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Introduction

Mathematics has proven to be very useful in life sciences and in recent years
mathematical modeling has been playing an increasingly important role in many
areas of ecology, biology and medicine. In this course, we will be studying a few
subjects among this very wast domain.

We will mostly concentrate on mathematical population dynamics and issues
linked to ways of using mathematical models to control the evolution of the
populations in order to satisfy particular objectives. For instance controlling the
population of a pest or the vector of a disease (like dengue) or optimize cancer
therapy.
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Introduction to Population dynamics

Introduction to population dynamics

We focus on the dynamics of a population of individuals (men, animals, cells,

bacteria, ...) which we characterize by its density (or number) at time £ > 0
denoted N(t).

N(t) : number of individuals at time £ > 0.
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Introduction to Population dynamics

Introduction to population dynamics

We focus on the dynamics of a population of individuals (men, animals, cells,
bacteria, ...) which we characterize by its density (or number) at time £ > 0
denoted N(t).

N(t) : number of individuals at time £ > 0.

Goal : knowing the density (or number) at time t = 0, denoted Ny, try to predict
the population dynamics for future times t > 0 depending on some observed
phenomena.
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Introduction to Population dynamics Malthus model

Population dynamics : Malthus

One of the first important models in population dynamics was proposed by
Thomas Malthus (English economist 1766-1834) in 1798 in his book “An essay on
the principle of population”.
In this model, only two phenomena are taken into account :
m birth, with a rate b > 0 (mean number of individuals generated by one
individual by unit of time) : for N individuals, during a time interval J¢, the
number of births is bNJt;

m death, with a rate d > 0.

N(t+dt) = N(t) +bN(t)ot — dN(t)ot.
Dividing by 6t,
N(t+6t) — N(t)
ot
Taking the limit t — 0, we get

— BN(t) — dN(1).

N'(t) = bN(t) — dN(t).
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Introduction to Population dynamics Malthus model

Population dynamics : Malthus

Malthus model (1798)

N'(t) =bN(t) —dN(t),  N(0) = Np.

This is a first order ODE with constant coefficients.
The solution to this Cauchy problem is given by

N(t) = Noelt=9t,

This very simple model allows us to observe two phenomena :

m If b > d, we have an exponential growth of the size of the population
(sometimes call Malthusian growth).

m If b < d, we have extinction of the population.

is called the growth rate.
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Introduction to Population dynamics Malthus model

Population dynamics : Malthus

This model is a too simple to be realistic. Nevertheless, looking for long time scale
of the world human population we have a reasonable fit :
Year ‘ 1750 1850 1918 1960 1974 1987 1999 2010

Population 0.5 1 2 3 4 5 6 7
(in billions)

Population (en milliards)

0 T T T T
1800 1850 1900 1950 2000 2050
Années
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Population dynamics : Verhulst

In 1838, Pierre-Francois Verhulst (Belgian mathematician, 1804-1849) refined the
Malthus model by proposing a growth rate depending on the size of the
population :

m When N is small, same growth rate as for the Malthus model;

m When the size of the population increases, the growth rate decreases until it
vanishes when the size reaches an environmental capacity, denoted K. The
growth rate becomes negative beyond that value.

Verhulst model (1838)

N'(t) = r(l - %)N(t}, N(0) = No.

r : intrinsic growth rate; K : environmental capacity.
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Population dynamics : Verhulst

Verhulst model

We notice that :

m If N € [0,K], then (1 — %)N >0, thus N’ > 0 : The size of the population
increases.

m If N> K, then (1— %)N < 0, thus N’ < 0 : The size of the population
decreases.

As a consequence N is a bounded function : If Np >0, 0 < N < max{K, Ny}.
Moreover, it seems that the solution always converges to the stationary state K.

L.. Almeida Population Dynamics



Introduction to Population dynamics  Verhulst model

Population dynamics : Verhulst

Verhulst model

N(t)

N'(t) = r(1 - T)N(t), N(0) = Np.

This Cauchy problem can actually be solved explicitly by noticing that

N'() N N
N1 =8y N(t)  K=N()

Thus, p
= (ln(N(t)) —In(K — N(t))) =

Integrating in time we obtain,

i (20) — e (28
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Introduction to Population dynamics  Verhulst model

Population dynamics : Verhulst

After calculation, it gives

KNy
(K= Np)e "t + No’

N(t) =

m If Ny =0, then for all £ > 0, N(¥) = 0 (no autogeneration of individuals).
m If Ng > 0, then lim N(t) = K.
t—-+oc0

Verhulst model

N(t)

N'(t) = r(l - T)N(t), N(0) = Np.

We remark that N(f) = 0 and N(#) = K are constant solutions to this ODE.
Such solutions are called equilibria.

Except for the case where the density is initially 0, all solutions converge to the
stationary state N(t) = K

We say that the steady state N = K is stable = monostable case. J
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Introduction to Population dynamics  Verhulst model

Population dynamics : equilibria

Numerical example of solutions for K =1, r = 1 and for 3 values of Ny : Ny =0
(red), No = 0.1 (blue), No = 1.5 ( ).

Densité

0.5

0.0 T T T T T T T T T
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Introduction to Population dynamics  Allee effect

Allee effect, bistability

In the case of, for instance, small populations with sexual reproduction other
phenomena should be taken into account : Allee effect.

There is a negative effect on growth when the population density is too low. This
may be due, for example, to the scarcity effect, the consanguinity effect, the
difficulty of meeting a partner for populations with low density, ...
We choose a growth rate under the form (1 — N)(N —0), with 8 € (0,1). It is :
m negative if 0 < N < 6,
m positive if 6 < N < 1,
m negative if 1 < N.
Denoting N(t) population density at time £, the model with Allee effect is :

N'() = (1— N(t))(N(H) —)N(t), 6¢€]0,1,  N(0) = No.
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Introduction to Population dynamics  Allee effect

Allee effect

N'(f) = (1 — N())(N(t) — O)N(), 0¢€]0,1],  N(0) = N.

Equilibria. We look for N such that

(1-N)(N—0)N =0.
Thus, there are 3 equilibria : 0, 8 and 1.

Stability. m If N €]0,0[, N’ < 0 thus N decreases = 0 is stable.
m If N €]6,1[, N >0, thus N increases and if N > 1, N’ <0
= 1 is stable.
m Thus, 0 is unstable.
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Allee effect

Allee effect : population density should be higher than a threshold to avoid
extinction.

0.2

10 15 20 25 30 35 40 45 50

Example of a numerical simulation for the equation ¥’ = y(1 — y)(y — 0.5) for different
initial data ranging from 0 to 1.2.

L.. Almeida Population Dynamics



Introduction to Population dynamics  Allee effect

Positivity and Monotonicity

Positivity. By uniqueness, if Ny > 0 then for any t > 0, N(t) > 0.
Monotonicity.Let Ny > 0. Solutions are monotonous : if R(Np) > 0, then
%N(t) >0 for any t > 0; if R(Np) < 0, then %N(t) <0 for any t > 0. (Proof
left as an exercise)

In higher dimensions we can have a lot richer behaviors as we saw yesterday for
the Predator-Prey model.

In some cases, like for Cooperative or Competitive systems, even in higher
dimensions we can save some form of monotonicity in the sense of comparison
between different solutions (in an appropriate partial order).
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Introduction to Population dynamics  Allee effect

Predator-Prey model of Lotka-Volterra

In 1920, Alfred J. Lotka and Vito Volterra proposed a model to describe the

dynamics of two species in interaction : preys and predators. Their model is based
on several assumptions :

m The prey population finds ample food at all times.

m The food supply of the predator population depends entirely on the size of
the prey population.

m The rate of change of populations is proportional to its size.

m During the process, the environment does not change in favor of one species,
and genetic adaptation is inconsequential.

m Predators have limitless appetite.
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Introduction to Population dynamics  Allee effect

Predator-Prey model of Lotka-Volterra

Denoting 1 the density of preys and p the density of predators. The system is

I __ —
n' =n( .\a/ bp ),
birth rate  predation

pr=p( cen - d ).
predation death rate

Equilibria. We look for (7, p) solution to
0=7(a—bp), 0="7p(cn—4d).

There are two couples of solutions (0,0) and (%, ).
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Introduction to Population dynamics  Allee effect

Predator-Prey model of Lotka-Volterra

For the Lotka-Volterra system, there is an energy (conserved quantity). Indeed, we
notice that

cn—d a—>bp ,

n'(t) = p(b).

n p

Integrating in time, we deduce that

cn(t) —dIn(n(t)) = aln(p(t)) — bp(t) + Cste.

As a consequence the quantity

H(t) =cn(t) + bp(t) —dIn(n(t)) —aln(p(t)),

is constant.
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Introduction to Population dynamics

Predator-Prey model of Lotka-Volterra

Allee effect

As a consequence the trajectories in the phase plane (1, p) of the solutions belong
to the level sets of the energy H.

Dynamics of proportions

The level sets of H are closed (see figure on the left and, the solutions are
periodic in time (see figure on the right).

L.. Almeida Population Dynamics



Dynamical System in Biology



Dynamical system in biology Existence and uniqueness theory

Cauchy problem

Many problems in biology may be modeled by a system of differential equations.

Cauchy problem

Let T>0, f:[0,T] x RY = R?, yo € RY.
A Cauchy problem problem to give a differential system and an initial data :

7 = fby®),  te0T],
{y(@) — 1. ©

m When the function f does not depend explicitely on time, the system is called
autonomous.

m A differential equation of order n may be rewritten into a system of order 1 in
dimension 1 by using the variable Y (t) = (y(t),y/(t),...,y" =D (¢)).

L.. Almeida Population Dynamics



Dynamical system in biology Existence and uniqueness theory

Cauchy problem : linear case

Let A € M,(R), B:[0,T] — R", it is easy to solve the linear problem
y'(H) =Ay(t) +B(t),  y(0) = yo.

The solution is given by

y(t) = exp(tA)yo + /Ot exp((t —s)A)B(s)ds,

where we recall that the exponential of a matrix is given by

k
exp(A Z k'A
If the matrix A is diagonalizable : 3P € GL,(R) such that P"1AP = D, then
e
thy . :
exp(tA) = Pexp(tD)P~! = P 0 e =t p
ST
0 0 et
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Dynamical system in biology Existence and uniqueness theory

Cauchy problem : existence theory

Definition
m We say that (I,y) is a local solution of (C) iff I C [0, T] is an interval
containing 0 and i : I — R is differentiable and satisfies (C).
m We say that (], z) is an extension of (I,y) iff  C | and
Vel y(t)=z().
m We say that (I,y) is a maximal solution if we cannot extend it to a strictly
bigger interval.

m If I = [0, T], we say that the solution is global in [0, T|.

Cauchy-Lipschitz theorem

Assume f is continuous on [0, T| x R4, locally Lipschitz continuous with respect
to its second variable uniformly with respect to t. Then, the Cauchy problem (C)
admits an unique maximal solution.
Moreover, if we denote [O,b) the interval of existence of this maximal solution, if
b < T, then lim;_,;,- ||y(¢)|| = +o0.

L.. Almeida Population Dynamics



Dynamical system in biology Existence and uniqueness theory

Cauchy problem : existence theory

Cauchy-Lipschitz theorem (global vesion)

Assume f is continuous on [0, T] x IR¥ and globally Lipschitz continuous with
respect to its second variable uniformly with respect to . Then, the Cauchy
problem (C) admits an unique global solution.

Remark :

m f locally Lipschitz continuous with respect to its second variable uniformly
with respect to f :

VyeR,3V, CRY(y € V,), 3L, >0, Vx,xeV,Vtel0T]

m f globally Lipschitz continuous with respect to its second variable uniformly
with respect to f :

JL>0Vx,feRLYE€[0,T], |f(tx) — f(t%)] < L|x—z].
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Dynamical system in biology Existence and uniqueness theory

Cauchy problem : examples

Some important examples :

m Consider the Cauchy problem

v =y, y0)=y>0.

The solution is given by y(t) = 1 ]/Oy .
— Y0

It exists only on [0, yl—o) and blows up at time le)

m Consider the Cauchy problem
vy =vy  y(0)=0.

Then, y(t) = % and y(t) = 0 are two solutions for this problem. Hence there
is no uniqueness. Indeed, the locally Lipschitz assumption in the
Cauchy-Lipschitz theorem is not satisfied.
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Dynamical system in biology Equilibria and stability

Equilibrium

In this section we focus on autonomous systems and we assume to have existence
of a global solution on [0, +c0).

Let f:RY = RY, f € CI(RY),

{]/(f) =f(y@®), te0,+o),
y(0) =y € R

We call flow and we denote ¢(t, 1) a solution to this problem.

L.. Almeida Population Dynamics




Dynamical system in biology Equilibria and stability

Equilibrium

For the above autonomous system, we introduce the following definitions :

Definitions

m An equilibrium is a stationary solution, i.e. ¥ € R? such that f(y) = 0.

m An equilibrium is stable if Ve > 0, 36 > 0 such that Vy € B(y, ),
¢(ty) € By e).

m An equilibrium is asymptotically stable if it is stable and 3% > 0 such that
vy € B ), Ip(ty) ~ 7l 0.

m An equilibrium is globally asymptotically stable (GAS) if it is stable and the
above implication is true for all # > 0.

m An equilibrium is unstable if it is not stable.
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Dynamical system in biology Equilibria and stability

Stability

For general system y' = f(y), with i/ an equilibrium. We use a Taylor expansion
fy) = f@) +Df() - (v =) +ollly - 7l)
=Df@) -y =) +olly =7l

We deduce some stability results on the non-linear problem y' = f(y) from a
stability analysis on the linear problem z' = Df(¥)z.

Proposition (Lyapunov stability Theorem)

Let us consider the Cauchy problem (Cp), let i be an equilibrium (f () = 0).
Denoting (A1, ...,A;) (k < d) the eigenvalues of Df (). Then the equilibrium is
(linearly) asymptotically stable if Re(A) < 0 for all eigenvalues A € Sp(Df(¥)).
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Dynamical system in biology Examples with application in biology

Examples in one dimension

In one dimension, for the problem

m The equilibria are the roots of f : i € R such that f(y) = 0.

m The linear stability is given by the sign of the derivative :
If () <O, then ¥ is linearly asymptotically stable ;
If () > 0, then ¥ is linearly unstable.
Let us come back to the Verhulst model

N'(t) = rN(1 —
N(0) = Np.

),

=~z

The equilibria are 0 and K. We notice that f/(0) > 0 and f'(K) < 0. Then 0 is
linearly unstable and K is linearly asymptotically stable.
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Dynamical system in biology Examples with application in biology

Examples : Allee effect

For the model with Allee effect
N/(t):N(l—N)(N—G), 0<f<l,
N(0) = Np.

The equilibria are 0, 6 and 1. We notice that f/(0) < 0, f'(6) > 0 and f'(K) < 0.
Then 0 is linearly unstable and 0 and K are linearly asymptotically stable.

12
u%
08 +

06

04 4
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Dynamical system in biology Examples with application in biology

Examples : Arbovirus vector population (Tiger mosquito invasion of Europe)

“?ﬁ wefsam Aedes invasive mosquitoes, June 2025
Invasive Status | ¥/ ; ‘”:/,4’
M Established 1
Introduced g :
[ Absent RV
[ No data
[ Unknown

Countries/Regions
not viewable in the
main map scale*

[Fw] e
P
W

v ) Canaryslands
%o o €5)

ANy
[y

ecoc o ersa
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Dynamical system in biology Examples with application in biology

Examples : Mosquito life cycle

Aedes Mosquito Life Cycle
AduIt/Gonoerphic
S.Jrvworsh P Developmont
rate{temp)
saiurwondwlcn
Emer nce VIDOS]"O"
e ﬁi?:’ﬂﬁ” Aquatic phase :
. egg (few days to several months)
U|
N wosp D larvae (3 days to several weeks)
temp kel“l' rate(temp)
2 procscn pupa (1-3 days)
- Adult phase (~ 1 month)
Pupahon Hatchlng
mmum el = JZE?(, !omm
: rateitemp)
wm:vl>|bvrm weight Gain
Hopp & Foley 2001
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Dynamical system in biology

Examples : Mosquito life cycle

Examples with application in biology

The life cycle for mosquitoes may be represented as follows

E

Eggs

E

TE

Larvae

Lok

L

L

lor

m Bp(M) birth rate (per female);

® Tp, 71, Tp transition rates; v sex ratio;

m JOf, 01, Op, Opm, O death rates.
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Dynamical system in biology Examples with application in biology

Mosquito life cycle

d E

~—

d
EL—TEE—( ¢cL + Tw + 6 )L,

%p — 1L~ (tp+5p)P,

d

&F = vtpP — 6fF,
d
EM = (1 - I/)TPP - JMM
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Dynamical system in biology

Targeting sexual reproduction : SIT

Sterile Insect Technique

..Where they

Mass-rearing of
insects takes ¥
place 0 slpeaal Male and female +* +
facilities. v ¥.
insects are separated L2 2
lonizing radiation is cqmpete with
used to sterilize the The sterile male wild males to
male insects. insects are released mate with
over towns or females.
cities...
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Dynamical system in biology Examples with application in biology

Targeting sexual reproduction : SIT

Sterile Insect Technique (SIT) : releases of sterilized male mosquitoes. The release
function is denoted u.

Introduce a new compartment for sterilized males, denoted M;.
Probability for a female to meet a non-sterilized male depends on a seeking
efficiency parameter, «, and a partner preference parameter, .

d aM E

ZE=BgF 1——)— Sp)E
g F = Pe 1+(x(M+7MS)( g) — (T + )
%LZTEE—(CL-FTL—F&L)L

iP =T1.L— (Tp +5P)P

dt

EF—UTP—§F

T F

iM—(l—v)TP—é M iM =u—34&M
dt - P M dt s = s1iVls.
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Dynamical system in biology Examples with application in biology

SIT as a general technique against pests

Widely used since the 60’'s and combined with other control methods, the SIT has
been successful in controlling various insect pests, including

m fruit flies (Mediterranean fruit fly, Mexican fruit fly, oriental fruit fly, melon
fly);

m tsetse fly;

m screw worm fly (Cochliomyia hominivorax)

m moths (codling moth, pink bollworm, false codling moth, cactus moth, and
the Australian painted apple moth)

B mosquitoes.

With good "return on investment” according to FAO and IAEA.
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Mathematical epidemiology Introduction

Some historical facts

m In the 18th century, London was strongly affected by an epidemic of
smallpox. A controversial solution was variolation, which involved contacting
individuals with a pustule removed from a patient. This killed the individual
or gave immunity for life. Daniel Bernoulli (Swiss mathematician, 1700-1782)
proposes in 1766 a mathematical model describing this epidemic and
determines whether or not to practice variolation. He proved that by
inoculating part of the population, life expectancy is considerably increased.

m In 1911, Sir Ronald Ross (Nobel prize in medicine 1902, 1857-1932) presents
the first mathematical model of malaria transmission, which highlights a
threshold phenomenon. This is one of the first compartmental models. He is
considered one of the founding fathers of mathematical epidemiology.

m In 1927, W.0O. Kermarck & A.G. Mac Kendrick use the ideas of R. Ross and
propose the SIR model to study the transmission of infection between
humans.
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Mathematical epidemiology ~ SIR model

SIR model

In 1927, W.0O. Kermack & A. G. McKendrick introduce the so-called
compartmental models : population is divided into susceptible individuals (S),
infected individuals (1), and removed/recovered individuals (R).

r

S(t) It) —— R(t)

where 7 is the transmission rate, a is the removal rate.

SI
s = 2
"N
, ST
The SIR system can be written as r = "N al
R = al
N = S+I+R.

complemented by initial data
S5(0) =Sy, I(0)=1Iy, R(0)=0.
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Mathematical epidemiology ~ SIR model

SIR model

m Conservation.
We first observe that N = S+ I + R is a constant. Indeed, S+ I' + R’ = 0.
m Equilibria.

If we calculate the equilibria, we get

SI
G
0 = ri\]I—al
0 = al

Looking to the last equation, it gives I = 0, which is the only solution. Thus, we
expect that the number of infected should converge to 0 to reach the equilibrium.

However, it does not give any information about the number of individuals which
has been infected (corresponding to the one in the R compartment at final time).
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Mathematical epidemiology ~ SIR model

SIR model

S, - _VW
I' = r3l—al

R' = al

Question : Knowing 7, a, Sg and Iy, can we know if an epidemic will occur or
not ?

We have I'(0) = Io( 0 —a).
m If rSy < aN, then I’(O) < 0 and since S’ < 0, we always have I'(t) < 0.
Thus, the number of infected I will diminish until extinction.
m If Sy > aN, then I'(0) > 0. The number of infected individuals will start by
increasing.
We recover the threshold phenomenon, first noticed by Sir Ronald Ross. We

rS . .
denote Ry = T\(;' called basic reproduction number.
a
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Mathematical epidemiology ~ SIR model

SIR model : numerical observation

Example : In a population where 90% of individuals are susceptibles and 10% are
infected (Sg = 0.9, Ip = 0.1).

Case :r=4,a =2, thus Ry = 1.8

0.9

0.7
0.6;
0.5
0.4+
0.3

0.2

0.1

0.0 T T T 7 T T T T T
0 1 2 3 4 5 6 7 8 9 10
temps

There is a peak of epidemic. At the final time, more than 80% of the population
has been infected.
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Mathematical epidemiology ~ SIR model

SIR model : numerical observation

Example : In a population where 90% of individuals are susceptibles and 10% are
infected (Sg = 0.9, Iy = 0.1).

Case :r=2,a =25, thus Ry = 0.36

0.9

0.8 — 1

0.7
0.6;
0.5;
0,4;
O.Si
0.2

ol

0.0

-0.1 T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
temps

There is no epidemic. Less than 15% of the population has been infected.
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Mathematical epidemiology ~ SIR model

SIR model

This model has been used by Kermack and McKendrick in their seminal paper in
1927 to match the data of the Bombay plague epidemic of 1905-1906. The black
dots correspond to the data, the curve is given by the theory.

900
8001
700} N
600
500+

400+

Deaths (~ dR/dt}

3001

i ' X P!
5 10 15 20 25 30
Weeks
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Mathematical epidemiology ~ SIR model

SIR model

Actually, it is possible to solve the SIR model. Indeed, we first remark from the
model that

dl _rSI—aIN _

R— - _1+ﬂ
as rSI

rS’

Then, we have

I+S— g In(S) = constant = Iy + Sp — g In(Sp).

_ 15

Thus, recalling Ry = N and N =

So + Ip, we get

I(S) = N — 5 + 22 In(S/5y).
Ro

The trajectories are given in the graph
opposite.

N
s

L.. Almeida Population Dynamics



Mathematical epidemiology ~ SIR model

SIR model

If an epidemic occurs (i.e. Rg = rso > 1), we would like to know how severe it will
be. Let us denote Iyax the maxnmum of I. From the equation, I' = (ﬁs —a)l,

we deduce that when I = Ijax we have Z(]S = a. Hence, S = S and
So
Imax = Ip+ Sp — R—O(l +1In(Rp)).

Moreover, I is an increasing function with respect to S on (0, R 2. At equilibrium
we have I = 0, hence it is expected that lim;_, 4 I(£) = 0. It vamshes for

0= N = Seo + 2 In(Seo/So).
Ry

This nonlinear equation allows to compute the value S of susceptibles which
have not been infected at the end of the epidemic.
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Mathematical epidemiology ~ SIR model

SIR model

We can proceed in the same way for the equation for R. From the system
equation, we have

45 _Ros
dR Sy’
Then, int ti t
en, integrating we ge lni_iﬁR
So  So
When t — 400, we deduce using that Seoc + Reoc = N
Seo Ry Ry
In—=—-——Reo =—(N—5x).
"5 T s S ¢ )

We recover the same nonlinear equation for Se,. We deduce Roo = N — S, which
is the total number of susceptibles who catch the disease in the course of the
epidemic.

Numerical value

Assuming that N ~ Sy, meaning that the whole population is susceptible to catch
the disease, we can compute numerically the value SS% for different value of Ry :

for Rg = 2, we find %{; ~ 0.2, i.e. 80% of the population has been infected.
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SIR model : summary

We have the following properties. Let

rSo
Ry = —.
07 UN
We denote by (S, I) a solution to the SIR model. The total population is denoted
N and is constant.
m If Ry <1, then S and I are decreasing and I tends to 0 at infinity : No
epidemic.
m If Rg > 1, there is an epidemic : I reachs a maximum value I« before going
to 0 at infinity.
The fonction S is a decreasing function and its limit S, can be computed by
solving the nonlinear equation :
So

Ro
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Basic reproduction number R

The basic reproduction number, Ry, is defined as the expected number of
secondary cases produced by a single (typical) infection in a completely
susceptible population.

This quantity defines the epidemic threshold of a particular infection : if Rg < 1,
the infection will die out; if Ry > 1, the infection will be able to spread, there is
an outbreak risk.

Some examples :

| Disease [ Ro | Disease [ Ry |
Measles (Rougeole) | 12-18 Coqueluche 12-17
Polio 5-7 HIV/AIDS 2-5
SRAS! 2-5 HINI (Grippe A)? 2-4
Influenza 3 2-3 Coronavirus 22-35
Ebola® 1525

. (outbreak in China 2003)
. (outbreak 2009)

. (grippe espagnole 1918)
. (China 2020)

. (West Africa 2014)

apr W
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Basic reproduction number R

The basic reproduction number Ry is a dimensionless number
infection contact time
RO X . ( " ) ‘ . .

contact time infection

In a simple model like SIR, the basic reproduction number is easy to compute.
Indeed, the transmission rate is 7, the mean infection time is %

It becomes more tricky when we are considering infection with multiple types of
infected individuals, or vector-borne disease, or sexually transmitted infections, ...

Remark : Denoting i(t) the number of infected individuals at time t. If a fraction
a leaves the infected compartment by unit of time, then i'(t) = —ai(t), implying
i(t) = e7i(0). Then, the mean infection time is given by fooo e~tdt = 1.
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Basic reproduction number R : example on the SIR model

Recall the SIR model

SI SI

NG I = N al, R'=al, N =S+ I+ R (constant).

The equilibrium without infection is given by (S, I,R) = (Sg,0,0) where Sy is the
(constant) number of individuals. Let us study the stability of this equilibrium. We
linearize around this equilibrium, the linearized variables (s, i,) verify

S =—r

So. . So . ) .
s’ =—r=i, i'=r=i—ai, v =ai
N N

0 *TS()/N 0
Hence the Jacobianis givenby [ = [0 rSo/N—a 0
0 a 0

The eigenvalues of this matrix are {O,VS—NO —a}. We deduce :

The steady state without infection is unstable if ¥Sy > aN, i.e. Ry > 1.

Hence, the basic reproduction number gives information on the stability of the
equilibrium without infection.
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Basic reproduction number Ry

To avoid outbreak, we may try to diminish the value of Ry. In the SIR model, we
have
- 7’50
0 — m
Then, to diminish Ry, one may :

m diminish 7 : quarantine, improve hygiene conditions to avoid contact with
germs, ...;

m increase a : improve treatments;

m diminish Sp/N : vaccination campaign. We consider that to stop an
outbreak, one needs to vaccine a proportion (1 - RLO) of the population.
Indeed if we denote p the fraction of susceptible which are vaccinated, then
we replace Sp by (1 — p)Sy in the previous SIR model. As a consequence the
basic reproduction number for the model with vaccination is (1 — p)Ry. And
we have (1—p)Ro < 1iff p>1— -

Example : for HIN1, Rg is between 2 and 4. Thus, one needs to vaccinate
between 50 and 75 % of the population.
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Computation of the basic reproduction number R

Assume that we have a system in which there are multiple discrete types of
infected individuals (e.g., mosquitoes and humans; women and men; or humans,
dogs, and chicken). We define the next generation matrix as the square matrix G
in which the ijth element of G, Sij» is the expected number of secondary
infections of type i caused by a single infected individual of type j, again assuming
that the population of type i is entirely susceptible.

Then, the basic reproduction number is given by the spectral radius of G

Ro = p(G) = sup{|A|,A € Sp(G)}.

The next generation matrix has a number of desirable properties from a
mathematical standpoint. In particular, it is a non-negative matrix and, as such, it
is guaranteed that there will be a single, unique eigenvalue which is positive, real,
and strictly greater than all the others. This is Ry.
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Computation of the basic reproduction number R

A method to compute the basic reproduction number has been proposed in

[Diekmann et al] 6. We assume to have a system of ODE describing the dynamics
of an infection :

Determine the variables describing the infected states.

Determine the equilibrium without infection and linearize around it only the
system for infected states (i.e. compute the Jacobian matrix J).

Split the Jacobian matrix ] = T + % where T is the transmission matrix
(birth of infected individuals) and % is the transition matrix (change of state).

We have Ry = p(—TZ™1).
Then, we have the fundamental result :

Assume that the transmission matrix T is nonnegative, X is nonnegative outside
the diagonal with sup{ Re(A),A € Sp(X)} < 0.
Then, the equilibrium without infection is linearly stable iff Rg < 1.

6. O. Diekmann, J.A. Heersterbeek, J.A.J. Metz, J. Mathematical Biol. 1990
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SIS model

The SIR model takes into account the fact that infected people are immune once
they are cured. This may not be the case for some diseases for example for
bacterial diseases like staphylococcus aureus, streptococcus pyogenes, chlamydia
pneumoniae, ... In this situation, we use the so-called SIS model, with two
compartment :

m susceptible S(f);

m infected I(t);

m total population N = S(t) + I(#).
We assume that the birth rate and the death rate is the same and denoted y. This
dynamics is schematized with the following simple graph

s ; I(t)

I iz

where 7 is the transmission rate, a is the cure rate.
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SIS model

The corresponding ODE system is

SI
S'= uN — r=—~ — uS I
NGRS G RNC
birth death ¢
infection
I
I'= rs— — ul —

N al .

cure
infection death

The system is completed with some initial data (Sg, Ip).
As above, we have S’ + I’ = 0, then the total population is constant
N = Sy + Iy. Thus we can reduce the system to

S=N-I
'=(r—y—a——IDI
(r—p—a— LD
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SIS model

Let us consider

I = (r—y—a—%[)l, 1(0) = Iy

This is a logistic growth model. We have already seen this model. There are two
equilibria {0, & (r — u — a)}. If we denote

o r
_y—|—a'

Rg

then we can distinguish two cases :
m If Ry < 1, then both equilibria are nonpositive, thus lim;— 1+ I(t) = 0. The
disease will go to extinction.
m If Ry > 1, then there is a positive equilibria which is attractive. Thus
lim; 400 I(t) = Y (r — u — a) and limy— 100 S(t) = X (p +a). We say that
the disease is endemic (there is a non disease-free stable equilibria).
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SEIR model

We add a compartment to take into account an incubation period during which

individuals are infected but not infectious. The new compartment is denoted E
(exposed).

L P OV R N R(t)

iz Iz I iz

The parameters are :

m ;1 death rate which is assumed to be equal to the birth rate (such that the
total population is constant) ;

m [ rate of infection;
m g transition rate from exposed to infected ;

H 7y recovery rate.
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SEIR model
The corresponding system of ODE is

I
! — [— [— J—
S = uN—uS ﬁNS

E = ,B%S— (y+a)E
I' = aE—(u+)I
R' = 4I—uR,

where N = S+ E + I + R is the total number of individuals, which is constant.
We follow the strategy enumerate above
There are two infected states : E, I, two non infected states : S, R.
Equilibrium without infection is S = N, E =1 = R = 0. The linearized
system for infected states around the equilibrium is
E'(t) =Bl — (u+a)E, I'(t) =aE — (u+ )L

Transmission and transition matrices

T_(g 5) Z_<_(Va+a) —(ﬂoﬂ))'
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SEIR model

Finally the basic reproduction number for the SEIR model is given by

_ 1y ap
Ro=p(-T27) = sy

1
—— 0
—271 - < a-;;l 1 ) .
(n+y)(atpu)  pty

ap B
T2 = | ar)(r+p)  wtr | .
0 0

Indeed,

Then, we can compute

It is a triangular matrix. Hence its eigenvalues are given in the diagonal.
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Ross-Macdonald model

Let us consider a model based on the work of Sir Ronald Ross (Nobel prize in
1902) improved later by George Macdonald (1952) for malaria. It is a vector-borne
disease, i.e. transmitted by a vector : mosquitoes (mainly of genus Anopheles).
The dynamical system includes the mosquito dynamics and its interaction with
humans.

Th

~

H Sy I, Human

//ﬁz
Ho
Vvl ll‘v

Similar models are used for the transmission of Dengue, Chikungunya, Zika, ...
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Ross-Macdonald model

The modelling assumptions are :
m Two populations : H (human), V (vector of the disease = mosquito).

m SIS model for the disease for H and V, where we assume that the total
population of humans and vectors is constant.

m Parameters :

m f1, number of bites of an infected mosquito that are efficient in producing an
infection (if the victim is a susceptiblre human) per unit of time =
= proportion of bites that are efficient in producing an infection (if the victim
is a susceptiblre human) x total number of bites of an infected mosquito per
unit of time.

m B number of bytes of a susceptible mosquito that are efficient in making it
become infected (in case it bites an infected host) =
= proportion of bites giving rise to an infection of a suceptible mosquito (in
case the human is infected) x number of bytes of a susceptible mosquito per
unit of time;

m 7 recovery rate for humans;

m i, death and birth rate for mosquitoes (assumed to be the same).
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Ross-Macdonald model

The corresponding system of ODE is

das IS

dTEhZ P th+’ﬂh, H =5+ 1,

dl, LS},

Zn — ]

7 =Py

das IS

= B WV —pSo,  V=Soth,
dl, . I;Sy

a P T

It is clear that the number of humans, H, and of mosquitoes, V, are constant.
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Ross-Macdonald model

Examples of compartmental models

We are now in position to compute the basic reproduction number for this system

There are two infected states : I, I.
Equilibrium without infection : (Sy, I, So, I) = (H,0,V,0).
Linearization around this equilibrium for the infected states

dl

dl
ar = B1ly — Iy, dtv */32 Ih uly.

H Transmission and transition matrices

V8 ()
T= Y= .
(ﬁzg 0 0
Computation of Ry
0o A
T ! = B E
BV
Hy

%4
The spectral radius for this latter matrix is then Rg = ﬁ;i; .
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A model for dengue transmission

Finally, we consider a model for dengue transmission ’ This model is based on the
following modeling assumption :

m The human population is assumed to be constant, i.e. the death rate for
human is the same as the birth rate.
m Dengue is a SEI disease for mosquitoes.
m Dengue is a SIR disease for human.
We use the following notations :
m V, S, Eu, I, denote the total number of mosquitoes, the number of
susceptible mosquitoes, the number of mosquitoes exposed to the disease,

the number of infected mosquitoes, respectively. We have the relation
V =Sy + En+ In |

m H, Sy, I, R, denote the total number of human, the number of susceptible
human, the number of infected human, the number of recovered humans,
respectively. We have ’ H=S5,+1,+Ry ‘

7. From H. Hughes, N. F. Britton, Modelling the use of Wolbachia to control dengue fever
transmission, Bull. Math. Biol. (2013).
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A model for dengue transmission

With these considerations, the model is

av 174

S =bV(l— ) —dV,

dE 1
St =PV = En = ln) g -
ds S

Gt = MH—aqlng —pSy,

eE

Examples of compartmental models

m — AEn, 6%” =eEy, —dly,
dl S
d—: = aqlmﬁh —cly, — uly.

m Parameters are
m g the biting rate.

m p the probability of a blood meal leading to mosquito catching dengue from

infected human.

m g the probability of a blood meal leading to human catching dengue from

infected mosquito.

m b, d birth and death rate for mosquitoes, respectively; e mean incubation rate.
m y birth and death rate (the same); ¢ recovery rate.
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A model for dengue transmission

We are now in position to compute the basic reproduction number for this system.
There are 3 infected states : Ey;, Ly, I.

Equilibrium without infection : (V, Ey, Iy, Sy, ;) = (K(1 — %),O, 0,H,0).
Linearization around this equilibrium for the infected states

dE, apK(1 — %)

dl,,
= I, — E —— =¢E,;, —dI
at 21 h (e+d> ms it eEy —dly,
dl
d—th =aqly, — (c+ ).
Transmission and transition matrices
0 0 ﬂng—%> —(d+e) 0 0
T=10 o 0 Y= e —d 0
0 ag 0 0 0 —(c+p)
Computation of Ry : We have
1
1 Tre ‘1) 0
— e
X' = gae a O
0o o0 L

c+u
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A model for dengue transmission

Then, using the above approach, we compute

apK(1—4)
. 0 0 “oor
T = 0 0 0
eaq aq 0
d{d+e) d

. . . ea’pgK(1 - ¢)
The spectral radius for this latter matrix is then Ry = Ad+o)(ct WH

-
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Cooperative systems

Systems where several species will help each other

dﬁl =rN1 +a1N1 N,
dgz = 1Ny + aaNa Ny

Here, unlimited growth (not realistic). Better to have logistic growth

Ttl rlNl(l_*i_’_blZ%)
dN. N N
7‘#2 1’2N2(1 — T(; + bz] fK; )

Where 11,75, Kq, K>, b1, byq positive constants.
b1, by1 cooperation coefficients between species 1 and 2
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Cooperative systems

Doing a change of variables

Np N> 1) K>
= —, Un = —_, T =17 t, = —, a e b -,
K1 2 K2 ! p r 12 12 Kl

Our system becomes

dug _

7o = ur(1 —uy +apuz) = f1(ug, uz)
%—2 = pup(1 —up + anuy) = fo(uy, up)

Critical points : (0,0), (1,0), (0,1)

L.. Almeida Population Dynamics
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Cooperative systems

Doing a change of variables

Ny Ny ) K>
= — 1/[2:?2, T:rlt, p:E’ alzzblzfl,

Our system becomes

%—2 = pup(1 —up + anuy) = fo(uy, up)

Critical points : (0,0), (1,0), (0,1)
and a fourth one

{C‘lfg = u1(1 —uy +apua) = f1(uy, uz)

1+ ap
1 7
— a12421

14+ an

*
Uy = ————
27 1—apan

uj =

K
ax1 = by K%

which is positive if 1 — ajpap1 > 0. It corresponds to a co-existence of the two
populations benefiting from each other's presence without exploding.
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(0,0) is unstable, (1,0), (0,1) are saddle points.

2.0

25

20

15

1.0

05

0.0

FIGURE — If 1 — aqpap1 > 0, thanks to

FIGURE — If 1 — aqpap1 < 0, both explode

cooperation, both populations are beyond
their isolated environmental capacitv.
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Competitive systems

Systems where several species compete with each other.
Principle of Mutual Exclusion (PME) : only the fittest one survives.

ANy Ny Ny

3 = F]Nl (1 K blZ K

dN; N N Ny+by N
th = 7”2N2 (1 — 7K§ — b21 T{;) = 7’2N2(1 — =2 K2211)

where r1,Kq, 72, Ky, b1p, by are positive constants. r; intrinsic growth coefficient of

species i. K; carrying capacity of i (isolated). b1y measures the effect of species 2
on species 1.
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Competitive systems

Systems where several species compete with each other.
Principle of Mutual Exclusion (PME) : only the fittest one survives.

le _ N1 N,

dN, N; N Ny +by1 N
th = 7”2N2<1 — Kii — b21Kf;) = 7’2N2(1 — =272 K221 1)
where r1,Kq, 72, Ky, b1p, by are positive constants. r; intrinsic growth coefficient of
species i. K; carrying capacity of i (isolated). b1y measures the effect of species 2
on species 1.

Change of variables :

_ M N 2 Kz Ky

= Uo T=rqt ==, ap =bp=—, ay =by—
K’ 15, p ;a1 121(1' 21 211<2

u =
! Kz ! 1

System becomes

%1 = u1(1 —uy —apup) = f1(uy, up)
42 = pup(1 — uy — ayuy) = fo(ur, up)
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Competitive systems

Critical points (uj,u3) satisfy fi = f, =0
(0,0), (1,0), (0,1) and
1—ap 1—ay

*

u, = _—
1

1 —apan

*
1 —apay’ 2=
Four cases depeding on values of a1y, a1 :
Case (a) : a1p < 1,ap1 < 1 weak competition between the species;
Case (b) : a1p > 1,451 > 1 strong competition between the species;
Case (c) : a;p < 1,a91 > 1 species 1 is stronger;

Case (d) : a1p > 1,471 < 1 species 2 is stronger
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Competitive systems

Us Up

fi (”1, Uz

1 Uy 1 1 Uy
a1 a1
Case (a) cap <lan <1 Case (b) capp >1,a0 >1
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Competitive systems

Uz Uz
1
a2
1 1
1
a2
1 1 uq 1 1 uy
a1 a1
Case (C) cap < layn >1 Case (d) cap >1lan <1
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Competitive systems

We see that in cases (c) et (d), we have only 3 critical points. Dependence on the
competition coefficients 4;; .

For (linear) stability look at linearized system matrix :

af,  d

A= % e _ (1= 2uy —apuz —aini
A2 —pa iy p(1—2up —axu1) ) (s 4
duy - duz/ oyt (uf,u3)

m For (0,0) :
1-A 0
0 p—A
So A1 =1 and A, = p >0, Hence, (0,0) is linearly unstable.
m For (1,0) :

|A/\I|:‘ =0

|A—/\1:‘_1_)‘ —2

0 p(1—ax)—A
Hence A; = —1, Ay = p(1 —ay1), (1,0) linearly stable if aq > 1, linearly
unstable if a5 < 1.

m For (0,1), Ay = —p, Ay =1 —ayp. Hence, (0,1) linearly stable if a;p > 1,
linearly unstable if a;p < 1.

-
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Competitive systems

For the critcal point (u,u3), we have
A 1 ( a;p —1 a12(a12 — 1))
1—apay \pax(an —1)  p(an —1)
Thus,

M, Ay = ! ] <(ﬂ1z—1)+P(ﬂ21 -1)

2(1 — a12071

i\/((ﬂlz —1) +p(a12 — 1)) — 4p(1 — appao ) (a2 — 1) (a1 — 1))
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Competitive systems

05}

0.0

1 0.4

séparatrice
1 1o 1
domaine d‘attraction//
de (0,1) : suivie de /
I'?spéce 2

0.8

0.6

///de (1,0) : suivie de

l'espéce 1

0.2

0.0

0.0 05 1.0 15

FIGURE — Case (a) : Only case where
(u5,u3) is stable.
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FIGURE — Case (b) : (uj,u3) is a saddle
point. Separatrix
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FIGURE — Cas (d) : (0,1) only is stable :

species 2 survives.

(1,0) only is stable :

FIGURE — Case (c) :

species 1 survives.
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Monotone systems in R" : order relations

Consider the open domain D C R" and let f : D — IR" be C!(D) We consider
the system of ODE
' =f(x), fecl(D) (1)

Let ¢ (x) be the solution of (1) passing through point x for t = 0.
This defines the flow associated with system (1) ®(f, x) := ¢¢(x)
The non-negative cone of R" is

R ={(x1,- -+ ,xp) € R" : x; > 0Vi},
and the the partial order associated to it is
y<x <= x—yeR} < y; <x;Vi=1,---,n

We say that x <y if x <y and x # y (i.e. if x <y and there is i s.t. x; < y;)
and that x K yiif x; <y; foralli=1,--- ,n.
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Monotone systems in R"” : Kamke functions

Definition : f is of type K in D if
fi(a) < fi(b), Ya<b and a; =b;.

Proposition (Comparison preserving flow) : Let f be of type K in D and
x0,Y0 € D. Let <, be one of the relations <, <, <. Then, if xg <, yg and t >0
s.t. ¢¢(x0) and ¢¢(yp) are defined, we have

Pt(x0) <r ¢t(yo)

i.e. if the two points are comparable, the flow preserves the comparison. We
remark that the proposition gives a necessary condition for f to be of type K. An
analogous proposition is valid for non-autonomous systems.

x" = f(t,x), where f est C! in RT x D, and f(t,-) is of type K in D for all t > 0.
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Monotone systems in R" : p-convexity

The domain D is p-convex if Vx,y € D, if x <y, the segment

xy={tx+(1—-t)y : te[0,1]} C D
D convex = D p-convex.

If D C R" p-convex and

%ZO,W;&LWED 2)
]

Then f is of type K in D. (just use the fundamental theorem of calculus)
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Monotone systems in IR” : cooperative and competitive systems

Definition :
system (1) is cooperative in the p-convex domain D if (2) is satisfied.
system (1) is competitive in the p-convex domain D if

8f,- . .
— <<
axj_O, Vi#j, VxeD

Remark : (1) is competitive (with flow ®(t, x) = ¢¢(x)) iff x' = —f(x) is
cooperative, and vice-versa. A cooperative system is a monotone system and it
preserves order <, for t > 0. A competitive system is such that its flow with time
reversed is monotone : i.e. if x <y and t < 0, then ¢¢(x) < ¢ (y).

Exercise : Show that a competitive system's flow preserves the property of
non-comparability of two points (for t > 0).
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Tumor Growth : Proliferative and quiescent cells

It has been observed that not all cells proliferate. Observations show that a big
part of cells stay in a quiescent state. To take into account this effect, we should
consider at least two states of cells : proliferative cells with density P, quiescent
cells with density Q. A simple model is

%:F(p)—bpﬂg,
iQ
9 —bp—cg-ag,

with the parameters :
m F growth function (e.g. F(P) = rP(1 — (%)) with r,a,K > 0);
m b,c > 0 transition coefficients;
m d death rate.

This system is complemented with initial data Py, Qg. The density of tumor cells
is given by N(t) = P(t) + Q(#).

L.. Almeida Population Dynamics



Monotone Systems  Tumor growth ODE models

Tumor Growth : Proliferative and quiescent cells

We have

Preservation of positivity and monotonicity :

Po,Qo >0 = P(H),Q(H) 20,7t >0.

ug :=F(Po) —bPy+¢cQo 20, = *>0dQ
09 := by — (c +d)Qo > 0 oo

Equilibria : There are two steady states : (0,0) and (P, Q) with
P =K(1 - 25)"" Q = ;43P And we have

m For d < 1, the steady state (P, Q) is asymptotically stable.
m If ¥ > b+ c+d, the steady state (0,0) is linearly unstable.
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Tumor Growth : Proliferative and quiescent cells

Proof : The system is monotone - this yields positivity and monotonicity.
Equilibria. We solve the system

F(P)—bP+CQ=0, bP—(c+d)Q=

It gives

b 5 — P, bd \
Q= crd’ P<r(1(1<))c+d>_0'
Thus, we have two equilibria P=Q = 0 or P = K(1 — 7(C+d )1/“ Q= Ldi.

Stability. The Jacobian is given by

(T Ga)- (e )

At the equilibrium (P, Q), we have
bd
= —ra—b+(1+a); c '
b —(c+d)

When d =0, we have Tr] = —ra— b — ¢ < 0 and Det | = rac > 0. Hence, the
real part of eigenvalues is negative. By continuity it is also true for d small.
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Tumor Growth : Proliferative and quiescent cells

At the equilibrium (0,0), then the Jacobian is

Jo= <r;b —(cc+ d))

Then TrJo =r—b—c—d. Then, if r > b+ c + d, we deduce that one
eigenvalue (at least) has a positive real part. Thus, it is linearly unstable.
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Proliferative and quiescent cells : action of a therapy

Action of a therapy.
We usually consider that there are two different drugs : cytotoxic drugs kills

proliferative cells, cytostatic drugs block the proliferation. We can add these
effects in the simple model above :

dP
E = F(P) = (b +Cstat)P+cQ — Ctox D,

d
2 = bt cua)P— e~ 40,

where cstat and crox represent the concentration of cytostatic and cytotoxic drugs,

respectively.

m Effect of cstat

We replace b by b + cstat in the previous equilibrium. Then they are given by
(0,0) and

Q _ b + CStatF.

pok(i- ey, g bres

r(c+4d)
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Monotone Systems  Tumor growth ODE models

Proliferative and quiescent cells : action of a therapy

In the latter case, we have then,

W:ﬁﬁ-@:K(l_'_ b+Cstat)(1_M>l/a'

c+d r(c+4d)

Thus P diminishes, but Q increases. We notice that in the particular case % <1,
N increases, i.e. the size of the tumor increases !
m Effect of crox

The non-zero equilibrium is given by

_ Cox  bd \Ve b
P_K(l_ r _r(c—i—d)) ’ Q_c+dp'

and

N:?JFQ:K(HH%) (1— Ct:* —r(cbjd))l/a.

This is always efficient since N decreases.
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Reaction-Diffusion Models

Reaction-diffusion equation

Metapopulations are interesting when we want to model the dynamics of
interconnected metapopulation. However, if we are interested in the diffusion
process of individuals, we have to consider the spatial variable and then we have
to deal with partial differential equations. Here, we only consider reaction and
diffusion.

Reaction-diffusion equation

If we denote by 71(¢, x) the density of a population, we have

oin —div(DVn) = f(x,n).
—— —

diffusion reaction

D is the diffusion matrix; when it is constant the diffusion is homogeneous (no
preferential direction to diffuse). The reaction term may model the birth, death,
interaction between population, chemical reactions, ...

This equation may be derived thanks to a conservation law of the form

temporal variation = flux + local source .

In order to illustrate this derivation, let us first consider the one-dimensional case.
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Reaction-Diffusion Models

Reaction-diffusion equation

Let T: Jéx be the flux along the x axis. We write the balance law in the cell
(x, x + Ax) during the time interval (t,t + At) :

X X+ Ax

m Variation of number of individuals : (n(t +dt, x) — n(t,x))Ax;

m Flux entering the domain during time At : J(t,x)At;

m Flux out of the domain : J(f,x + Ax)At;

m Birth and death in the domain during the time At : f(x,n(t, x))AxAt.
Thus in one dimension, the balance law implies

(n(t+dt,x) —n(t,x))Ax = (J(t,x) — J(t,x + Ax))At + f(x,n(t, x)) AxAt.
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Reaction-diffusion equation

To avoid congestion, individuals have a natural tendency to move apart from each
other towards less crowded areas. To model this phenomenon, we consider that
the flux is inversely proportional to the gradient of the concentration :

d
J(t,x) = =D—n(t, x). (Fick's law)
ox
We arrive at, after dividing by AfAx,

9 o
. Bt x) — Ln(t,x +A
i ) = nt) _ _paet ) = I8 i),

Letting At, Ax — 0, we recover the one dimensional reaction-diffusion equation
o = Doxxn + f(x,n).

Obviously, this derivation may be extended to higher dimensions.
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Reaction-Diffusion Models Notion of traveling waves

Introduction

Interesting phenomena modeled by reaction-diffusion equation in full space is
propagation phenomena, mathematically described thanks to traveling waves.
In biology, traveling waves have been used in many situations to explain

invasiveness of a species, spread of a genetic trait, propagation of epidemy, ...

Spread of Bubonic Plague
in Europe
[ 1350
it =
- > Faster and faster
early 1349 after 1351 ¢ ars after Australia, but.
e300 e
«Conse ot s iy o eatin Eina tosinge
N R -
20102005 2000 1995 1990 1965 1980 1975 1970 1965 1960 1955 1950 1945 1540 1935
KakoduNational Park
onHN| g
e
copdagen
® Lubeck
B SR

v S evagdenurg WS pilbarg \ y

$PERTH k A 4
] \ svone
ks o MELB[:L RNel [
Future dsrbution A0S
E

Butasecond suggestsit could reach the south coast

- ¢ i Bothprecictonssuggest these areas wil e ivaded

FIGURE — Two examples of invasion phenomena : Left : bubonic plague in Europe
during the middle age; Right : cane toads in Australia nowadays.
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Reaction-Diffusion Models Notion of traveling waves

Examples

Consider a population with density N we assume that

m the population growths with a rate r and is limited with an environmental
capacity K;

m individuals are allowed to move randomly in space with diffusion coefficient v.

Then the dynamics of the density is given by

3N — VAN = rN(1 = D),

~

This is the monostable Fisher/KPP equation.

Without spatial diffusion, we know that the density converges towards the
environmental capacity K.

Question Can we observe a phenomenon of spatial invasion of the
population ? How fast?
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Reaction-Diffusion Models Notion of traveling waves

Examples

Consider now a population with density N such that
m there is an environmental capacity K;
m for low density the growth is nonpositive ;

m individuals are allowed to move randomly in the space with diffusion
coefficient v.

Then the dynamics of the density is given by

1o N

otN —vAyN = rN(N — 0)( K)

This is the bistable Allen-Cahn equation.

Without spatial diffusion, the density may converge towards extinction or the
environmental capacity K.

Question Adding spatial diffusion, is it possible to observe the extinction of
the population or its fixation?
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Traveling waves : setting of the problem

To simplify, we work in one space dimension and consider one species whose
dynamics is governed by the reaction-diffusion equation :

oiut — Oxxu = f(u), t>0,x €R.

Definition

A traveling wave solution is a solution of the form u(t,x) = v(x — ct) with ¢ € R
a constant called traveling speed.

We usually consider the case where the function f admits two stationary states
f(0)=f(1)=0:

m Fisher/KPP (monostable) equation : f(u) = u(1 —u).

m Allen-Cahn (bistable) equation : f(u) = u(1 —u)(u —6).
We complete the definition by the conditions v(—o0) =1, and v(+o0) = 0.
When ¢ > 0, this expresses the fact that the state v = 1 invades the state v = 0.
When ¢ < 0, the state v = 0 invades the state v = 1.
Injecting the expression u(t, x) = v(x — ct) into the equation, we arrive at the
system :
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Reaction-Diffusion Models Notion of traveling waves

Traveling waves : setting of the problem

We look for a real-valued function v and a real ¢ such that

"+ + f(v) =0, onR,
v(—00) =1, v(4+00)=0.

X

When ¢ = 0, we say that we have a stationary state or a standing wave.
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Reaction-Diffusion Models Notion of traveling waves

Traveling waves : setting of the problem

Observations :

m The problem is invariant by translation :
If v(x) is a solution, then v(x + a) is a solution for any a € R. Then, we
normalize by setting for instance v(0) = 1.

m Multiplying by v/, we get
v
S +e(@)? + (F(0)) =0,  where F(o) = / F(s) ds.
0
Integrating (using the fact that v'(£oc0) = 0), we find
. 1
¢ / (o' (x))2dx = F(1) = / F(s) ds.
JR J0
An important consequence is that

¢ has the same sign as folf(s) ds.

For instance, in the Fisher/KPP case, f(u) = u(1 —u) > 0 for u € [0,1], thus
F(1) > 0, it means that v = 1 is invading.
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Reaction-Diffusion Models  Analytical examples
The monostable equation with ignition temperature

0 for0<u <@,

For 6 € (0,1), u >0, Wetakef(”):{ u(l—u) forf<u<I.

For f as above, there is a unique traveling wave solution (c*,v) with v decreasing
and normalized with v(0) = .

Proof. We have seen above that ¢ > 0. Thanks to the normalization v(0) =
and the fact that v is decreasing, we look for a solution with v > 6 for x < 0.
Then f(v) = u(1 —v) for x <0,

o + 9"+ u(1—0) =0.
The solution is given by v = 1 — (1 — 8)e*+¥, x < 0 with

Ay = 2(—c++/c2+4pu) > 0.

For x > 0, we look for v < 6, then f(v) = 0. The solution is v(x) = fe™* for

x > 0.

It remains to check that v is differentiable at x = 0, that is
—cf=—(1-0)Ay4.

This equation admits an unique solution ¢* > 0 (since ¢ — A4 is decreasing). [
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Bistable equation

We can extend the argument above to the bistable case. We take for

—vu for0<u<@,
96(0,1),}4>0,v>0,f(u):{ w(l—1) for6<u<i,

For f as above, there is a unique solution (c*,v) with v decreasing and
normalized with v(0) = 6.

Proof. For x < 0, the equation is v” + c¢v’ + (1 — v) = 0. Then,

v(x) =1—(1-0)eM*, Ay = J(—c+ /2 +4p).

For x > 0, the equation is v” + cv’ — v = 0. Then, v(x) = fe~2*,

Ay = e+ V2 +4v).

To match the derivatives at x = 0, we have to impose 1,0 = (1 — 6)Ay. The
function ¢ — Aq is decreasing, whereas ¢ — A, is increasing, and the limits at +o0
are opposite infinity. Thus this latter equation admits a unique solution c*. ]
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Analytical example

[ 1 —-0u foro<u<,
WetakeforGE(0,1),y>0,f(u)—{ Wb(l—u) forb<u<l,

For f given as above. There exists a minimal speed ¢* = 2,/(1 — 6)u and for all
¢ > ¢* a unique solution (¢, v) with v decaying and normalized by v(0) = 6.

Proof. For x < 0, we want v > 0, then the equation is
v + ' +ub(1—0) =0.

The unique solution that tends to 1 at —o0 is

1
o(x) =1—-(1-0)eM*, x<0, Ap= 5(—ct \/ €2+ 4ub)

For x > 0, we look for v < 6, then v + cv’ + (1 — 0)v = 0. The characteristic
polynomial for this ODE is A2 + cA + (1 — 0). If ¢ < c*, then the roots of this
polynomial are complex conjugate, then there no solutions decaying and
nonnegative to the ODE. For ¢ > c*, both roots of the polynomial are negative

and are given by pi = 3(—c /2 —4u(1-0)).
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Analytical example

Then, for x > 0,

v(x) = el * + a(el+* —et-7), e = %(—c + m)

This function is positive iff 2 > 0. It remains to check that the derivatives match
at x =0, thatis —(1 —0)A; = Bap—_ +a(puy — p—). This requires that

¢~ (1-0)\/c2 +4p0 + 0/ — 4u(1 - 0) = 20,/2 — 4u(1 - 6).

For ¢ > c*, the left hand side is positive. Therefore, we can compute a unique

a > 0 satisfying this equality for any ¢ > ¢*. This allows to contruct a positive
and decaying function v. O
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The monostable equation with ignition temperature

O=ignition temperature : minimal temperature required to burn a gas and start
the reaction.

0 0<u<é
o1t — Oxxtt = fo(u), fo(u)=¢ >0 f<u<l1
0 u=1

Traveling wave problem

Find ¢ and v such that

v(—o0) =1, v(400) = 0.

Theorem

| A\

There is a unique decreasing traveling wave solution (¢*,v) normalized with
v(0) = 1 and it holds that ¢* > 0
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The Fisher/KPP equation

We consider the Fisher /KPP case :
oyt — Ayt = u(1 —u).

The situation is quite different than the case with ignition temperature. A famous
result is

For any ¢ > c¢* = 2, there is a unique traveling wave solution v with 0 < v <1
and v monotically decreasing.

m The quantity ¢* is called the minimal propagation speed.
m This result can be extended to general equation

Ort — Voxxtt = f(u), with £(0) = f(1) =0, f(u) >0for 0 <u < 1.

In this case, the minimal propagation speed is ¢* = 2/ f"(0)v.
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The Fisher/KPP equation

Formally, we may use a simple analysis to deduce the behavior. Since u is
expected to be small at +oco, we consider the linear equation (by neglecting uz)

Oru — voxyu = f'(0)u.

Looking now for a solution u(t,x) ~ Ae~**=) as x — 4-c0, with a > 0, and
A > 0, c being the wavespeed. Injecting this expression into the linearized
equation, we obtain

ca = f'(0) + va®.
This is the dispersion relation. This equation admits a solution a > 0 if and only if
€ > Cmin = 24/ f"(0)v.
Notice that when f’(0) < 0, there always exists a real root to this second order
polynomial.
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Reaction-Diffusion Models ~ The bistable case

Allen-Cahn (bistable) equation

We consider the bistable case, i.e. 0 and 1 are both stable steady states.

Traveling wave solution

We look for ¢ € R and a real-valued function v such that
v +cv' + f(v) =0

v(—00) =1, v(400) =0, v(0)=

u
We will make use of the notation F(u) = / f(v)dv. We assume that
0

f0)=0, f(0)<o0, f(6)=0, f(1)=0, f(1)<0,
f(u) <0on (0,0), f(u) >0o0n (6,1).
Adapting the phase space method, we may prove :

Under these assumptions, there exists a unique traveling wave solution (c*, )
with v decreasing.

We have ¢* > 0 for F(1) > 0, ¢* =0 for F(1) =0, ¢* <0 for F(1) < 0.
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Reaction-Diffusion Models ~ The bistable case

Allen-Cahn (bistable) equation

A simple choice of bistable function satisfying the assumptions is
flu)=u(l—u)(u—20).
In this case, we have the explicit expression of the traveling wave solution

e=x/V2 . 1
o(x) = sy ﬁ(i —0).

Indeed, we may compute with this expression,

/

S

1
v = —o(v-1), v =

V2

Thus, —c*v' — v =v(1 —v)(v+

(2v+1)=v(v—-1)(v+ =

&\

= f(0).

S‘n
N\P—l
N~—
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Reaction-Diffusion Models Example : Mosquito population control

Example of field application :
Mosquito population control with
the Sterile Insect Technique (SIT)

L.. Almeida Population Dynamics



Reaction-Diffusion Models Example : Mosquito population control

Epidemic control with SIT

S, = byH- %MIMSH — by Sy
Ey = %\AIMSH —YHEH — byEH
Iy = 9uEn —oply —byly
M aM ﬁM
o= 1——= Mg T, —
Sy bMM< K>1+a(M+’yMS) 17 omln —dmSm

Ey = %VISMIH —YMEm —dmEm
Ly = YmEm —dmlm

M,S = u *dsMs

L.. Almeida Population Dynamics
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Instant Releases

Considering again instant releases the equation for the sterile mosquitoes

becomes :

{ Mg = —dsMg, tE€|[t,tivq], i=0,...

Ms(t]) Ms(t7)+c, i=1,...,n

We can solve this equation explicitly, finding

i
Ms(t) = 2 CjEidS(titj), t e [ti/ ti+1], i=0,...
j=1
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Results : 10 instant releases

2000
2000
1750
1500
7 1500
C=75-10 1250
. I
Reduction ;000 Ms 1000
12.3% 70
500 500
250
0 0
o
t
1000 2000
Cc=15-108 &0 1500
Reduction : ,
49.1% 1000
400
200 00
o 0
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Results : 20 instant releases

2000

1750

C=75-107  *°
Reduction :
13.9%

750
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Reduction :
99.9%
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Sterile Mosquito Technique

m Strategy and results depend highly on the number of releases considered
(when low).

m After ~ 20 releases almost no improvement.
m With few mosquitoes : spaced releases around the peak.

m With a lot of mosquitoes : spaced releases from the beginning.
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Spatial problem - invasive wave propagation

= R0 - 0 A
a' - Pl ¢ (]
FI1GURE — Expansion of Aedes albopictus in mainland France, 2004-2022

Global warming and trade help Aedes mosquitoes to settle in many temperate
regions including Europe. They are not only an invasive species but also vectors
for many diseases including dengue, Zika and chikungunya.
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Traveling Waves : Monostable VS Bistable Dynamics

u(t;x) = Proportion of mosquitoes at time f and position x

diu—Au = g(u)
—— N
Diffusion Growth

Two possibilities depending on Allee effect : Fisher KPP (without) or Allen-Cahn
(with)

Monostable dynamics (Fisher-KPP) Bistable dynamics (Allen-Kahn)
g(u) =u(l—u) g(u) =u(l—u)(u—10)

e 2 steady states: { 0; 1} e 3 steady states: { 0; 0; 1}

e 1stable :1 e 2stable :0and1

e 1 unstable : 0 e 1 unstable : 6

When invasion occurs, it is like a traveling wave solutions :

1

Cot
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Reaction-Diffusion Models Example : Mosquito population control
Bistable Dynamics and Traveling Wave solutions
Assumption : Bistable dynamics
oru—Au = g(u) "
N—— N~ 7m
Diffusion  Growth ’

Natural set of solutions : the traveling wave solutions  u(x,t) = ¢(x — cot).
du—Au=gu) — —cog’—¢" =g(¢).
¢ connects the two stable steady states :
p(—o0) =1 and ¢(+00) =0.
The sense of propagation depends on sign(cg) = sign (fol g(v)dv)
Assumption : sign(cp) > 0 : naturally, the mosquitoes invade the territory

1

2

Cot

0
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Barrier construction

We want to study the possibility to construct a barrier to block invasion by
releasing sterile males on a domain of width L. Numerical simulations taking

u= UI[O,L] .

12000

12000
1400
10000 1200 10000
8000 1000 000
2 800
5000 H 6000
600
4000 000
2000 2000
o o
2 -1 3 10 20 20 -lo o 10 20
Space Space

FIGURE — Numerical simulations for u = Ul[O,L] with L =5 km and
U =10000 km~! day™ (left), U = 20000 km~! day~! (center), and
U = 30000 km~! day~! (right).

Theorem (A, Estrada, Vauchelet), Math. Model. Nat. Phenom. 2022

For any L > 0, there exists U large enough, such that there exists a barrier for the
SIT system.
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Pilot study and scale-up

The WHO and IAEA have been financing many pilot studies in many countries
like, for instance, in Cuba in 2020 and the results have been very encouraging

i ovitrap index

L2
0.0 0z
8 91011 12 13|14 1516 17 18(19 20 21 2223 24 25 26|27 28 29 30 3132 33 34 35[36 37 38 39 )
week
Feb Mar Apr May Jun Jul Aug Sep month
Releases (Secondary axis)
— ElCano
A. Arenas

Pilot study done in areas of 20 to 25 ha in Cuba in 2020.
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Scale-up

However, scaling-up to region or country-wide interventions raises many new
problems including interesting mathematics

&
il
° Havana
o) o © o
o o® )
° o )
©
1)
9 0 © @
Dq : \0 R
e
o
5 e 7
o e CX
° iy
@ e
: Qs ) @
= / ity A
P No @
3 @,
=

Planned intervention over a 1000 ha area starting in 2026
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Reaction-Diffusion Models Example : Mosquito population control
The rolling carpet strategy

The idea is to act on a finite interval (0, L) and move this action like a rolling
carpet in the opposite sense to that of the natural invasion traveling wave.
o — Au = g(u) + ACt(”)l{ct<x<L+ct}/
u(—o0) =1,
u(+00) =0

\ Act

| Act

-ty Lty 0

FIGURE — The free system and with action att =0, t =1t >0, t =1t >=1#
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The rolling carpet strategy

The idea is to act on a finite interval (0,L) and move this action like a rolling
carpet in the opposite sense to that of the natural invasion traveling wave.

Aim of the work : generate a traveling wave with a negative speed solution of

{ —cpp — 91 = g(Pr) + Act(pr)1jocx<r),
pr(—0) =1  ¢p(+00) =0

FIGURE — The traveling wave solution ¢y,
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The main result for SIT
Aim : Obtain a traveling wave solution ¢

—cdpp — PLm = 8(dr,m,Ms),
—cmg —mg = Ml ocx<r) — HmMs
prm(—0) =1, ¢rm(0) =0.

Theorem (A - LAQ@culier - Vauchelet, SIAM J. Math. Anal. 2023)

For every speed ¢ < 0 and size L > 0, there exists a critical number of mosquitoes
I1(c, L) such that

If M < II(c, L) then the system does not admit a solution ¢p .
If M > TI(c, L) then the system admits a traveling wave ¢r, .

Moreover, we have

limII(c,L) = 400, liminfII(c,L) >0 and lim Il(c,L) = +o0

L—0 L— o0 c——00
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Numerical results

Reaction-Diffusion Models

We perform numerical simulations of

Example : Mosquito population control

Otf — oxxf = g(f, ms),

for c = —0.1, L = 20 and two sizes of releases M.
500 10 500
400 08 400
300 06 300

N N

£ &

200 04 200
100 02 100
= 00
-40 =20 0 20 40

Space

FIGURE - M = 3.3
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Reaction-Diffusion Models Example : Mosquito population control

Inhomogeneous setting : PDE model

oF E nm
— — BrF(1—- — Sp)E, t >0 (@)
or = PEFO R Ty eandyy ~ (OB 120 x €0,
aa—f—dlAF:VUEE—épF,tZO/ X e Q/
aa—Af—dzAM:wEE—(SMM, t>0,xeq,
oM, T
S = daAM, = u((E,F,M,Mo)") = :M;, £ 20, x € Q,
9F oM IM,
= = = >
5 > 5 0,t>0, x €00,
(E(0,x), F(0,x), M(0, %), Ms(0,x))" = (E*(x), F*(x), M*(x), M{(x))", x € O

)
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Reaction-Diffusion Models

Inhomogeneous setting : PDE model

Feedback control of pest populations in heterogeneous settings using SIT

Density of eggs at time T = 10
days

i

Example : Mosquito population control

Evolution of the L' norm of eggs over 11

20 w© 5 ) 0 10 140

Time

Evolution of L norm of u over 2

i L4
g 1266
s 16
“es
25
)
3 o
Density of eggs at time T = 200
days &
8 20
1
310
g
s 0
- s
o
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Reaction-Diffusion Models Example : Mosquito population control

To help improve field interventions in a robust way

Field work with Incompatible Insect Technique (IIT) in Tetiaroa by HervéBossin
and Frangoise Mathieu-Daudé (ILM, IRD, Univ. Polynésie Francaise)

3.5 Km

§
[———

Robustness of Backstepping stabilization control

Mosquito sggs censty . [rop—— Contltunction s

[r—
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Backstepping feedback stabilization result

We define for 8 > 0 and &« > 0

u((xT, Ms)T) := max <O,G((xT, MS)T)) . 4)
2
G((x", Mo)") = = a(Myiﬁ%(;ﬁi M) T i(gM - M)
((1 = v)vgBE — 05, M) (6M + 3M;)
+ E 0 st + 55 Ms, (5)
R(6) := Pevve (6)

Op(1+s0)(ve +0g)

Theorem (Kala Agbo bidi,, L.A., Jean-Michel Coron 2023)

Assume that Ry < 1, then 0 is globally asymptotically stable in D = ]R‘j_ for the SIT
system with the feedback law (4).
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Projects

m PEPR project Maths-ArboV (dengue outbreaks in mainland France,
2025-2030)

m WHO TDR/IAEA project PAC-SIT (Ae. aegypti in Tahiti, Cook Islands
[Aitutaki atoll] and Easter Island, 2025-2026)

PSRN
> P \ o
§ DIRECTION L 1A amRBerghoter
COOKISIANDS = - & o\ - DE LA SANTE Medical Fsearch nstute

Consortium régional d’évaluation de I'efficacité de la Technique de I'lnsecte
Stérile contre les moustiques vecteurs de maladies

TDR®) {ricseestor,., @ &) !@;‘*vv World Health
= ~" Joint FAO/IAEA Division \t-19:0/
UNICEF- UNDP-World Bank-WHO 1AEA SR EAAG ion &' Organization
Tles Cook Polynésie frangaise Chili

Atoll dAitutakif Tahiti (Paga) Rapa Nui

Tahiti
Aitutaki o
.
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PACSIT WHO pilot study : intervention and monitoring

’ S )
Evaluation PAC-SIT b Ern g A

Pilote Paea
Full control intervention
(community action + SIT sterile male release)

Efficacy measurements
(entomological, epidemiological)
]

«standard intervention»
(community action alone - without SIT)

ILM INNOVENTOMO uffer Community actions + SIT
5 km further South Control site
Buffer Community actions
o Sampling points

.. Almeida Population Dynamics
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Beyond PACSIT - area-wide rolling carpet SIT intervention in Tahiti

Rolling Carpet Strategy from Paea to Greater Papeete urban area
Protect 50% of the Tahiti Population

@ INNOVENTOM _
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