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Mathematical modeling 
of infectious disease epidemics



WHAT CAN 
MATHEMATICAL MODELS DO?

WHY DO WE MODEL 
EPIDEMICS OF INFECTIOUS DISEASE?



1. FORECAST / PROJECTIONS

early COVID-19  importation 
Pullano et al (2020) Eurosurv

Ebola epidemic in West Africa 
WHO team (2014) NEJM

impact of school closures on COVID-19 
De Domenico et al (2021) Nat Comm

Zika in Latin America 
Zhang et al (2017) PNAS



2. ESTIMATE OF UNKNOWN PARAMETERS/FEATURES

transmission advantage of COVID-19 Alpha variant vs wild-type 
Davies et al. (2021) Science

R0 of H1N1 
Frase et al. (2009) Science

COVID-19 detection rate 
Pullano et al. (2021) Nature

Ebola - distribution of incubation period 
Chowell et al. (2014) BMC Med



3. UNDERSTAND MECHANISMS - DISENTANGLE EFFECTS

human mobility vs COVID-19 Rt 
Nouvellet et al. (2021) Nat Comm

COVID-19: deaths averted by vaccines 
Watson et al. (2022) Lancet Inf Dis

impact of travel restrictions on the spread of Ebola 
Poletto et al. (2014) Eurosurveillance

spatial dynamics of malaria in Kenya 
Wesolowski et al. (2012) Science



MODEL OUTPUT

VALIDATION DATA

THEORY
‣ biomathematics 
‣ physics / complex systems science 
‣ network science 
‣ computer science

INPUT DATA
‣ disease natural history 
‣ pathogen phylogenetics 
‣ epidemic surveillance 
‣ human behavior, contacts & mobility

(EPIDEMIC) MODELING



EPIDEMIC GRAPH DIAGRAMS 
TO ESTIMATE EPIDEMIC RISK

[ EV et al (2023) Nature Communications ]



outbreak / endemicity (Rt > 1)

disease extinction (Rt < 1)

epidemic threshold (Rt = 1)

MEASURING EPIDEMIC RISK: THE EPIDEMIC THRESHOLD
reproduction ratio Rt: average number of secondary infections that one case generates



REALISTIC

SIMPLIFIED

SIMPLIFIED REALISTIC

DISEASE 
PROGRESSION

POPULATION MIXING & CONTACTS

SIS/SIR + 
homogeneous mixing

annealed networks 
[Pastor-Satorras Vespignani 2001 PRL 

Newman 2002 PRE] 
& 

quenched networks 
[Wang et al 2003 

Gómez et al 2010 Europhys Lett]

infection propagator 
[Valdano et al 2015 PRX]

next-generation matrix 
[Diekmann et al 1990 J Math Biol]

MEASURING EPIDEMIC RISK: THE EPIDEMIC THRESHOLD

Di Domenico et al 2020 BMC Med

INFLUENZA

HIV

COVID-19
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MEASURING EPIDEMIC RISK: THE EPIDEMIC THRESHOLD

REALISTIC

SIMPLIFIED

SIMPLIFIED REALISTIC

DISEASE 
PROGRESSION

POPULATION MIXING & CONTACTS

SIS/SIR + 
homogeneous mixing

annealed networks 
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& 

quenched networks 
[Wang et al 2003 

Gómez et al 2010 Europhys Lett]

infection propagator 
[Valdano et al 2015 PRX]

next-generation matrix 
[Diekmann et al 1990 J Math Biol]

1) we need to get here

2) then bring it back down here



DISEASE EVOLUTION 
(compartmental model)

MIXING 
(time-evolving contact network)

EPIDEMIC GRAPH DIAGRAMS



EPIDEMIC GRAPH DIAGRAM

DISEASE EVOLUTION 
(compartmental model)

MIXING 
(time-evolving contact network)

EPIDEMIC GRAPH DIAGRAMS

• graphical representations  
• tools to perform calculations 
• rules to build them and simplify them 
• compute things directly from them

(wishful) analogy with 
Feynman rules & diagrams



EXAMPLE: LATENCY & LOSS OF IMMUNITY

build the EGD

CUT

S E I R S latency

loss of immunity

1. time to loss of immunity 
plays no role

SHRINKNO temporal structure 
in the contact network

S I S

2. latency impacts the threshold 
through its interplay with the 
underlying contact network



EXAMPLE: INFLUENZA WITH RESISTANCE TO ANTIVIRALS
influenza with strains resistant to antivirals

build the EGD

CUT 
[keep only strongly 

connected components]

decoupled SIS models

ZIP 
[only one node has 

incoming double links]



DISTRIBUTION OF PREVENTION: 
NONSELECTIVE VS RISK-BASED

[ Steinegger et al (2022) Nature Communications ]



PrEP AMONG MSM
PrEP: Pre-Exposure Prophylaxis of HIV

Evan J Peterson (CC BY-SA 4.0)

prevents HIV acquisition during unprotected sex
most common formulation 
• emtricitabine / tenofovir disoproxil fumarate (Truvada®) 
• pill taken daily (or on demand)

source:  who.int

MSM: men-having-sex-with-men
• disproportionately at risk for HIV infection 
• stigma & criminalization make many communities hard-to-reach

Globally, the risk of acquiring HIV is 
26 times higher among MSM 
compared to the general population.



PrEP OFTEN RECOMMENDED TO HIGH-RISK MSM

2002

2007

long-established theory: TARGETED IMMUNIZATION 
you should immunize those at high risk of spreading the disease



PrEP OFTEN RECOMMENDED TO HIGH-RISK MSM

Rutstein et al (2020) Lancet HIV

PrEP guidelines often risk-based (targeted)

PROBLEM: risk metrics may
1. have low accuracy in some communities 
2. be hard to implement 
3. reinforce stigma

2002

2007

long-established theory: TARGETED IMMUNIZATION 
you should immunize those at high risk of spreading the disease

target according to risk

risk is hard to measure 
and may be inequitable

BUTCURRENT 
CONUNDRUM

SOLUTION: targeting may not be the best-performing strategy!



IMPERFECT PROTECTION

PrEP efficacy among MSM: 40-to-86% 
[Grant et al 2010 NEJM, Molina et al 2015 NEJM, 
Jourdain et al 2022 Lancet PH]

possibility of breakthrough infections

high risk of exposure high risk of transmission once infected

those who you want to targetthose with the highest probability 
of breakthrough infections

two types of individual risk:
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BAD: breakthrough infection 
means “wasted” dose

GOOD: 
avoid superspreading events



A BIT OF THEORY

·xk = − μxk + λ
⟨k⟩

k(1 − xk)ξ

·yk = − μyk + λ
⟨k⟩

(1 − ϵ)k(1 − yk)ξ

ξ = ∑
k

kpk [(1 − gk)xk + gkyk] .

parameters 
𝝺: transmission rate 
𝝻: recovery rate 
ε: efficacy of prevention 
pk: probability of having contact rate k 
gk: fraction of immunized among those 
     with contact rate k

variables 
xk: probability of being infectious given c.r. k and no immunization 
yk: probability of being infectious given c.r. k and immunization

I[g, x, y] = ∑
k

pk [(1 − gk)xk + gkyk]prevalence:

S I SSIS 
model



RESPONSE FUNCTION
1. nobody is immunized 

2. I start providing vaccines/prophylaxis 

to a specific risk class 

3. what is the benefit on the overall epidemic?

gk = 0 ∀k

I[g, x, y]impact on (overall prevalence)

kset a specific starts going up from zerogk
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ALWAYS TARGET 
THOSE AT HIGHEST RISK

PRIORITIZING THOSE 
AT HIGHEST RISK 

IS NOT BENEFICIAL



CRITICAL EFFICACY

ε=0% ε=100%
critical efficacy 

εc

LOW-EFFICACY 
PHASE

HIGH-EFFICACY 
PHASE

analytically 
computable

efficacy above critical efficacy

efficacy below critical efficacy

targeting those at highest risk (hubs) is optimal

providing prevention non-selectively (at random) outperforms targeting

ineffective 
prevention 

tool

perfect 
prevention 
tool



RISK-BASED PrEP DISTRIBUTION MAY NOT BE OPTIMAL EVERYWHERE

58 countries, 24 cities (tot 82) high-efficacy region: 34 low-efficacy region: 40



FOUNDATION MODELS FOR TABULAR DATA 
TO MODEL EPIDEMICS

[ Kalahasti et al (2025) medRxiv pre-print ]



• Scale: Trained on massive datasets with millions/billions of parameters 
• Self-supervised learning: Learns from unlabelled data  
• Transfer Learning: Can apply knowledge to new domains and tasks  
• Few-shot/Zero shot Learning: Require minimal examples to adapt to new tasks  
• Domain Adaptability: Can be fine-tuned across multiple domains

WHAT ARE FOUNDATION MODELS?

large-scale, pre-trained machine learning models that can be adapted to many tasks with no or little retraining

transformer-based 
architectures

Vaswani et al. 
Attention is all you need 
Advances in Neural Information Processing Systems (2017)



WHAT GOOD ARE FOUNDATION MODELS TO US?

GPT BERT

LLAMA

LECHAT

CLAUDE

foundation models work well with textual data have revolutionized 
• natural language processing 
• computer vision 
• image generation

problem: you typically don’t describe epidemic spread with text or images.
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GPT BERT

LLAMA

LECHAT

CLAUDE

foundation models work well with textual data have revolutionized 
• natural language processing 
• computer vision 
• image generation

problem: you typically don’t describe epidemic spread with text or images.

NEW FIELD: 
foundation models for tabular data

X train

X test

X test

y test

adapted from Hollmann et al (2025) Nature



TABULAR (→TIME SERIES) FOUNDATION MODELS

model features size 
(# param)

TimesFM developed by 7G

LagLlama based on Llama 1.2G

TabPFN-TS synth data 11M

TimeGPT based on GPT 3.5G

Chronos based on T5 2.8G

• none of them trained on epi data 
• no re-training (zero-shot) 
• except some hyperparam tuning (for few models)



• multiple diseases 
• multiple pathogens 
• multiple countries (France, Italy, Brazil) 
• multiple indicators (cases, ER admissions, hospitalizations) 
• multiple transmission routes 
• multiple dataset sizes

TESTING ACROSS EPIDEMIC CONTEXTS



SHORT-TERM FORECASTS: TabPFN vs SotA

the US COVID-19 Forecast Hub ensemble forecast
from up to 110 independent forecasts

CASES

HOSPITALIZATIONS



BEYOND FORECASTS: POLICY EVALUATION

• respiratory syncytial virus (RSV) causes bronchiolitis in newborns 
• monitoring ER admissions in Paris 
• season 2023-24: introduction of nirsevimab immunization 
• case-control study to estimate effectiveness in averting all-cause bronchiolitis ER admissions

Carbajal et al. (2024) Lan Child & Adol Health



TabPFN to estimate the effectiveness of nirsevimab immunization

recorded admissions

TabPFN “counterfactual”: admissions observed in the absence of the immunization campaign

From that we could predict the effectiveness 
• <=3 months - 56% (CI : 10%-77%) 
• > 3-6 months - 45% (-20%,75%) 
• >6 months - 13% (-50%,174%)

vs



EXTREME WEATHER EVENTS 
AND THE SPREAD OF 

RESPIRATORY PATHOGENS

[ Ascione et al (2025) EPJ Data Science ]



FLOODS IN EMILIA ROMAGNA, ITALY - MAY 2023

source: New York Times

discomap.eea.europa.eu

• 50,000 displaced 
• 10 bn EUR in damage



COLOCATION MAPS by 

• from smartphone GPS traces 
• GDPR-compliant 
Ref: Iyer et al. (2023) Epidemics

EFFECT ON LOCAL 
AND SPATIAL MIXING

relative (%) variation from pre-flood baseline

HOUSEHOLD 
CONTACTS

COMMUNITY 
CONTACTS

INTER-COMMUNITY 
CONTACTS

Ascione et al (2025) EPJ Data Science



FLOODS → SPATIAL MIXING → EPIDEMIC OUTCOMES

Rimini
EXCESS RISK 
IN THE PATHOGEN 
REACHING A COMMUNITY 

WITH RESPECT 
TO THE NO-FLOODS SCENARIO

Ascione et al (2025) EPJ Data Science



RAINFALL AND EPIDEMIOLOGICAL SURVEILLANCE (COVID-19)

FRANCE

NEW YORK STATE 
(US)

Caruso et al (2025) medRxiv pre-print



DETECTING THE EFFECT OF RAINFALL ON THE DAILY NUMBER OF COVID-19 TESTS

μ(t) = 𝔼[N(t)] = O(t) exp [q + α x(t)]

N(t) ∼ Poisson [μ(t)]

trend + weekly components

rainfall

number of daily tests

Caruso et al (2025) medRxiv pre-print



NEW YORK STATEFRANCE

effect of rain = percentage change in tests attributable to 25 mm of rainfall

DETECTING THE EFFECT OF RAINFALL ON THE DAILY NUMBER OF COVID-19 TESTS

Caruso et al (2025) medRxiv pre-print



COMPOUND VULNERABILITIES: SE + DISEASE + CLIMATE ADAPTATION

• Climate adaptation: more rainy days → weaker 

effect of rain: showing community adaptation 

• Limits of adaptation: no adaptation to heavy rain 

• Spontaneous adaptation insufficient: need for 

structural, top-down interventions 

• Socioeconomic vulnerability: stronger test 

reductions in poorer communities 

• Compounding risks: poverty + climate change + 

infectious disease vulnerability intersect, requiring 

coordinated mitigation strategies

Caruso et al (2025) medRxiv pre-print



scientific publications: www.evmodelers.org/publication/ 
available internships: www.evmodelers.org/job/

www.evmodelers.org

eugenio.valdano@inserm.fr



22-26 June 2026

stay tuned: follow us on social media and check out www.complexity72h.com

announcing the 7th edition of the workshop

a workshop for Master students, PhD students and young researchers 
lead or carry out a project in 72 hours

credit: Iacopo Iacopini


