(x, ω)| ≤ C almost everywhere in R,
almost surely. In the vein of (33), we suppose that

a1(x, ω) =
∑

k∈Z

1(k,k+1](x)Xk(ω) bper(x) such that ∃C, ∀k ∈ Z, |Xk(ω)| ≤ C almost surely, (108)

where (Xk(ω))k∈Z
is a sequence of i.i.d. scalar random variables and bper ∈ L∞(R) is a 1-periodic function.
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Note that, in this one-dimensional setting, we do not make any regularity assumption on aper (in the vein of (34)).
In the multi-dimensional case, this assumption is useful to e.g. state that the periodic corrector satisfies w0

p ∈ W 1,∞(Rd)

for any p ∈ R
d. In the one-dimensional case, the corrector problem can be solved analytically, and one can see that the

above assumption aper(x) ≥ a− > 0 almost everywhere on R is sufficient to obtain such regularity on the corrector.
Similarly, we do not need to assume here, in contrast to Theorem 10, that u⋆0 and u⋆1 defined by (46) and (47) both
belong toW 2,∞(D) (an assumption equivalent to f ∈ L∞(D), in the present one-dimensional setting). The assumption
f ∈ L2(D) is sufficient.

The problem (30) now reads

− d

dx

(
aη

(x
ε
, ω
) d

dx
uεη(x, ω)

)
= f(x) in (0, 1), uεη(0, ω) = uεη(1, ω) = 0. (109)

We consider a uniform discretization of the interval (0, 1) in the elements Ki = (xi, xi+1), with xi+1 − xi = h = 1/L
for some L ∈ N

⋆.
The one-dimensional version of Theorem 10 reads as follows:

Theorem 18. In the one-dimensional setting, assume that aεη satisfies (107)-(108). Let uεη be the solution to (109)
with f ∈ L2(0, 1), and uS be the weakly stochastic MsFEM solution to (58). Suppose that h/ε ∈ N

⋆. We then have

√
E

[
‖uεη − uS‖2H1

h

]
≤ C

(
ε+ h+ η

( ε
h

)1/2
ln(1/h) + η + η2C(η)

)
, (110)

where C is a constant independent of ε, h and η and C is a bounded function as η goes to 0.

Proof. The proof of this result follows the same lines as that for the multi-dimensional case. It is based upon the
homogenization result contained in Theorem 8 above.

As pointed out above, the rate of convergence stated in Theorem 7 (and hence the estimate provided by Theorem 10)
is not optimal in dimension one. This hence motivates Theorems 8 and 18, which are their respective one-dimensional
variants. On another note, the assumption h/ε ∈ N

⋆ implies that some terms in the error bound vanish. A result
similar to (110) holds in the absence of such assumption, with the additional term ε/h in the right-hand side.

A Proofs of Lemmas 13, 14 and 16

Proof of Lemma 13. This result relies on the expansion

φε,Kj (x) = φ0,Kj (x) + ε

d∑

m=1

(
w0

em

(x
ε

)
− ξmε (x)|

K

)
∂mφ

0,K
j

from (76) and the fact that ∇φ0,Kj is constant on K.
For any vh and wh in Vh, we write

∣∣∣A⋆
η(vh, wh)− Ãh

ε,η(vh, wh)
∣∣∣ =

∣∣∣∣∣∣

∑

K∈Th



∫

K

(∇wh(x))
T
A⋆

η∇vh(x) dx −
L∑

i,j=1

vjhw
i
h

∫

K

(
∇φε,Ki

)T
Aη

(x
ε
, ω
)
∇φε,Kj dx




∣∣∣∣∣∣
,

where vh =
L∑

j=1

vjhφ
0
j and likewise for wh. Using the above expansion of φε,Kj and the fact that ∇φ0,Kj is constant on
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K, we have

L∑

i,j=1

vjhw
i
h

∫

K

(
∇φε,Ki

)T
Aη

(x
ε
, ω
)
∇φε,Kj dx

=
d∑

m,p=1

1

|K|

∫

K

[
ep +∇w0

ep

(x
ε

)
− ε∇ξpε (x)

]T
Aη

(x
ε
, ω
) [
em +∇w0

em

(x
ε

)
− ε∇ξmε (x)

]
dx

×
L∑

i,j=1

vjhw
i
h

∫

K

∂pφ
0,K
i ∂mφ

0,K
j

=

d∑

m,p=1

1

|K|

∫

K

[
ep +∇w0

ep

(x
ε

)
− ε∇ξpε (x)

]T
Aη

(x
ε
, ω
) [
em +∇w0

em

(x
ε

)
− ε∇ξmε (x)

]
dx

∫

K

∂mvh∂pwh.

We thus obtain

∣∣∣A⋆
η(vh, wh)− Ãh

ε,η(vh, wh)
∣∣∣ =

∣∣∣∣∣
∑

K

d∑

m,p=1

ΛK

mp

∫

K

∂mvh∂pwh

∣∣∣∣∣ ≤
∑

K

‖vh‖H1(K)‖wh‖H1(K)

d∑

m,p=1

|ΛK

mp|, (111)

where

ΛK

mp =
[
A⋆

η

]
mp

− 1

|K|

∫

K

[
ep +∇w0

ep

(x
ε

)
− ε∇ξpε (x)

]T
Aη

(x
ε
, ω
) [
em +∇w0

em

(x
ε

)
− ε∇ξmε (x)

]
dx,

which we write
ΛK

mp = D0 +D1 −D2, (112)

with

D0 =
[
A⋆

η

]
mp

− 1

|K|

∫

K

[
ep +∇w0

ep

(x
ε

)]T
Aη

(x
ε
, ω
) [
em +∇w0

em

(x
ε

)]
dx, (113)

D1 =
ε

|K|

(∫

K

[
ep +∇w0

ep

(x
ε

)]T
Aη

(x
ε
, ω
)
∇ξmε (x) dx +

∫

K

(∇ξpε (x))T Aη

(x
ε
, ω
) [
em +∇w0

em

(x
ε

)]
dx

)
,

D2 =
ε2

|K|

∫

K

(∇ξpε (x))T Aη

(x
ε
, ω
)
∇ξmε (x) dx.

We are thus left with bounding |ΛK
mp| from above. We first bound D1 and D2. Using Lemma 17 (recall that Aper

satisfies (34), i.e. is Hölder continuous) and the fact that w0
ep ∈ H1(Q) and is Q-periodic, we obtain

|D2| ≤ C
ε2

h2
(114)

and
∣∣∣∣
ε

|K|

∫

K

[
ep +∇w0

ep

(x
ε

)]T
Aη

(x
ε
, ω
)
∇ξmε (x) dx

∣∣∣∣ ≤ ε

|K|‖Aη‖L∞

C

h

∫

K

∣∣∣ep +∇w0
ep

(x
ε

)∣∣∣ dx

≤ C
ε

|K|h

(
|K|+ εd

∫

K/ε

|∇w0
ep(y)| dy

)

≤ C
ε

h

hence
|D1| ≤ C

ε

h
, (115)

where C is a deterministic constant independent of h, ε and η. We next turn to D0. We introduce the cells Qε
i =

ε(Q+ i), i ∈ Z
d, let Iε

K
=

⋃
Qε

i
⊂K

Qε
i , and recast (113) as

D0 = Dbulk
0 −Dboundary

0 (116)

32



with

Dbulk
0 =

[
A⋆

η

]
mp

− 1

|K|

∫

Iε
K

[
ep +∇w0

ep

(x
ε

)]T
Aη

(x
ε
, ω
) [
em +∇w0

em

(x
ε

)]
dx, (117)

Dboundary
0 =

1

|K|

∫

K\Iε
K

[
ep +∇w0

ep

(x
ε

)]T
Aη

(x
ε
, ω
) [
em +∇w0

em

(x
ε

)]
dx.

We denote by Jε
K

the set of cells Qε
i that intersect the element K, i.e.

Jε
K =

⋃

Qε
i

⋂
K6=∅

Qε
i .

By construction, Iε
K

⊂ K ⊂ Jε
K
. Using that w0

ep ∈ H1(Q) and is Q-periodic, we write

∣∣∣Dboundary
0

∣∣∣ ≤ ‖Aη‖L∞

1

|K|

√∫

Jε
K
\Iε

K

[
ep +∇w0

ep

(x
ε

)]2
dx

√∫

Jε
K
\Iε

K

[
em +∇w0

em

(x
ε

)]2
dx

≤ C
εd

|K|
|∂K|
εd−1

√∫

Q

[
ep +∇w0

ep (y)
]2
dy

√∫

Q

[
em +∇w0

em (y)
]2
dy

≤ C
ε

h
. (118)

We next consider (117):

Dbulk
0 =

|K \ Iε
K
|

|K|
[
A⋆

η

]
mp

+
|Iε

K
|

|K| D
bulk

0 , (119)

with

D
bulk

0 =
[
A⋆

η

]
mp

− 1

|Iε
K
|

∫

Iε
K

[
ep +∇w0

ep

(x
ε

)]T
Aη

(x
ε
, ω
) [
em +∇w0

em

(x
ε

)]
dx.

Using the expansion (40) of A⋆
η, we write

D
bulk

0 =

∫

Q

[
ep +∇w0

ep (y)
]T
Aper(y)

[
em +∇w0

em(y)
]
dy

− 1

|Iε
K
|

∫

Iε
K

[
ep +∇w0

ep

(x
ε

)]T
Aper

(x
ε

) [
em +∇w0

em

(x
ε

)]
dx

+ η

(∫

Q

[
ep +∇w0

ep(y)
]T

E(A1(y, ·))
[
em +∇w0

em (y)
]
dy

− 1

|Iε
K
|

∫

Iε
K

[
ep +∇w0

ep

(x
ε

)]T
A1

(x
ε
, ω
) [
em +∇w0

em

(x
ε

)]
dx

)
+ η2C(η). (120)

The leading order term in (120) vanishes. We are hence left with

D
bulk

0 =
η

|Iε
K
|

∫

Iε
K

[
ep +∇w0

ep

(x
ε

)]T (
E

(
A1

(x
ε
, ·
))

−A1

(x
ε
, ω
)) [

em +∇w0
em

(x
ε

)]
dx+ η2C(η). (121)

Collecting (112), (114), (115), (116), (118), (119) and (121), together with the fact that
|K \ Iε

K
|

|K|
∣∣∣
[
A⋆

η

]
mp

∣∣∣ ≤ C
ε

h
, we

obtain

|ΛK

mp| ≤ C
ε

h
+

η

|Iε
K
|

∣∣∣∣∣

∫

Iε
K

[
ep +∇w0

ep

(x
ε

)]T (
E

(
A1

(x
ε
, ·
))

−A1

(x
ε
, ω
)) [

em +∇w0
em

(x
ε

)]
dx

∣∣∣∣∣+ η2C(η).

We set

λ(ω, h, ε) = max
K∈Th

max
1≤m,p≤d

∣∣∣∣∣
1

|Iε
K
|

∫

Iε
K

[
ep +∇w0

ep

(x
ε

)]T (
E

(
A1

(x
ε
, ·
))

−A1

(x
ε
, ω
)) [

em +∇w0
em

(x
ε

)]
dx

∣∣∣∣∣ .
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We thus have, for any K,

d∑

m,p=1

|ΛK

mp| ≤ C
( ε
h
+ ηλ(ω, h, ε) + η2C(η)

)
. Using (111), we thus obtain that

∣∣∣A⋆
η(vh, wh)− Ãh

ε,η(vh, wh)
∣∣∣ ≤ C

( ε
h
+ ηλ(ω, h, ε) + η2C(η)

)
‖vh‖H1(D)‖wh‖H1(D).

This concludes the proof of Lemma 13.

Proof of Lemma 14. Again, as for Lemma 13, this result relies on the expansion (76) of φε,Ki and the fact that ∇φ0,Ki

is constant on K.
Setting wh(x) =

∑
i

wi
hφ

0
i (x), we observe that

∣∣∣̃bh(wh)− b(wh)
∣∣∣ =

∣∣∣∣∣
∑

K

L∑

i=1

wi
h

∫

K

f(x)
(
φε,Ki (x)− φ0,Ki (x)

)
dx

∣∣∣∣∣ .

Using (76) and the fact that ∇φ0,Ki is constant on K, we obtain

L∑

i=1

wi
h

∫

K

f(x)
(
φε,Ki (x)− φ0,Ki (x)

)
dx =

d∑

p=1

ε

|K|

∫

K

f(x)
(
w0

ep

(x
ε

)
− ξpε (x)

)
dx

L∑

i=1

wi
h

∫

K

∂pφ
0,K
i . (122)

We have ∣∣∣∣∣

L∑

i=1

wi
h

∫

K

∂pφ
0,K
i

∣∣∣∣∣ =
∣∣∣∣
∫

K

∂pwh

∣∣∣∣ ≤
√
|K| ‖wh‖H1(K) (123)

and
∣∣∣∣
∫

K

f(x)
(
w0

ep

(x
ε

)
− ξpε (x)

)
dx

∣∣∣∣ ≤ ‖f‖L2(K)

(∥∥∥w0
ep

( ·
ε

)∥∥∥
L2(K)

+ ‖ξpε‖L2(K)

)

≤ ‖f‖L2(K)

√
|K|

(
‖w0

ep‖L∞(Rd) + ‖ξpε‖L∞(K)

)
. (124)

Recall now that, since Aper satisfies (34) (i.e. is Hölder continuous), we know that ξpε and w0
ep are both continuous,

and that w0
ep ∈ L∞(Rd). Using the maximum principle on (75), we write

‖ξpε‖L∞(K) ≤ ‖w0
ep‖L∞(∂S) ≤ ‖w0

ep‖L∞(Rd),

and we thus deduce from (124) that

∣∣∣∣
∫

K

f(x)
(
w0

ep

(x
ε

)
− ξpε (x)

)
dx

∣∣∣∣ ≤ C‖f‖L2(K)

√
|K| (125)

for a constant C independent of h and ε. Collecting (122), (123) and (125), we obtain

∣∣∣̃bh(wh)− b(wh)
∣∣∣ ≤ Cε‖f‖L2(D)‖wh‖H1(D).

This concludes the proof of Lemma 14.

Proof of Lemma 16. We first prove the uniform bound on λ. Recall that the field A1 is bounded almost surely and
almost everywhere. This implies that

∣∣∣∣∣
1

|Iε
K
|

∫

Iε
K

[
ep +∇w0

ep

(x
ε

)]T (
A1

(x
ε
, ω
)
− E

(
A1

(x
ε
, ·
))) [

em +∇w0
em

(x
ε

)]
dx

∣∣∣∣∣

≤ 2‖A1‖L∞

1

|Iε
K
|
∥∥∥ep +∇w0

ep

( ·
ε

)∥∥∥
L2(Iε

K
)

∥∥∥em +∇w0
em

( ·
ε

)∥∥∥
L2(Iε

K
)
.

34



Then, using the Q-periodicity of w0
ep , we obtain

∥∥∥ep +∇w0
ep

( ·
ε

)∥∥∥
2

L2(Iε
K
)
=

∑

Qε
i
⊂Iε

K

∫

Qε
i

[
ep +∇w0

ep

(x
ε

)]2
dx = |Iε

K
|
∥∥∥ep +∇w0

ep

∥∥∥
2

L2(Q)
.

We thus have

λ(ω, h, ε) ≤ 2‖A1‖L∞ max
1≤p,m≤d

[∥∥∥ep +∇w0
ep

∥∥∥
L2(Q)

∥∥em +∇w0
em

∥∥
L2(Q)

]
,

hence λ(ω, h, ε) is bounded almost surely by a deterministic constant independent of h and ε.

We next turn to (68). Rewrite (66) as

λ(ω, h, ε) = max
K

max
1≤m,p≤d

|Sm,p
K

| ,

with

Sm,p
K

:=
1

|Iε
K
|

∫

Iε
K

[
ep +∇w0

ep

(x
ε

)]T (
A1

(x
ε
, ω
)
− E(A1

(x
ε
, ·
)) [

em +∇w0
em

(x
ε

)]
dx.

Using the periodicity of the correctors w0
p and the specific form (33) of A1, we have

Sm,p
K

= τm,p 1

NK

∑

i;Qε
i
⊂Iε

K

Xi − E(X0)√
Var(X0)

(126)

with

τm,p =
√
Var(X0)

∫

Q

[
ep +∇w0

ep (y)
]T
Bper(y)

[
em +∇w0

em (y)
]
dy and NK = Card{i;Qε

i ⊂ Iε
K
}.

Thus, λ(ω, h, ε) reads
λ(ω, h, ε) = γmax

K

|Sε
K
(ω)| ,

where γ = max
1≤m,p≤d

τm,p and

Sε
K
(ω) =

1

NK

∑

i;Qε
i
⊂Iε

K

Xi − E(X0)√
Var(X0)

.

Introduce the probability density function ϕNK
of the random variable

√
NK|Sε

K
(ω)|, and FNK

(x) = P
(√
NK|Sε

K
| ≤ x

)
.

Using the assumption that each element K contains a number NK of cells of size ε that satisfies NK ≥ α

(
h

ε

)d

for

some α > 0, independent of K, h and ε, we write

E

(
α
hd

εd
λ2(·, h, ε)

γ2

)
≤ E

(
NK max

K

|Sε
K
|2
)
=

∫ ∞

0

x2
d

dx
P

(√
NK max

K

|Sε
K
| ≤ x

)
dx.

Since

P

(√
NK max

K

|Sε
K| ≤ x

)
=
[
P

(√
NK|Sε

K| ≤ x
)]N(h)

= [FNK
(x)]

N(h)
,

we deduce that

E

(
α
hd

εd
λ2(·, h, ε)

γ2

)
≤
∫ ∞

0

x2N(h)F
N(h)−1
NK

(x) ϕNK
(x) dx = e1 + e2 (127)

where

e1 =

∫ ch

0

x2N(h)F
N(h)−1
NK

(x) ϕNK
(x) dx and e2 =

∫ ∞

ch

x2N(h)F
N(h)−1
NK

(x) ϕNK
(x) dx,

with ch = 2 ln(N(h)). We now successively bound from above e1 and e2. First, integrating by part, and using that
0 ≤ FNK

≤ 1, we obtain

0 ≤ e1 =
[
x2F

N(h)
NK

(x)
]x=ch

x=0
−
∫ ch

0

2xF
N(h)
NK

(x) dx ≤ c2h. (128)
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Second, again using 0 ≤ FNK
≤ 1, we get

0 ≤ e2 ≤
∫ ∞

ch

x2N(h)ϕNK
(x) dx = N(h)E

(
1{√NK|Sε

K
|>ch}NK|Sε

K
|2
)
.

Using the Cauchy-Schwartz inequality, we obtain

e22 ≤ N(h)2 E
[
N2

K|Sε
K|4
]
P

(√
NK|Sε

K| > ch

)
.

Introduce Yi =
Xi − E(X0)√

Var(X0)
, so that Sε

K(ω) =
1

NK

∑

i

Yi(ω). Recall now that (Yi)i∈Zd is a sequence of independent

identically distributed variables, with mean zero. Any such variables satisfy the bounds

∀p ∈ N
⋆, ∃Cp > 0, ∀N ∈ N

⋆,

∣∣∣∣∣∣
E



(

1

N

N∑

i=1

Yi

)2p



∣∣∣∣∣∣
≤ Cp

Np
,

for a constant Cp that depends on p and the moments of Yi, up to order 2p. Recall that all moments of Yi are well
defined, as Yi is bounded almost surely. Thus

e22 ≤ C4N(h)2 P
(√

NK|Sε
K
| > ch

)
≤ C4N(h)2

[
P

(√
NKS

ε
K
> ch

)
+ P

(
−
√
NKS

ε
K
> ch

)]
. (129)

We now recall the Markov inequality: for any positive non-decreasing function ψ on R, and any real-valued random
variable Z, we have

∀b ∈ R, P(Z ≥ b) ≤ E(ψ(Z))

ψ(b)
.

We apply this inequality to the random variable Z(ω) =
√
NKS

ε
K
(ω), with ψ = exp(t·) for some t ≥ 0, and b = ch.

This yields

P(
√
NKS

ε
K ≥ ch) ≤ e−tchE

[
exp

(
t
√
NKS

ε
K

)]
≤ e−tch

[
E

(
exp

(
t√
NK

Y0

))]NK

, (130)

where we have used the fact that Sε
K

is a sum of i.i.d. variables. Using a Taylor expansion with respect to t, we see
that

E

[
exp

(
t√
NK

Y0

)]
= 1 +

t2

2NK

E(Y 2
0 ) +

1

6N
3/2
K

E

[
Y 3
0 exp(ξY0/

√
NK)

]
for some ξ ∈ (0, t).

Thus [
E

(
exp

(
t√
NK

Y0

))]NK

≤ exp

[
t2

2
E(Y 2

0 ) +
1

6
√
NK

E

(
Y 3
0 exp(ξY0/

√
NK)

)]
.

Using (130), taking t = 1, and using that e−ch =
1

N(h)2
, we obtain

P(
√
NKS

ε
K

≥ ch) ≤ 1

N(h)2
exp

[
1

2
E(Y 2

0 ) +
1

6
√
NK

E

(
Y 3
0 exp(ξY0/

√
NK)
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for some ξ ∈ (0, 1),

≤ 1

N(h)2
exp

[
1

2
E(Y 2

0 ) +
1

6
E
(
|Y0|3 exp(|Y0|)

)]
. (131)

Likewise, considering Z(ω) = −√
NKS

ε
K
(ω), we obtain a similar bound. Collecting (129), (131) and the fact that Y0 is

bounded almost surely, we have
e22 ≤ C, (132)

with C independent of h and ε. Collecting (127), (128) and (132), we get, for a constant C independent of h and ε,

E(λ(·, h, ε)2) ≤ C
εd

hd
[ln(N(h))]

2
.

This concludes the proof of Lemma 16.

36



Remark 19. The above proof shows that, when ε → 0, the random variable

(
h

ε

)d/2

λ(ω, h, ε) converges in law to

Gh(ω) = max
K

|GK(ω)|, where GK(ω) are i.i.d. Gaussian random variables. Precise results on the behavior of Gh(ω)

when h→ 0 (i.e., when the number of Gaussian random variables involved diverges) are given in e.g. [46].
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