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luis.almeida@cnrs.fr

October 2025

L.. Almeida Population Dynamics



General references :

James Murray, Mathematical Biology, 3rd edition (Springer 2003) volume 1 (basic
theory) and 2 (applications)

Odo Diekmann, Hans Heesterbeek, Tom Britton, Mathematical Tools for
Understanding Infectious Disease Dynamics, (Princeton University Press 2013).

L.. Almeida Population Dynamics



Introduction

Mathematics has proven to be very useful in life sciences and in recent years
mathematical modeling has been playing an increasingly important role in many
areas of ecology, biology and medicine. In this course, we will be studying a few
subjects among this very wast domain.
We will mostly concentrate on mathematical population dynamics and issues
linked to ways of using mathematical models to control the evolution of the
populations in order to satisfy particular objectives. For instance controlling the
population of a pest or the vector of a disease (like dengue) or optimize cancer
therapy.
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Introduction to Population dynamics

Introduction to Population
Dynamics
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Introduction to Population dynamics

Introduction to population dynamics

We focus on the dynamics of a population of individuals (men, animals, cells,
bacteria, ...) which we characterize by its density (or number) at time t � 0
denoted N(t).

N(t) : number of individuals at time t � 0.

Goal : knowing the density (or number) at time t = 0, denoted N0, try to predict
the population dynamics for future times t � 0 depending on some observed
phenomena.
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Introduction to Population dynamics Malthus model

Population dynamics : Malthus

One of the first important models in population dynamics was proposed by
Thomas Malthus (English economist 1766-1834) in 1798 in his book “An essay on

the principle of population”.
In this model, only two phenomena are taken into account :

birth, with a rate b > 0 (mean number of individuals generated by one
individual by unit of time) : for N individuals, during a time interval dt, the
number of births is bNdt ;

death, with a rate d > 0.

N(t + dt) = N(t) + bN(t)dt � dN(t)dt.

Dividing by dt,
N(t + dt)� N(t)

dt
= bN(t)� dN(t).

Taking the limit dt ! 0, we get

N
0(t) = bN(t)� dN(t).
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Introduction to Population dynamics Malthus model

Population dynamics : Malthus

Malthus model (1798)

N
0(t) = bN(t)� dN(t), N(0) = N0.

This is a first order ODE with constant coe�cients.
The solution to this Cauchy problem is given by

N(t) = N0e
(b�d)t.

This very simple model allows us to observe two phenomena :

If b > d, we have an exponential growth of the size of the population
(sometimes call Malthusian growth).

If b < d, we have extinction of the population.

r = b � d is called the growth rate.
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Introduction to Population dynamics Malthus model

Population dynamics : Malthus

This model is a too simple to be realistic. Nevertheless, looking for long time scale
of the world human population we have a reasonable fit :
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Introduction to Population dynamics Verhulst model

Population dynamics : Verhulst

In 1838, Pierre-François Verhulst (Belgian mathematician, 1804-1849) refined the
Malthus model by proposing a growth rate depending on the size of the
population :

When N is small, same growth rate as for the Malthus model ;

When the size of the population increases, the growth rate decreases until it
vanishes when the size reaches an environmental capacity, denoted K. The
growth rate becomes negative beyond that value.

Verhulst model (1838)

N
0(t) = r

⇣
1 � N(t)

K

⌘
N(t), N(0) = N0.

r : intrinsic growth rate ; K : environmental capacity.
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Introduction to Population dynamics Verhulst model

Population dynamics : Verhulst

Verhulst model

N
0(t) = r

⇣
1 � N(t)

K

⌘
N(t), N(0) = N0.

We notice that :

If N 2 [0, K], then (1 � N

K
)N � 0, thus N

0 � 0 : The size of the population
increases.

If N > K, then (1 � N

K
)N < 0, thus N

0 < 0 : The size of the population
decreases.

As a consequence N is a bounded function : If N0 � 0, 0  N  max{K, N0}.
Moreover, it seems that the solution always converges to the stationary state K.

L.. Almeida Population Dynamics



Introduction to Population dynamics Verhulst model

Population dynamics : Verhulst

Verhulst model

N
0(t) = r

⇣
1 � N(t)

K

⌘
N(t), N(0) = N0.

This Cauchy problem can actually be solved explicitly by noticing that

N
0(t)

N(t)(1 � N(t)
K

)
=

N
0(t)

N(t)
+

N
0(t)

K � N(t)
= r.

Thus,
d

dt

⇣
ln(N(t))� ln(K � N(t))

⌘
= r.

Integrating in time we obtain,

ln
✓

N(t)
K � N(t)

◆
= rt + ln

✓
N0

K � N0

◆
.
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Introduction to Population dynamics Verhulst model

Population dynamics : Verhulst

After calculation, it gives

N(t) =
KN0

(K � N0)e�rt + N0
.

If N0 = 0, then for all t > 0, N(t) = 0 (no autogeneration of individuals).

If N0 > 0, then lim
t!+•

N(t) = K.

Verhulst model

N
0(t) = r

⇣
1 � N(t)

K

⌘
N(t), N(0) = N0.

We remark that N(t) = 0 and N(t) = K are constant solutions to this ODE.
Such solutions are called equilibria.
Except for the case where the density is initially 0, all solutions converge to the
stationary state N(t) = K

We say that the steady state N = K is stable ) monostable case.
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Introduction to Population dynamics Verhulst model

Population dynamics : equilibria

Numerical example of solutions for K = 1, r = 1 and for 3 values of N0 : N0 = 0
(red), N0 = 0.1 (blue), N0 = 1.5 (green).
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Introduction to Population dynamics Allee e↵ect

Allee e↵ect, bistability

In the case of, for instance, small populations with sexual reproduction other
phenomena should be taken into account : Allee e↵ect.

There is a negative e↵ect on growth when the population density is too low. This
may be due, for example, to the scarcity e↵ect, the consanguinity e↵ect, the
di�culty of meeting a partner for populations with low density, . . .

We choose a growth rate under the form (1 � N)(N � q), with q 2 (0, 1). It is :
negative if 0 < N < q,

positive if q < N < 1,
negative if 1 < N.

Denoting N(t) population density at time t, the model with Allee e↵ect is :

N
0(t) = (1 � N(t))(N(t)� q)N(t), q 2]0, 1[, N(0) = N0.
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Introduction to Population dynamics Allee e↵ect

Allee e↵ect

N
0(t) = (1 � N(t))(N(t)� q)N(t), q 2]0, 1[, N(0) = N0.

Equilibria. We look for N such that

(1 � N)(N � q)N = 0.

Thus, there are 3 equilibria : 0, q and 1.
Stability. If N 2]0, q[, N

0 < 0 thus N decreases ) 0 is stable.
If N 2]q, 1[, N

0 > 0, thus N increases and if N > 1, N
0 < 0

) 1 is stable.
Thus, q is unstable.
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Introduction to Population dynamics Allee e↵ect

Allee e↵ect

Allee e↵ect : population density should be higher than a threshold to avoid
extinction.
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Example of a numerical simulation for the equation y
0 = y(1 � y)(y � 0.5) for di↵erent

initial data ranging from 0 to 1.2.
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Introduction to Population dynamics Allee e↵ect

Positivity and Monotonicity

Positivity. By uniqueness, if N0 > 0 then for any t > 0, N(t) > 0.
Monotonicity.Let N0 > 0. Solutions are monotonous : if R(N0) > 0, then
d

dt
N(t) � 0 for any t � 0 ; if R(N0) < 0, then d

dt
N(t)  0 for any t � 0. (Proof

left as an exercise)
In higher dimensions we can have a lot richer behaviors as we saw yesterday for
the Predator-Prey model.
In some cases, like for Cooperative or Competitive systems, even in higher
dimensions we can save some form of monotonicity in the sense of comparison
between di↵erent solutions (in an appropriate partial order).
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Introduction to Population dynamics Allee e↵ect

Predator-Prey model of Lotka-Volterra

In 1920, Alfred J. Lotka and Vito Volterra proposed a model to describe the
dynamics of two species in interaction : preys and predators. Their model is based
on several assumptions :

The prey population finds ample food at all times.

The food supply of the predator population depends entirely on the size of
the prey population.

The rate of change of populations is proportional to its size.

During the process, the environment does not change in favor of one species,
and genetic adaptation is inconsequential.

Predators have limitless appetite.
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Introduction to Population dynamics Allee e↵ect

Predator-Prey model of Lotka-Volterra

Denoting n the density of preys and p the density of predators. The system is

n
0 = n( a|{z}

birth rate

� bp
|{z}

predation

),

p
0 = p( cn|{z}

predation

� d|{z}
death rate

).

Equilibria. We look for (n, p) solution to

0 = n(a � bp), 0 = p(cn � d).

There are two couples of solutions (0, 0) and ( d

c
, a

b
).
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Introduction to Population dynamics Allee e↵ect

Predator-Prey model of Lotka-Volterra

For the Lotka-Volterra system, there is an energy (conserved quantity). Indeed, we
notice that

cn � d

n
n
0(t) =

a � bp

p
p
0(t).

Integrating in time, we deduce that

cn(t)� d ln(n(t)) = a ln(p(t))� bp(t) + Cste.

As a consequence the quantity

H(t) = cn(t) + bp(t)� d ln(n(t))� a ln(p(t)),

is constant.
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Introduction to Population dynamics Allee e↵ect

Predator-Prey model of Lotka-Volterra

As a consequence the trajectories in the phase plane (n, p) of the solutions belong
to the level sets of the energy H.
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The level sets of H are closed (see figure on the left and, the solutions are
periodic in time (see figure on the right).
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Dynamical system in biology

Dynamical System in Biology
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Dynamical system in biology Existence and uniqueness theory

Cauchy problem

Many problems in biology may be modeled by a system of di↵erential equations.

Cauchy problem

Let T > 0, f : [0, T]⇥ Rd ! Rd, y0 2 Rd.
A Cauchy problem problem to give a di↵erential system and an initial data :

(
y
0(t) = f (t, y(t)), t 2 [0, T],

y(0) = y0.
(C)

When the function f does not depend explicitely on time, the system is called
autonomous.

A di↵erential equation of order n may be rewritten into a system of order 1 in
dimension n by using the variable Y(t) = (y(t), y

0(t), . . . , y
(n�1)(t)).
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Dynamical system in biology Existence and uniqueness theory

Cauchy problem : linear case

Let A 2 Mn(R), B : [0, T] ! Rn, it is easy to solve the linear problem

y
0(t) = Ay(t) + B(t), y(0) = y0.

The solution is given by

y(t) = exp(tA)y0 +
Z

t

0
exp((t � s)A)B(s) ds,

where we recall that the exponential of a matrix is given by

exp(A) =
•

Â
k=0

1
k!

A
k.

If the matrix A is diagonalizable : 9 P 2 GLn(R) such that P
�1

AP = D, then

exp(tA) = P exp(tD)P
�1 = P

0

BBBB@

e
tl1 0 . . . 0

0 e
tl2

. . .
...

. . .
. . . 0

0 0 e
tln

1

CCCCA
P
�1.
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Dynamical system in biology Existence and uniqueness theory

Cauchy problem : existence theory

Definition

We say that (I, y) is a local solution of (C) i↵ I ⇢ [0, T] is an interval
containing 0 and y : I ! Rd is di↵erentiable and satisfies (C).

We say that (J, z) is an extension of (I, y) i↵ I ⇢ J and
8 t 2 I, y(t) = z(t).

We say that (I, y) is a maximal solution if we cannot extend it to a strictly
bigger interval.

If I = [0, T], we say that the solution is global in [0, T].

Cauchy-Lipschitz theorem

Assume f is continuous on [0, T]⇥ Rd, locally Lipschitz continuous with respect
to its second variable uniformly with respect to t. Then, the Cauchy problem (C)
admits an unique maximal solution.
Moreover, if we denote [0, b) the interval of existence of this maximal solution, if
b < T, then limt!b� ky(t)k = +•.
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Dynamical system in biology Existence and uniqueness theory

Cauchy problem : existence theory

Cauchy-Lipschitz theorem (global vesion)

Assume f is continuous on [0, T]⇥ Rd and globally Lipschitz continuous with
respect to its second variable uniformly with respect to t. Then, the Cauchy
problem (C) admits an unique global solution.

Remark :

f locally Lipschitz continuous with respect to its second variable uniformly
with respect to t :

8 y 2 Rd, 9Vy ⇢ Rd(y 2 Vy), 9 Ly > 0, 8 x, x̃ 2 Vy, 8 t 2 [0, T],
k f (t, x)� f (t, x̃)k  Lykx � x̃k.

f globally Lipschitz continuous with respect to its second variable uniformly
with respect to t :

9 L > 0, 8 x, x̃ 2 Rd, 8 t 2 [0, T], k f (t, x)� f (t, x̃)k  Lkx � x̃k.

L.. Almeida Population Dynamics



Dynamical system in biology Existence and uniqueness theory

Cauchy problem : examples

Some important examples :

Consider the Cauchy problem

y
0 = y

2, y(0) = y0 > 0.

The solution is given by y(t) =
y0

1 � y0t
.

It exists only on [0, 1
y0
) and blows up at time 1

y0
.

Consider the Cauchy problem

y
0 =

p
y, y(0) = 0.

Then, y(t) = t
2

4 and y(t) = 0 are two solutions for this problem. Hence there
is no uniqueness. Indeed, the locally Lipschitz assumption in the
Cauchy-Lipschitz theorem is not satisfied.
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Dynamical system in biology Equilibria and stability

Equilibrium

In this section we focus on autonomous systems and we assume to have existence
of a global solution on [0,+•).

Let f : Rd ! Rd, f 2 C
1(Rd),

(
y
0(t) = f (y(t)), t 2 [0,+•),

y(0) = y0 2 Rd.
(C0)

We call flow and we denote f(t, y0) a solution to this problem.
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Dynamical system in biology Equilibria and stability

Equilibrium

For the above autonomous system, we introduce the following definitions :

Definitions

An equilibrium is a stationary solution, i.e. y 2 Rd such that f (y) = 0.
An equilibrium is stable if 8 # > 0, 9 d > 0 such that 8 y 2 B(y, d),
f(t, y) 2 B(y, #).

An equilibrium is asymptotically stable if it is stable and 9 h > 0 such that
8 y 2 B(y, h), kf(t, y)� yk !

t!+•
0.

An equilibrium is globally asymptotically stable (GAS) if it is stable and the
above implication is true for all h > 0.
An equilibrium is unstable if it is not stable.
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Dynamical system in biology Equilibria and stability

Stability

For general system y
0 = f (y), with y an equilibrium. We use a Taylor expansion

f (y) = f (y) + D f (y) · (y � y) + o(ky � yk)
= D f (y) · (y � y) + o(ky � yk).

We deduce some stability results on the non-linear problem y
0 = f (y) from a

stability analysis on the linear problem z
0 = D f (y)z.

Proposition (Lyapunov stability Theorem)

Let us consider the Cauchy problem (C0), let y be an equilibrium ( f (y) = 0).
Denoting (l1, . . . , lk) (k  d) the eigenvalues of D f (y). Then the equilibrium is
(linearly) asymptotically stable if Re(l) < 0 for all eigenvalues l 2 Sp(D f (y)).
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Dynamical system in biology Examples with application in biology

Examples in one dimension

In one dimension, for the problem

y
0 = f (y), y(0) = y0.

The equilibria are the roots of f : y 2 R such that f (y) = 0.
The linear stability is given by the sign of the derivative :
If f

0(y) < 0, then y is linearly asymptotically stable ;
If f

0(y) > 0, then y is linearly unstable.

Let us come back to the Verhulst model

N
0(t) = rN(1 � N

K
),

N(0) = N0.

The equilibria are 0 and K. We notice that f
0(0) > 0 and f

0(K) < 0. Then 0 is
linearly unstable and K is linearly asymptotically stable.
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Dynamical system in biology Examples with application in biology

Examples : Allee e↵ect

For the model with Allee e↵ect

N
0(t) = N(1 � N)(N � q), 0 < q < 1,

N(0) = N0.

The equilibria are 0, q and 1. We notice that f
0(0) < 0, f

0(q) > 0 and f
0(K) < 0.

Then q is linearly unstable and 0 and K are linearly asymptotically stable.
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Dynamical system in biology Examples with application in biology

Examples : Arbovirus vector population (Tiger mosquito invasion of Europe)
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Dynamical system in biology Examples with application in biology

Examples : Mosquito life cycle

Aquatic phase :
egg (few days to several months)
larvae (3 days to several weeks)
pupa (1-3 days)
Adult phase (⇠ 1 month)
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Dynamical system in biology Examples with application in biology

Examples : Mosquito life cycle

The life cycle for mosquitoes may be represented as follows

bE

E

Eggs

dE

tE

L

Larvae

dL

tL

P

Pupa

dP

ntP
F

Females

dF

(1 � n)tP M

Males

dM

bE(M) birth rate (per female) ;

tE, tL, tP transition rates ; n sex ratio ;

dE, dL, dP, dM, dF death rates.
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Dynamical system in biology Examples with application in biology

Mosquito life cycle

d

dt
E = bE(M)F

| {z }
birth

✓
1 � E

K

◆

| {z }
intraspecific competition

� tEE|{z}
transition to larvae

� dEE|{z}
death

,

d

dt
L = tEE �

�
cL|{z}

competition

+ tL|{z}
transition

+ dL|{z}
death

�
L,

d

dt
P = tLL � (tP + dP)P,

d

dt
F = ntPP � dFF,

d

dt
M = (1 � n)tPP � dM M.
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Dynamical system in biology Examples with application in biology

Targeting sexual reproduction : SIT
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Dynamical system in biology Examples with application in biology

Targeting sexual reproduction : SIT

Sterile Insect Technique (SIT) : releases of sterilized male mosquitoes. The release
function is denoted u.
Introduce a new compartment for sterilized males, denoted Ms.
Probability for a female to meet a non-sterilized male depends on a seeking
e�ciency parameter, a, and a partner preference parameter, g.

d

dt
E = bEF

aM

1 + a(M + gMs)
(1 � E

K
)� (tE + dE)E

d

dt
L = tEE � (cL + tL + dL)L

d

dt
P = tLL � (tP + dP)P

d

dt
F = ntPP � dFF

d

dt
M = (1 � n)tPP � dM M

d

dt
Ms = u � ds Ms.
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Dynamical system in biology Examples with application in biology

SIT as a general technique against pests

Widely used since the 60’s and combined with other control methods, the SIT has
been successful in controlling various insect pests, including

fruit flies (Mediterranean fruit fly, Mexican fruit fly, oriental fruit fly, melon
fly) ;

tsetse fly ;

screw worm fly (Cochliomyia hominivorax)

moths (codling moth, pink bollworm, false codling moth, cactus moth, and
the Australian painted apple moth)

mosquitoes.

With good ”return on investment” according to FAO and IAEA.
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Mathematical epidemiology

Mathematical Epidemiology
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Mathematical epidemiology Introduction

Some historical facts

In the 18th century, London was strongly a↵ected by an epidemic of
smallpox. A controversial solution was variolation, which involved contacting
individuals with a pustule removed from a patient. This killed the individual
or gave immunity for life. Daniel Bernoulli (Swiss mathematician, 1700-1782)
proposes in 1766 a mathematical model describing this epidemic and
determines whether or not to practice variolation. He proved that by
inoculating part of the population, life expectancy is considerably increased.

In 1911, Sir Ronald Ross (Nobel prize in medicine 1902, 1857-1932) presents
the first mathematical model of malaria transmission, which highlights a
threshold phenomenon. This is one of the first compartmental models. He is
considered one of the founding fathers of mathematical epidemiology.

In 1927, W.O. Kermarck & A.G. Mac Kendrick use the ideas of R. Ross and
propose the SIR model to study the transmission of infection between
humans.
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Mathematical epidemiology SIR model

SIR model

In 1927, W.O. Kermack & A. G. McKendrick introduce the so-called
compartmental models : population is divided into susceptible individuals (S),
infected individuals (I), and removed/recovered individuals (R).

S(t)
r

I(t)
a

R(t)

where r is the transmission rate, a is the removal rate.

The SIR system can be written as

8
>>>>>><

>>>>>>:

S
0 = �r

SI

N

I
0 = r

SI

N
� aI

R
0 = aI

N = S + I + R.

complemented by initial data

S(0) = S0, I(0) = I0, R(0) = 0.
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Mathematical epidemiology SIR model

SIR model

Conservation.

We first observe that N = S + I + R is a constant. Indeed, S
0 + I

0 + R
0 = 0.

Equilibria.

If we calculate the equilibria, we get

8
>>>><

>>>>:

0 = �r
S I

N

0 = r
S I

N
� aI

0 = aI

Looking to the last equation, it gives I = 0, which is the only solution. Thus, we
expect that the number of infected should converge to 0 to reach the equilibrium.

However, it does not give any information about the number of individuals which
has been infected (corresponding to the one in the R compartment at final time).
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Mathematical epidemiology SIR model

SIR model

8
>><

>>:

S
0 = �r

SI

N

I
0 = r

SI

N
� aI

R
0 = aI

Question : Knowing r, a, S0 and I0, can we know if an epidemic will occur or
not ?

We have I
0(0) = I0(r

S0
N
� a).

If rS0 < aN, then I
0(0) < 0 and since S

0  0, we always have I
0(t) < 0.

Thus, the number of infected I will diminish until extinction.

If rS0 > aN, then I
0(0) > 0. The number of infected individuals will start by

increasing.

We recover the threshold phenomenon, first noticed by Sir Ronald Ross. We

denote R0 =
rS0
aN

, called basic reproduction number.
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Mathematical epidemiology SIR model

SIR model : numerical observation

Example : In a population where 90% of individuals are susceptibles and 10% are
infected (S0 = 0.9, I0 = 0.1).

Case : r = 4, a = 2, thus R0 = 1.8

S
I
R
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0.6
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0.9

0 1 2 3 4 5 6 7 8 9 10

temps

There is a peak of epidemic. At the final time, more than 80% of the population
has been infected.
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SIR model : numerical observation

Example : In a population where 90% of individuals are susceptibles and 10% are
infected (S0 = 0.9, I0 = 0.1).

Case : r = 2, a = 5, thus R0 = 0.36

S
I
R
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temps

There is no epidemic. Less than 15% of the population has been infected.
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SIR model

This model has been used by Kermack and McKendrick in their seminal paper in
1927 to match the data of the Bombay plague epidemic of 1905-1906. The black
dots correspond to the data, the curve is given by the theory.
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SIR model

Actually, it is possible to solve the SIR model. Indeed, we first remark from the
model that

dI

dS
= � rSI � aIN

rSI
= �1 +

aN

rS
.

Then, we have

I + S � aN

r
ln(S) = constant = I0 + S0 �

aN

r
ln(S0).

Thus, recalling R0 = rS0
aN

, and N =
S0 + I0, we get

I(S) = N � S +
S0
R0

ln(S/S0).

The trajectories are given in the graph
opposite.
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SIR model

If an epidemic occurs (i.e. R0 = rS0
aN

> 1), we would like to know how severe it will
be. Let us denote Imax the maximum of I. From the equation, I

0 = ( r

N
S � a)I,

we deduce that when I = Imax we have r

N
S = a. Hence, S = S0

R0
and

Imax = I0 + S0 �
S0
R0

(1 + ln(R0)).

Moreover, I is an increasing function with respect to S on (0, S0
R0
). At equilibrium

we have I = 0, hence it is expected that limt!+• I(t) = 0. It vanishes for

0 = N � S• +
S0
R0

ln(S•/S0).

This nonlinear equation allows to compute the value S• of susceptibles which
have not been infected at the end of the epidemic.
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SIR model

We can proceed in the same way for the equation for R. From the system
equation, we have

dS

dR
= �R0S

S0
.

Then, integrating we get

ln
S

S0
= �R0

S0
R.

When t ! +•, we deduce using that S• + R• = N

ln
S•
S0

= �R0
S0

R• = �R0
S0

(N � S•).

We recover the same nonlinear equation for S•. We deduce R• = N � S•, which
is the total number of susceptibles who catch the disease in the course of the
epidemic.

Numerical value

Assuming that N ⇠ S0, meaning that the whole population is susceptible to catch
the disease, we can compute numerically the value S•

S0
for di↵erent value of R0 :

for R0 = 2, we find S•
S0

⇠ 0.2, i.e. 80% of the population has been infected.
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SIR model : summary

We have the following properties. Let

R0 =
rS0
aN

.

We denote by (S, I) a solution to the SIR model. The total population is denoted
N and is constant.

If R0  1, then S and I are decreasing and I tends to 0 at infinity : No
epidemic.

If R0 > 1, there is an epidemic : I reachs a maximum value Imax before going
to 0 at infinity.
The fonction S is a decreasing function and its limit S• can be computed by
solving the nonlinear equation :

0 = N � S• +
S0
R0

ln(S•/S0).
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Basic reproduction number R0

The basic reproduction number, R0, is defined as the expected number of
secondary cases produced by a single (typical) infection in a completely
susceptible population.
This quantity defines the epidemic threshold of a particular infection : if R0 < 1,
the infection will die out ; if R0 > 1, the infection will be able to spread, there is
an outbreak risk.

Some examples :
Disease R0 Disease R0

Measles (Rougeole) 12-18 Coqueluche 12-17
Polio 5-7 HIV/AIDS 2-5
SRAS 1 2-5 H1N1 (Grippe A) 2 2-4

Influenza 3 2-3 Coronavirus 4 2.2 - 3.5
Ebola 5 1.5-2.5

1. (outbreak in China 2003)
2. (outbreak 2009)
3. (grippe espagnole 1918)
4. (China 2020)
5. (West Africa 2014)
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Basic reproduction number R0

The basic reproduction number R0 is a dimensionless number

R0 µ
✓
infection

contact

◆
·
⇣contact

time

⌘
·
✓

time

infection

◆

In a simple model like SIR, the basic reproduction number is easy to compute.
Indeed, the transmission rate is r, the mean infection time is 1

a
.

It becomes more tricky when we are considering infection with multiple types of
infected individuals, or vector-borne disease, or sexually transmitted infections, ...

Remark : Denoting i(t) the number of infected individuals at time t. If a fraction
a leaves the infected compartment by unit of time, then i

0(t) = �ai(t), implying
i(t) = e

�at
i(0). Then, the mean infection time is given by

R •
0 e

�at
dt = 1

a
.
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Basic reproduction number R0 : example on the SIR model

Recall the SIR model

S
0 = �r

SI

N
, I

0 = r
SI

N
� aI, R

0 = aI, N = S + I + R (constant).

The equilibrium without infection is given by (S, I, R) = (S0, 0, 0) where S0 is the
(constant) number of individuals. Let us study the stability of this equilibrium. We
linearize around this equilibrium, the linearized variables (s, i, r) verify

s
0 = �r

S0
N

i, i
0 = r

S0
N

i � ai, r
0 = ai.

Hence the Jacobian is given by J =

0

@
0 �rS0/N 0
0 rS0/N � a 0
0 a 0

1

A .

The eigenvalues of this matrix are {0, r
S0
N
� a}. We deduce :

The steady state without infection is unstable if rS0 > aN, i.e. R0 > 1.

Hence, the basic reproduction number gives information on the stability of the

equilibrium without infection.
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Basic reproduction number R0

To avoid outbreak, we may try to diminish the value of R0. In the SIR model, we
have

R0 =
rS0
aN

.

Then, to diminish R0, one may :

diminish r : quarantine, improve hygiene conditions to avoid contact with
germs, ... ;

increase a : improve treatments ;

diminish S0/N : vaccination campaign. We consider that to stop an

outbreak, one needs to vaccine a proportion
⇣

1 � 1
R0

⌘
of the population.

Indeed if we denote p the fraction of susceptible which are vaccinated, then
we replace S0 by (1 � p)S0 in the previous SIR model. As a consequence the
basic reproduction number for the model with vaccination is (1 � p)R0. And
we have (1 � p)R0 < 1 i↵ p > 1 � 1

R0
.

Example : for H1N1, R0 is between 2 and 4. Thus, one needs to vaccinate

between 50 and 75 % of the population.
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Computation of the basic reproduction number R0

Assume that we have a system in which there are multiple discrete types of
infected individuals (e.g., mosquitoes and humans ; women and men ; or humans,
dogs, and chicken). We define the next generation matrix as the square matrix G

in which the ijth element of G, gij, is the expected number of secondary
infections of type i caused by a single infected individual of type j, again assuming
that the population of type i is entirely susceptible.
Then, the basic reproduction number is given by the spectral radius of G

R0 = r(G) = sup{|l|, l 2 Sp (G)}.

The next generation matrix has a number of desirable properties from a
mathematical standpoint. In particular, it is a non-negative matrix and, as such, it
is guaranteed that there will be a single, unique eigenvalue which is positive, real,
and strictly greater than all the others. This is R0.
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Computation of the basic reproduction number R0

A method to compute the basic reproduction number has been proposed in
[Diekmann et al] 6. We assume to have a system of ODE describing the dynamics
of an infection :

1 Determine the variables describing the infected states.

2 Determine the equilibrium without infection and linearize around it only the
system for infected states (i.e. compute the Jacobian matrix J).

3 Split the Jacobian matrix J = T + S where T is the transmission matrix
(birth of infected individuals) and S is the transition matrix (change of state).

4 We have R0 = r(�TS�1).

Then, we have the fundamental result :

Theorem

Assume that the transmission matrix T is nonnegative, S is nonnegative outside
the diagonal with sup{ Re(l), l 2 Sp(S)} < 0.
Then, the equilibrium without infection is linearly stable i↵ R0  1.

6. O. Diekmann, J.A. Heersterbeek, J.A.J. Metz, J. Mathematical Biol. 1990
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SIS model

The SIR model takes into account the fact that infected people are immune once
they are cured. This may not be the case for some diseases for example for
bacterial diseases like staphylococcus aureus, streptococcus pyogenes, chlamydia

pneumoniae, ... In this situation, we use the so-called SIS model, with two
compartment :

susceptible S(t) ;

infected I(t) ;

total population N = S(t) + I(t).

We assume that the birth rate and the death rate is the same and denoted µ. This
dynamics is schematized with the following simple graph

µ
S(t)

r

µ

I(t)
a

µ

where r is the transmission rate, a is the cure rate.
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SIS model

The corresponding ODE system is

S
0 = µN

|{z}
birth

� r
SI

N|{z}
infection

� µS
|{z}
death

+ aI|{z}
cure

I
0 = r

SI

N|{z}
infection

� µI
|{z}
death

� aI|{z}
cure

.

The system is completed with some initial data (S0, I0).
As above, we have S

0 + I
0 = 0, then the total population is constant

N = S0 + I0. Thus we can reduce the system to

S = N � I

I
0 = (r � µ � a � r

N
I)I.
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SIS model

Let us consider
I
0 = (r � µ � a � r

N
I)I, I(0) = I0.

This is a logistic growth model. We have already seen this model. There are two
equilibria {0, N

r
(r � µ � a)}. If we denote

R0 =
r

µ + a
,

then we can distinguish two cases :

If R0 < 1, then both equilibria are nonpositive, thus limt!+• I(t) = 0. The
disease will go to extinction.

If R0 > 1, then there is a positive equilibria which is attractive. Thus
limt!+• I(t) = N

r
(r � µ � a) and limt!+• S(t) = N

r
(µ + a). We say that

the disease is endemic (there is a non disease-free stable equilibria).
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SEIR model

We add a compartment to take into account an incubation period during which
individuals are infected but not infectious. The new compartment is denoted E

(exposed).

µ
S(t)

µ

b
E(t)

µ

a
I(t)

µ

g
R(t)

µ

The parameters are :

µ death rate which is assumed to be equal to the birth rate (such that the
total population is constant) ;

b rate of infection ;

a transition rate from exposed to infected ;

g recovery rate.
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SEIR model

The corresponding system of ODE is
8
>>>>>><

>>>>>>:

S
0 = µN � µS � b

I

N
S

E
0 = b

I

N
S � (µ + a)E

I
0 = aE � (µ + g)I

R
0 = gI � µR,

where N = S + E + I + R is the total number of individuals, which is constant.
We follow the strategy enumerate above

1 There are two infected states : E, I, two non infected states : S, R.
2 Equilibrium without infection is S = N, E = I = R = 0. The linearized

system for infected states around the equilibrium is

E
0(t) = bI � (µ + a)E, I

0(t) = aE � (µ + g)I.

3 Transmission and transition matrices

T =

✓
0 b
0 0

◆
, S =

✓
�(µ + a) 0

a �(µ + g)

◆
.
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SEIR model

Finally the basic reproduction number for the SEIR model is given by

R0 = r(�TS�1) =
ab

(g + µ)(a + µ)
.

Indeed,

�S�1 =

 1
a+µ 0

a

(µ+g)(a+µ)
1

µ+g

!
.

Then, we can compute

�TS�1 =

 
ab

(a+µ)(g+µ)
b

µ+g

0 0

!
.

It is a triangular matrix. Hence its eigenvalues are given in the diagonal.
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Ross-Macdonald model

Let us consider a model based on the work of Sir Ronald Ross (Nobel prize in
1902) improved later by George Macdonald (1952) for malaria. It is a vector-borne
disease, i.e. transmitted by a vector : mosquitoes (mainly of genus Anopheles).
The dynamical system includes the mosquito dynamics and its interaction with
humans.

H Sh

gh

b1

Ih Human

V µv

Sv

b2

µv

Iv

µv

Mosquito

Similar models are used for the transmission of Dengue, Chikungunya, Zika, ...
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Ross-Macdonald model

The modelling assumptions are :

Two populations : H (human), V (vector of the disease = mosquito).

SIS model for the disease for H and V, where we assume that the total
population of humans and vectors is constant.

Parameters :
b1, number of bites of an infected mosquito that are e�cient in producing an
infection (if the victim is a susceptiblre human) per unit of time =
= proportion of bites that are e�cient in producing an infection (if the victim
is a susceptiblre human) x total number of bites of an infected mosquito per
unit of time.
b2 number of bytes of a susceptible mosquito that are e�cient in making it
become infected (in case it bites an infected host) =
= proportion of bites giving rise to an infection of a suceptible mosquito (in
case the human is infected) x number of bytes of a susceptible mosquito per
unit of time ;
g recovery rate for humans ;
µm death and birth rate for mosquitoes (assumed to be the same).
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Ross-Macdonald model

The corresponding system of ODE is

dSh

dt
= � b1

IvSh

H
+ gIh , H = Sh + Ih ,

dIh

dt
= b1

IvSh

H
� gIh ,

dSv

dt
= � b2

IhSv

H
+ µV � µSv , V = Sv + Iv ,

dIv

dt
= b2

IhSv

H
� µIv .

It is clear that the number of humans, H, and of mosquitoes, V, are constant.
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Ross-Macdonald model

We are now in position to compute the basic reproduction number for this system.

1 There are two infected states : Ih, Iv.

2 Equilibrium without infection : (Sh, Ih, Sv, Iv) = (H, 0, V, 0).
Linearization around this equilibrium for the infected states

dIh

dt
= b1 Iv � gIh,

dIv

dt
= b2

V

H
Ih � µIv.

3 Transmission and transition matrices

T =

✓
0 b1

b2
V

H
0

◆
S =

✓
�g 0
0 �µ

◆
.

4 Computation of R0

TS�1 =

 
0 b1

µ
b2V

Hg 0

!
.

The spectral radius for this latter matrix is then R0 =

s
b1b2V

gµH
.
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A model for dengue transmission

Finally, we consider a model for dengue transmission 7 This model is based on the
following modeling assumption :

The human population is assumed to be constant, i.e. the death rate for
human is the same as the birth rate.

Dengue is a SEI disease for mosquitoes.

Dengue is a SIR disease for human.

We use the following notations :

V, Sm, Em, Im denote the total number of mosquitoes, the number of
susceptible mosquitoes, the number of mosquitoes exposed to the disease,
the number of infected mosquitoes, respectively. We have the relation

V = Sm + Em + Im .

H, Sh, Ih, Rh denote the total number of human, the number of susceptible
human, the number of infected human, the number of recovered humans,
respectively. We have H = Sh + Ih + Rh .

7. From H. Hughes, N. F. Britton, Modelling the use of Wolbachia to control dengue fever
transmission, Bull. Math. Biol. (2013).
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A model for dengue transmission

With these considerations, the model is

dV

dt
= bV(1 � V

K
)� dV,

dEm

dt
= ap(V � Em � Im)

Ih

H
� eEm � dEm,

dIm

dt
= eEm � dIm,

dSh

dt
= µH � aqIm

Sh

H
� µSh,

dIh

dt
= aqIm

Sh

H
� cIh � µIh.

Parameters are
a the biting rate.
p the probability of a blood meal leading to mosquito catching dengue from
infected human.
q the probability of a blood meal leading to human catching dengue from
infected mosquito.
b, d birth and death rate for mosquitoes, respectively ; e mean incubation rate.
µ birth and death rate (the same) ; c recovery rate.
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A model for dengue transmission

We are now in position to compute the basic reproduction number for this system.
1 There are 3 infected states : Em, Im, Ih.
2 Equilibrium without infection : (V, Em, Im, Sh, Ih) = (K(1 � d

b
), 0, 0, H, 0).

Linearization around this equilibrium for the infected states

dEm

dt
=

apK(1 � d

b
)

H
Ih � (e + d)Em,

dIm

dt
= eEm � dIm,

dIh

dt
= aqIm � (c + µ)Ih.

3 Transmission and transition matrices

T =

0

B@
0 0 apK(1� d

b
)

H

0 0 0
0 aq 0

1

CA S =

0

@
�(d + e) 0 0

e �d 0
0 0 �(c + µ)

1

A .

4 Computation of R0 : We have

�S�1 =

0

B@

1
d+e

0 0
e

d(d+e)
1
d

0
0 0 1

c+µ

1

CA .
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A model for dengue transmission

Then, using the above approach, we compute

TS�1 =

0

B@
0 0 apK(1� d

b
)

(c+µ)H

0 0 0
eaq

d(d+e)
aq

d
0

1

CA .

The spectral radius for this latter matrix is then R0 =

s
ea2 pqK(1 � d

b
)

d(d + e)(c + µ)H
.
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Monotone Systems

L.. Almeida Population Dynamics



Monotone Systems Cooperative Systems

Cooperative systems

Systems where several species will help each other

(
dN1
dt

= r1N1 + a1N1N2
dN2
dt

= r2N2 + a2N2N1

Here, unlimited growth (not realistic). Better to have logistic growth

(
dN1
dt

= r1N1(1 � N1
K1

+ b12
N2
K1
)

dN2
dt

= r2N2(1 � N2
K2

+ b21
N1
K2
)

Where r1, r2, K1, K2, b12, b21 positive constants.
b12, b21 cooperation coe�cients between species 1 and 2.
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Cooperative systems

Doing a change of variables

u1 =
N1
K1

, u2 =
N2
K2

, t = r1t, r =
r2
r1

, a12 = b12
K2
K1

, a21 = b21
K1
K2

Our system becomes

(
du1
dt = u1(1 � u1 + a12u2) = f1(u1, u2)
du2
dt = ru2(1 � u2 + a21u1) = f2(u1, u2)

Critical points : (0, 0), (1, 0), (0, 1)

and a fourth one

u
⇤
1 =

1 + a12
1 � a12a21

, u
⇤
2 =

1 + a21
1 � a12a21

which is positive if 1 � a12a21 > 0. It corresponds to a co-existence of the two
populations benefiting from each other’s presence without exploding.
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Cooperative systems

Doing a change of variables

u1 =
N1
K1

, u2 =
N2
K2

, t = r1t, r =
r2
r1

, a12 = b12
K2
K1

, a21 = b21
K1
K2

Our system becomes

(
du1
dt = u1(1 � u1 + a12u2) = f1(u1, u2)
du2
dt = ru2(1 � u2 + a21u1) = f2(u1, u2)

Critical points : (0, 0), (1, 0), (0, 1)
and a fourth one

u
⇤
1 =

1 + a12
1 � a12a21

, u
⇤
2 =

1 + a21
1 � a12a21

which is positive if 1 � a12a21 > 0. It corresponds to a co-existence of the two
populations benefiting from each other’s presence without exploding.
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Cooperative systems

(0, 0) is unstable, (1, 0), (0, 1) are saddle points.

Figure – If 1 � a12a21 < 0, both explode Figure – If 1 � a12a21 > 0, thanks to
cooperation, both populations are beyond
their isolated environmental capacity.
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Competitive systems

Systems where several species compete with each other.
Principle of Mutual Exclusion (PME) : only the fittest one survives.

8
<

:

dN1
dt

= r1N1

⇣
1 � N1

K1
� b12

N2
K1

⌘

dN2
dt

= r2N2

⇣
1 � N2

K2
� b21

N1
K2

⌘
= r2N2(1 � N2+b21 N1

K2
)

where r1, K1, r2, K2, b12, b21 are positive constants. ri intrinsic growth coe�cient of
species i. Ki carrying capacity of i (isolated). b12 measures the e↵ect of species 2
on species 1.

Change of variables :

u1 =
N1
K1

, u2 =
N2
K2

, t = r1t, r =
r2
r1

, a12 = b12
K2
K1

, a21 = b21
K1
K2

System becomes
(

du1
dt = u1(1 � u1 � a12u2) = f1(u1, u2)
du2
dt = ru2(1 � u2 � a21u1) = f2(u1, u2)
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Competitive systems

Systems where several species compete with each other.
Principle of Mutual Exclusion (PME) : only the fittest one survives.

8
<

:

dN1
dt

= r1N1

⇣
1 � N1

K1
� b12

N2
K1

⌘

dN2
dt

= r2N2

⇣
1 � N2

K2
� b21

N1
K2

⌘
= r2N2(1 � N2+b21 N1

K2
)

where r1, K1, r2, K2, b12, b21 are positive constants. ri intrinsic growth coe�cient of
species i. Ki carrying capacity of i (isolated). b12 measures the e↵ect of species 2
on species 1.
Change of variables :

u1 =
N1
K1

, u2 =
N2
K2

, t = r1t, r =
r2
r1

, a12 = b12
K2
K1

, a21 = b21
K1
K2

System becomes
(

du1
dt = u1(1 � u1 � a12u2) = f1(u1, u2)
du2
dt = ru2(1 � u2 � a21u1) = f2(u1, u2)
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Competitive systems

Critical points (u⇤
1, u

⇤
2) satisfy f1 = f2 = 0 :

(0, 0), (1, 0), (0, 1) and

u
⇤
1 =

1 � a12
1 � a12a21

, u
⇤
2 =

1 � a21
1 � a12a21

Four cases depeding on values of a12, a21 :
Case (a) : a12 < 1, a21 < 1 weak competition between the species ;
Case (b) : a12 > 1, a21 > 1 strong competition between the species ;
Case (c) : a12 < 1, a21 > 1 species 1 is stronger ;
Case (d) : a12 > 1, a21 < 1 species 2 is stronger
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Competitive systems

0 u1

u2

1

1

f1(u1, u2) = 0

f2(u1, u2) = 0

1
a21

Case (a) : a12 < 1, a21 < 1

1
a12

u1

u2

1

11
a21

Case (b) : a12 > 1, a21 > 1

1
a12
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Competitive systems

u1

u2

1

11
a21

Case (c) : a12 < 1, a21 > 1

1
a12

u1

u2

1

1 1
a21

Case (d) : a12 > 1, a21 < 1

1
a12
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Competitive systems

We see that in cases (c) et (d), we have only 3 critical points. Dependence on the
competition coe�cients aij .
For (linear) stability look at linearized system matrix :

A =

 
∂ f1
∂u1

∂ f1
∂u2

∂ f2
∂u1

∂ f2
∂u2

!

u⇤
1 ,u⇤

2

=

✓
1 � 2u1 � a12u2 �a12u1

�ra21u2 r(1 � 2u2 � a21u1)

◆

(u⇤
1 ,u⇤

2)

For (0, 0) :

|A � lI| =
����
1 � l 0

0 r � l

���� = 0

So l1 = 1 and l2 = r > 0, Hence, (0, 0) is linearly unstable.
For (1, 0) :

|A � lI| =
����
�1 � l �a12

0 r(1 � a21)� l

���� = 0

Hence l1 = �1, l2 = r(1 � a21), (1, 0) linearly stable if a21 > 1, linearly
unstable if a21 < 1.
For (0, 1), l1 = �r, l2 = 1 � a12. Hence, (0, 1) linearly stable if a12 > 1,
linearly unstable if a12 < 1.
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Competitive systems

For the critcal point (u⇤
1, u

⇤
2), we have

A =
1

1 � a12a21

✓
a12 � 1 a12(a12 � 1)

ra21(a21 � 1) r(a21 � 1)

◆

Thus,

l1, l2 =
1

2(1 � a12a21)

 
(a12 � 1) + r(a21 � 1)

±
q
((a12 � 1) + r(a12 � 1))2 � 4r(1 � a12a21)(a12 � 1)(a21 � 1)

!
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Competitive systems

Figure – Case (a) : Only case where
(u⇤

1, u
⇤
2) is stable.

Figure – Case (b) : (u⇤
1, u

⇤
2) is a saddle

point. Separatrix
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Competitive systems

Figure – Case (c) : (1, 0) only is stable :
species 1 survives.

Figure – Cas (d) : (0, 1) only is stable :
species 2 survives.

L.. Almeida Population Dynamics



Monotone Systems Competitive Systems

Monotone systems in Rn : order relations

Consider the open domain D ⇢ Rn and let f : D ! Rn be C
1(D) We consider

the system of ODE
x
0 = f (x), f 2 C

1(D) (1)

Let ft(x) be the solution of (1) passing through point x for t = 0.
This defines the flow associated with system (1) F(t, x) := ft(x)
The non-negative cone of Rn is

Rn

+ = {(x1, · · · , xn) 2 Rn : xi � 0 8i},

and the the partial order associated to it is

y  x () x � y 2 Rn

+ () yi  xi 8i = 1, · · · , n

We say that x < y if x  y and x 6= y (i.e. if x  y and there is i s.t. xi < yi)
and that x ⌧ y iif xi < yi for all i = 1, · · · , n.
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Monotone systems in Rn : Kamke functions

Definition : f is of type K in D if

fi(a)  fi(b), 8a  b and ai = bi.

Proposition (Comparison preserving flow) : Let f be of type K in D and
x0, y0 2 D. Let <r be one of the relations ,<,⌧. Then, if x0 <r y0 and t > 0
s.t. ft(x0) and ft(y0) are defined, we have

ft(x0) <r ft(y0)

i.e. if the two points are comparable, the flow preserves the comparison. We
remark that the proposition gives a necessary condition for f to be of type K. An
analogous proposition is valid for non-autonomous systems.
x
0 = f (t, x), where f est C

1 in R+ ⇥ D, and f (t, ·) is of type K in D for all t > 0.
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Monotone systems in Rn : p-convexity

The domain D is p-convex if 8x, y 2 D, if x  y, the segment

xy = {tx + (1 � t)y : t 2 [0, 1]} ⇢ D

D convex =) D p-convex.
If D ⇢ Rn p-convex and

∂ fi

∂xj

� 0, 8j 6= i, 8x 2 D (2)

Then f is of type K in D. (just use the fundamental theorem of calculus)
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Monotone systems in Rn : cooperative and competitive systems

Definition :

1 system (1) is cooperative in the p-convex domain D if (2) is satisfied.

2 system (1) is competitive in the p-convex domain D if

∂ fi

∂xj

 0, 8i 6= j, 8x 2 D

Remark : (1) is competitive (with flow F(t, x) = ft(x)) i↵ x
0 = � f (x) is

cooperative, and vice-versa. A cooperative system is a monotone system and it
preserves order <r for t � 0. A competitive system is such that its flow with time
reversed is monotone : i.e. if x  y and t < 0, then ft(x)  ft(y).
Exercise : Show that a competitive system’s flow preserves the property of
non-comparability of two points (for t � 0).
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Tumor Growth : Proliferative and quiescent cells

It has been observed that not all cells proliferate. Observations show that a big
part of cells stay in a quiescent state. To take into account this e↵ect, we should
consider at least two states of cells : proliferative cells with density P, quiescent
cells with density Q. A simple model is

8
><

>:

dP

dt
= F(P)� bP + cQ,

dQ

dt
= bP � cQ � dQ,

with the parameters :

F growth function (e.g. F(P) = rP(1 � ( P

K
)a) with r, a, K > 0) ;

b, c > 0 transition coe�cients ;

d death rate.

This system is complemented with initial data P0, Q0. The density of tumor cells
is given by N(t) = P(t) + Q(t).
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Tumor Growth : Proliferative and quiescent cells

Proposition

We have

1 Preservation of positivity and monotonicity :

P0, Q0 � 0 ) P(t), Q(t) � 0, 8 t � 0.
(

u0 := F(P0)� bP0 + cQ0 � 0,
v0 := bP0 � (c + d)Q0 � 0

) dP

dt
� 0,

dQ

dt
� 0.

2 Equilibria : There are two steady states : (0, 0) and (P, Q) with
P = K(1 � bd

r(c+d) )
1/a, Q = b

c+d
P. And we have

For d ⌧ 1, the steady state (P, Q) is asymptotically stable.
If r > b + c + d, the steady state (0, 0) is linearly unstable.
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Tumor Growth : Proliferative and quiescent cells

Proof : The system is monotone - this yields positivity and monotonicity.

Equilibria. We solve the system

F(P)� bP + CQ = 0 , bP � (c + d)Q = 0.

It gives

Q =
b

c + d
P , P

✓
r(1 � (

P

K
)a)� bd

c + d

◆
= 0.

Thus, we have two equilibria P = Q = 0 or P = K(1 � bd

r(c+d) )
1/a, Q = b

c+d
P.

Stability. The Jacobian is given by

J =

✓
F
0(P)� b c

b �(c + d)

◆
=

✓
r(1 � (1 + a)( P

K
)a)� b c

b �(c + d)

◆
.

At the equilibrium (P, Q), we have

J =

✓
�ra � b + (1 + a) bd

c+d
c

b �(c + d)

◆
.

When d = 0, we have Tr J = �ra � b � c < 0 and Det J = rac > 0. Hence, the
real part of eigenvalues is negative. By continuity it is also true for d small.
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Tumor Growth : Proliferative and quiescent cells

At the equilibrium (0, 0), then the Jacobian is

J0 =

✓
r � b c

b �(c + d)

◆

Then Tr J0 = r � b � c � d. Then, if r > b + c + d, we deduce that one
eigenvalue (at least) has a positive real part. Thus, it is linearly unstable.
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Proliferative and quiescent cells : action of a therapy

Action of a therapy.
We usually consider that there are two di↵erent drugs : cytotoxic drugs kills
proliferative cells, cytostatic drugs block the proliferation. We can add these
e↵ects in the simple model above :

8
><

>:

dP

dt
= F(P)� (b + cstat)P + cQ � ctoxP,

dQ

dt
= (b + cstat)P � cQ � dQ,

where cstat and ctox represent the concentration of cytostatic and cytotoxic drugs,
respectively.

E↵ect of cstat

We replace b by b + cstat in the previous equilibrium. Then they are given by
(0, 0) and

P = K

⇣
1 � d(b + cstat)

r(c + d)

⌘1/a

, Q =
b + cstat

c + d
P.
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Proliferative and quiescent cells : action of a therapy

In the latter case, we have then,

N = P + Q = K

⇣
1 +

b + cstat

c + d

⌘⇣
1 � d(b + cstat)

r(c + d)

⌘1/a

.

Thus P diminishes, but Q increases. We notice that in the particular case d

r
⌧ 1,

N increases, i.e. the size of the tumor increases !

E↵ect of ctox

The non-zero equilibrium is given by

P = K

⇣
1 � ctox

r
� bd

r(c + d)

⌘1/a

, Q =
b

c + d
P.

and

N = P + Q = K

⇣
1 +

b

c + d

⌘⇣
1 � ctox

r
� bd

r(c + d)

⌘1/a

.

This is always e�cient since N decreases.
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Reaction-Di↵usion Models
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Reaction-di↵usion equation

Metapopulations are interesting when we want to model the dynamics of
interconnected metapopulation. However, if we are interested in the di↵usion
process of individuals, we have to consider the spatial variable and then we have
to deal with partial di↵erential equations. Here, we only consider reaction and
di↵usion.

Reaction-di↵usion equation

If we denote by n(t, x) the density of a population, we have

∂tn � div(Drn| {z }
di↵usion

) = f (x, n)
| {z }
reaction

.

D is the di↵usion matrix ; when it is constant the di↵usion is homogeneous (no
preferential direction to di↵use). The reaction term may model the birth, death,
interaction between population, chemical reactions, . . .
This equation may be derived thanks to a conservation law of the form

temporal variation = flux + local source .

In order to illustrate this derivation, let us first consider the one-dimensional case.
L.. Almeida Population Dynamics



Reaction-Di↵usion Models

Reaction-di↵usion equation

Let ~J = J~ex be the flux along the x axis. We write the balance law in the cell
(x, x + Dx) during the time interval (t, t + Dt) :

x x + Dx

n(t, x)
J(x) J(x + Dx)

Variation of number of individuals : (n(t + dt, x)� n(t, x))Dx ;

Flux entering the domain during time Dt : J(t, x)Dt ;

Flux out of the domain : J(t, x + Dx)Dt ;

Birth and death in the domain during the time Dt : f (x, n(t, x))DxDt.

Thus in one dimension, the balance law implies

(n(t + dt, x)� n(t, x))Dx = (J(t, x)� J(t, x + Dx))Dt + f (x, n(t, x))DxDt.
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Reaction-di↵usion equation

To avoid congestion, individuals have a natural tendency to move apart from each
other towards less crowded areas. To model this phenomenon, we consider that
the flux is inversely proportional to the gradient of the concentration :

J(t, x) = �D
∂

∂x
n(t, x). (Fick’s law)

We arrive at, after dividing by DtDx,

n(t + dt, x)� n(t, x)
Dt

= �D

∂
∂x

n(t, x)� ∂
∂x

n(t, x + Dx)

Dx
+ f (x, n(t, x)).

Letting Dt, Dx ! 0, we recover the one dimensional reaction-di↵usion equation

∂tn = D∂xxn + f (x, n).

Obviously, this derivation may be extended to higher dimensions.
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Introduction

Interesting phenomena modeled by reaction-di↵usion equation in full space is
propagation phenomena, mathematically described thanks to traveling waves.
In biology, traveling waves have been used in many situations to explain
invasiveness of a species, spread of a genetic trait, propagation of epidemy, ...

Figure – Two examples of invasion phenomena : Left : bubonic plague in Europe
during the middle age ; Right : cane toads in Australia nowadays.
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Examples

Consider a population with density N we assume that

the population growths with a rate r and is limited with an environmental
capacity K ;

individuals are allowed to move randomly in space with di↵usion coe�cient n.

Then the dynamics of the density is given by

∂tN � nDx N = rN(1 � N

K
).

This is the monostable Fisher/KPP equation.

Without spatial di↵usion, we know that the density converges towards the
environmental capacity K.

Question Can we observe a phenomenon of spatial invasion of the
population ? How fast ?
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Examples

Consider now a population with density N such that

there is an environmental capacity K ;

for low density the growth is nonpositive ;

individuals are allowed to move randomly in the space with di↵usion
coe�cient n.

Then the dynamics of the density is given by

∂tN � nDx N = rN(N � q)(1 � N

K
).

This is the bistable Allen-Cahn equation.

Without spatial di↵usion, the density may converge towards extinction or the
environmental capacity K.

Question Adding spatial di↵usion, is it possible to observe the extinction of
the population or its fixation ?
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Traveling waves : setting of the problem

To simplify, we work in one space dimension and consider one species whose
dynamics is governed by the reaction-di↵usion equation :

∂tu � ∂xxu = f (u), t > 0, x 2 R.

Definition

A traveling wave solution is a solution of the form u(t, x) = v(x � ct) with c 2 R
a constant called traveling speed.

We usually consider the case where the function f admits two stationary states
f (0) = f (1) = 0 :

Fisher/KPP (monostable) equation : f (u) = u(1 � u).

Allen-Cahn (bistable) equation : f (u) = u(1 � u)(u � q).

We complete the definition by the conditions v(�•) = 1, and v(+•) = 0.
When c > 0, this expresses the fact that the state v = 1 invades the state v = 0.
When c < 0, the state v = 0 invades the state v = 1.
Injecting the expression u(t, x) = v(x � ct) into the equation, we arrive at the
system :
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Traveling waves : setting of the problem

Problem

We look for a real-valued function v and a real c such that

v
00 + cv

0 + f (v) = 0, on R,
v(�•) = 1, v(+•) = 0.

x

v

c

When c = 0, we say that we have a stationary state or a standing wave.
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Traveling waves : setting of the problem

Observations :

The problem is invariant by translation :
If v(x) is a solution, then v(x + a) is a solution for any a 2 R. Then, we
normalize by setting for instance v(0) = 1

2 .

Multiplying by v
0, we get

1
2
((v0)2)0 + c(v0)2 + (F(v))0 = 0, where F(v) =

Z
v

0
f (s) ds.

Integrating (using the fact that v
0(±•) = 0), we find

c

Z

R
(v0(x))2

dx = F(1) =
Z 1

0
f (s) ds.

An important consequence is that

c has the same sign as
R 1

0 f (s) ds.

For instance, in the Fisher/KPP case, f (u) = u(1 � u) � 0 for u 2 [0, 1], thus
F(1) > 0, it means that v = 1 is invading.
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The monostable equation with ignition temperature

For q 2 (0, 1), µ > 0, we take f (u) =

⇢
0 for 0  u < q,
µ(1 � u) for q < u  1.

Lemma

For f as above, there is a unique traveling wave solution (c⇤, v) with v decreasing
and normalized with v(0) = q.

Proof. We have seen above that c > 0. Thanks to the normalization v(0) = q
and the fact that v is decreasing, we look for a solution with v > q for x < 0.
Then f (v) = µ(1 � v) for x < 0,

cv
0 + v

00 + µ(1 � v) = 0.

The solution is given by v = 1 � (1 � q)el+x, x  0 with
l+ = 1

2 (�c +
p

c2 + 4µ) > 0.
For x > 0, we look for v < q, then f (v) = 0. The solution is v(x) = qe

�cx for
x � 0.
It remains to check that v is di↵erentiable at x = 0, that is

�cq = �(1 � q)l+.

This equation admits an unique solution c
⇤ > 0 (since c 7! l+ is decreasing).
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Bistable equation

We can extend the argument above to the bistable case. We take for

q 2 (0, 1), µ > 0, n > 0, f (u) =

⇢
�nu for 0  u < q,
µ(1 � u) for q < u  1.

Lemma

For f as above, there is a unique solution (c⇤, v) with v decreasing and
normalized with v(0) = q.

Proof. For x < 0, the equation is v
00 + cv

0 + µ(1 � v) = 0. Then,
v(x) = 1 � (1 � q)el1x, l1 = 1

2 (�c +
p

c2 + 4µ).
For x > 0, the equation is v

00 + cv
0 � nv = 0. Then, v(x) = qe

�l2x,
l2 = 1

2 (c +
p

c2 + 4n).
To match the derivatives at x = 0, we have to impose l2q = (1 � q)l1. The
function c 7! l1 is decreasing, whereas c 7! l2 is increasing, and the limits at ±•
are opposite infinity. Thus this latter equation admits a unique solution c

⇤.
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Analytical example

We take for q 2 (0, 1), µ > 0, f (u) =

⇢
µ(1 � q)u for 0  u < q,
µq(1 � u) for q < u  1.

Lemma

For f given as above. There exists a minimal speed c
⇤ = 2

p
(1 � q)µ and for all

c � c
⇤ a unique solution (c, v) with v decaying and normalized by v(0) = q.

Proof. For x < 0, we want v > q, then the equation is

v
00 + cv

0 + µq(1 � v) = 0.

The unique solution that tends to 1 at �• is

v(x) = 1 � (1 � q)el+x, x  0, l+ =
1
2
(�c +

q
c2 + 4µq)

For x > 0, we look for v < q, then v
00 + cv

0 + µ(1 � q)v = 0. The characteristic
polynomial for this ODE is l2 + cl + µ(1 � q). If c < c

⇤, then the roots of this
polynomial are complex conjugate, then there no solutions decaying and
nonnegative to the ODE. For c � c

⇤, both roots of the polynomial are negative
and are given by µ± = 1

2 (�c ±
p

c2 � 4µ(1 � q)).
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Analytical example

Then, for x � 0,

v(x) = qe
µ�x + a(eµ+x � e

µ�x), µ± =
1
2
(�c ±

q
c2 � 4µ(1 � q)).

This function is positive i↵ a � 0. It remains to check that the derivatives match
at x = 0, that is �(1 � q)l+ = qaµ� + a(µ+ � µ�). This requires that

c � (1 � q)
q

c2 + 4µq + q
q

c2 � 4µ(1 � q) = 2a

q
c2 � 4µ(1 � q).

For c > c
⇤, the left hand side is positive. Therefore, we can compute a unique

a > 0 satisfying this equality for any c � c
⇤. This allows to contruct a positive

and decaying function v.
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The monostable equation with ignition temperature

q=ignition temperature : minimal temperature required to burn a gas and start
the reaction.

∂tu � ∂xxu = fq(u), fq(u) =

8
<

:

0 0  u  q
> 0 q < u < 1
0 u = 1

Traveling wave problem

Find c and v such that

� v
00 � cv

0 = fq(v), x 2 R,
v(�•) = 1, v(+•) = 0.

Theorem

There is a unique decreasing traveling wave solution (c⇤, v) normalized with
v(0) = 1

2 and it holds that c
⇤ > 0.
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The Fisher/KPP equation

We consider the Fisher/KPP case :

∂tu � ∂xxu = u(1 � u).

The situation is quite di↵erent than the case with ignition temperature. A famous
result is

Theorem

For any c � c
⇤ = 2, there is a unique traveling wave solution v with 0  v  1

and v monotically decreasing.

The quantity c
⇤ is called the minimal propagation speed.

This result can be extended to general equation

∂tu � n∂xxu = f (u), with f (0) = f (1) = 0, f (u) > 0 for 0 < u < 1.

In this case, the minimal propagation speed is c
⇤ = 2

p
f 0(0)n.
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The Fisher/KPP equation

Formally, we may use a simple analysis to deduce the behavior. Since u is
expected to be small at +•, we consider the linear equation (by neglecting u

2)

∂tu � n∂xxu = f
0(0)u.

Looking now for a solution u(t, x) ⇠ Ae
�a(x�ct) as x ! +•, with a > 0, and

A > 0, c being the wavespeed. Injecting this expression into the linearized
equation, we obtain

ca = f
0(0) + na

2.

This is the dispersion relation. This equation admits a solution a > 0 if and only if
c � cmin = 2

p
f 0(0)n.

Notice that when f
0(0) < 0, there always exists a real root to this second order

polynomial.
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Allen-Cahn (bistable) equation

We consider the bistable case, i.e. 0 and 1 are both stable steady states.

Traveling wave solution

We look for c 2 R and a real-valued function v such that

v
00 + cv

0 + f (v) = 0

v(�•) = 1, v(+•) = 0, v(0) =
1
2

.

We will make use of the notation F(u) =
Z

u

0
f (v) dv. We assume that

f (0) = 0, f
0(0) < 0, f (q) = 0, f (1) = 0, f

0(1) < 0,
f (u) < 0 on (0, q), f (u) > 0 on (q, 1).

Adapting the phase space method, we may prove :

Theorem

Under these assumptions, there exists a unique traveling wave solution (c⇤, v)
with v decreasing.
We have c

⇤ > 0 for F(1) > 0, c
⇤ = 0 for F(1) = 0, c

⇤ < 0 for F(1) < 0.
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Reaction-Di↵usion Models The bistable case

Allen-Cahn (bistable) equation

A simple choice of bistable function satisfying the assumptions is

f (u) = u(1 � u)(u � q).

In this case, we have the explicit expression of the traveling wave solution

v(x) =
e
�x/

p
2

1 + e�x/
p

2
, c

⇤ =
p

2(
1
2
� q).

Indeed, we may compute with this expression,

v
0 =

1p
2

v(v � 1), v
00 =

v
0

p
2
(2v + 1) = v(v � 1)(v +

1
2
).

Thus, �c
⇤
v
0 � v

00 = v(1 � v)(v + c
⇤p
2
+ 1

2 ) = f (v).
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Reaction-Di↵usion Models Example : Mosquito population control

Example of field application :
Mosquito population control with
the Sterile Insect Technique (SIT)
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Reaction-Di↵usion Models Example : Mosquito population control

Epidemic control with SIT

S
0
H

= bH H � bM

H
IMSH � bHSH

E
0
H

=
bM

H
IMSH � gHEH � bHEH

I
0
H

= gHEH � sH IH � bH IH

S
0
M

= bM M

✓
1 � M

K

◆
aM

1 + a(M + gMs)
� bM

H
SM IH � dMSM

E
0
M

=
bM

H
SM IH � gMEM � dMEM

I
0
M

= gMEM � dM IM

M
0
S

= u � dS MS
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Instant Releases

Considering again instant releases the equation for the sterile mosquitoes
becomes :

⇢
M

0
S

= �dS MS, t 2 [ti, ti+1], i = 0, . . . , n

MS(t
+
i
) = MS(t

�
i
) + ci, i = 1, . . . , n

We can solve this equation explicitly, finding

MS(t) =
i

Â
j=1

cje
�dS(t�tj), t 2 [ti, ti+1], i = 0, . . . , n
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Results : 10 instant releases

C = 7.5 · 107

Reduction :
12.3%

C = 1.5 · 108

Reduction :
49.1%

L.. Almeida Population Dynamics
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Results : 20 instant releases

C = 7.5 · 107

Reduction :
13.9%

C = 1.5 · 108

Reduction :
99.9%
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Reaction-Di↵usion Models Example : Mosquito population control

Sterile Mosquito Technique

Strategy and results depend highly on the number of releases considered
(when low).

After ⇠ 20 releases almost no improvement.

With few mosquitoes : spaced releases around the peak.

With a lot of mosquitoes : spaced releases from the beginning.
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Reaction-Di↵usion Models Example : Mosquito population control

Spatial problem - invasive wave propagation

Figure – Expansion of Aedes albopictus in mainland France, 2004-2022

Global warming and trade help Aedes mosquitoes to settle in many temperate
regions including Europe. They are not only an invasive species but also vectors
for many diseases including dengue, Zika and chikungunya.
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Reaction-Di↵usion Models Example : Mosquito population control

Traveling Waves : Monostable VS Bistable Dynamics

u(t; x) ⌘ Proportion of mosquitoes at time t and position x

∂tu � Du| {z }
Di↵usion

= g(u)
|{z}

Growth
Two possibilities depending on Allee e↵ect : Fisher KPP (without) or Allen-Cahn
(with)

Monostable dynamics (Fisher-KPP)

g(u) = u(1 � u)

• 2 steady states : { 0 ; 1 }
• 1 stable : 1
• 1 unstable : 0

Bistable dynamics (Allen-Kahn)

g(u) = u(1 � u)(u � q)

• 3 steady states : { 0 ; q ; 1 }
• 2 stable : 0 and 1
• 1 unstable : q

When invasion occurs, it is like a traveling wave solutions :
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Bistable Dynamics and Traveling Wave solutions

Assumption : Bistable dynamics

∂tu � Du| {z }
Di↵usion

= g(u)
|{z}

Growth
Natural set of solutions : the traveling wave solutions u(x, t) = f(x � c0t).

∂tu � Du = g(u) �! �c0f0 � f00 = g(f).
f connects the two stable steady states :

f(�•) = 1 and f(+•) = 0.

The sense of propagation depends on sign(c0) = sign
⇣R 1

0 g(v)dv

⌘

Assumption : sign(c0) > 0 : naturally, the mosquitoes invade the territory
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Barrier construction

We want to study the possibility to construct a barrier to block invasion by
releasing sterile males on a domain of width L. Numerical simulations taking
u = U1[0,L].

Figure – Numerical simulations for u = U1[0,L] with L = 5 km and

U = 10 000 km�1 day�1 (left), U = 20 000 km�1 day�1 (center), and
U = 30 000 km�1 day�1 (right).

Theorem (A, Estrada, Vauchelet), Math. Model. Nat. Phenom. 2022

For any L > 0, there exists U large enough, such that there exists a barrier for the
SIT system.
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Pilot study and scale-up

The WHO and IAEA have been financing many pilot studies in many countries
like, for instance, in Cuba in 2020 and the results have been very encouraging

Pilot study done in areas of 20 to 25 ha in Cuba in 2020.
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Scale-up

However, scaling-up to region or country-wide interventions raises many new
problems including interesting mathematics

Planned intervention over a 1000 ha area starting in 2026
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Reaction-Di↵usion Models Example : Mosquito population control

The rolling carpet strategy

The idea is to act on a finite interval (0, L) and move this action like a rolling
carpet in the opposite sense to that of the natural invasion traveling wave.

8
><

>:

∂tu � Du = g(u) + Act(u)1{ct<x<L+ct},

u(�•) = 1,
u(+•) = 0

Figure – The free system and with action at t = 0, t = t1 > 0, t = t2 >= t1

L.. Almeida Population Dynamics
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The rolling carpet strategy

The idea is to act on a finite interval (0, L) and move this action like a rolling
carpet in the opposite sense to that of the natural invasion traveling wave.

Aim of the work : generate a traveling wave with a negative speed solution of
(
� cf0

L
� f00

L
= g(fL) + Act(fL)1{0<x<L},

fL(�•) = 1 fL(+•) = 0

Figure – The traveling wave solution fL
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The main result for SIT

Aim : Obtain a traveling wave solution fL,M

8
><

>:

� cf0
L,M � f00

L,M = g(fL,M, mS),

� cm
0
S
� m

00
S
= M1{0<x<L} � µMmS

fL,M(�•) = 1, fL,M(•) = 0.

Theorem (A - LÃ©culier - Vauchelet, SIAM J. Math. Anal. 2023)

For every speed c  0 and size L > 0, there exists a critical number of mosquitoes
P(c, L) such that

1 If M < P(c, L) then the system does not admit a solution fL,M.

2 If M > P(c, L) then the system admits a traveling wave fL,M.

Moreover, we have

lim
L!0

P(c, L) = +•, lim inf
L!+•

P(c, L) > 0 and lim
c!�•

P(c, L) = +•.
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Numerical results

We perform numerical simulations of

∂t f � ∂xx f = g( f , mS),

for c = �0.1, L = 20 and two sizes of releases M.

Figure – M = 3.3 Figure – M = 3.6
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Inhomogeneous setting : PDE model

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

∂E

∂t
= bEF(1 � E

K(x)
)

hM

1 + h(M + gMs)
� (nE + dE)E, t � 0, x 2 W,

∂F

∂t
� d1DF = nnEE � dFF, t � 0, x 2 W,

∂M

∂t
� d2DM = nnEE � dM M, t � 0, x 2 W,

∂Ms

∂t
� d3DMs = u((E, F, M, Ms)

T)� ds Ms, t � 0, x 2 W,

∂F

∂n
=

∂M

∂n
=

∂Ms

∂n
= 0, t � 0, x 2 ∂W,

(E(0, x), F(0, x), M(0, x), Ms(0, x))T = (E
0(x), F

0(x), M
0(x), M

0
s (x))T , x 2 W.

(3)
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Inhomogeneous setting : PDE model

Feedback control of pest populations in heterogeneous settings using SIT
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To help improve field interventions in a robust way

Field work with Incompatible Insect Technique (IIT) in Tetiaroa by HervéBossin
and Françoise Mathieu-Daudé (ILM, IRD, Univ. Polynésie Française)Sites pilotes 

Tetiaroa

Site traité

Sites témoins
3.5 Km

Dynamique population femelles Aedes polynesiensis avant, pendant et après lâchers de mâles incompatibles (Wolbachia)

M
e
a
n
 f

e
m

a
le

/
tr

a
p
/
d
a
y

No or few mosquito bites for nearly 2 years

Efficacité opérationnelle démontrée
1ère intervention

Robustness of Backstepping stabilization control
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Backstepping feedback stabilization result

We define for q > 0 and a > 0

u((x
T , Ms)

T) := max
⇣

0, G((x
T , Ms)

T)
⌘

. (4)

G((x
T , Ms)

T) : =
gsyE(qM + Ms)2

a(M + gs Ms)(3qM + Ms)
+

1
a
(qM � Ms)

+
((1 � n)nEqE � qdM M)(qM + 3Ms)

3qM + Ms

+ ds Ms, (5)

R(q) :=
bEnnE

dF(1 + gsq)(nE + dE)
. (6)

Theorem (Kala Agbo bidi,, L.A., Jean-Michel Coron 2023)

Assume that Rq < 1, then 0 is globally asymptotically stable in D = R4
+ for the SIT

system with the feedback law (4).
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Projects

PEPR project Maths-ArboV (dengue outbreaks in mainland France,
2025-2030)

WHO TDR/IAEA project PAC-SIT (Ae. aegypti in Tahiti, Cook Islands
[Aitutaki atoll] and Easter Island, 2025-2026)

Consortium régional d’évaluation de l’efficacité de la Technique de l’Insecte 

Stérile contre les moustiques vecteurs de maladies

Tahi�

Aitutaki
Rapa Nui

Rapa NuiAtoll d’Aitutaki Tahi� (Paea)

Ïles Cook Polynésie française Chili
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PACSIT WHO pilot study : intervention and monitoring

ILM INNOVENTOMO

5 km further South

E�cacy measurements 
(entomological, epidemiological)

Full control interven�on
(community ac�on + SIT sterile male release)

«standard interven�on»
(community ac�on alone - without SIT)

Evalua�on PAC-SIT

Pilote Paea
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Beyond PACSIT - area-wide rolling carpet SIT intervention in Tahiti

Centre ILM 

INNOVENTOM

Rolling Carpet Strategy from Paea to Greater Papeete urban area
Protect 50% of the Tahiti Population

SIT Treated Area Monitoring and Feedback Control Area
L.. Almeida Population Dynamics
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