Cours: Principes de Modelisation

Consider the SIR system

$$S' = -r\frac{SI}{N}, \quad I' = r\frac{SI}{N} - aI, \quad R' = aI. \tag{1}$$

with initial conditions $S(t = 0) = S_0 > 0$, $I(t = 0) = I_0 > 0$, R(t = 0) = 0.

- 1. Explain what S, I, R, N and the constants a and r represent in this model.
- 2. Show that the total population is constant.
- 3. Can the system (1) be reduced to a system with less equations and, if so, which one?
- 4. Determin the conditions on S_0 to have an epidemic outbreak.
- 5. Déetermine the maximum value of *I* during the epidemics.
- 6. determoine the number of individuals that are contaminated during the epidemics
- 7. How to change system (1) to take into account birth and death (supposing that new-borns don't have the disease but can catch it afterwards)?
- 8.a) Consider a human sexually transmissible disease that can be transmitted only thrrough heterosexial relations, has no incubation period, has a recovery tyme of two weeks and does not grant immunity. Propose a system of ordinary differential equations to model the population dynamics of healthy and infected individuals. You can denote α_{HF} the translmission rate from women to men and α_{FH} that of men to women.
- 8b) How should you modify the model if you have an incubation period of a week for the transmission from men to women but no incubation period in the other sense?
- 8c) Determine the basic reproduction number of the dynamics in question 8b) as a function of the model parameters.