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Calculation involves
1. calculation of potentials of mean force (free energy functions)
2. discretization of the path and the flux resistance
3. minimization of the flux resistance

Talk focuses on 2. and 3.
Improvements in any category have a multiplicative effect.

Summary

It is not easy to improve on the string method.
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Motivation!

active! inactive!

N-lobe!

C-lobe!

A-loop!

N-lobe!

C-lobe!

A-loop!

α-helix C! α-helix C!

Catalytic domain of Src tyrosine kinase
collaboration with Carol Post group



Biological questions

I What is the rate-limiting step in the transition from one
conformation to another?

I What are possible intermediate states involved in the
transition that can be used as targets for inhibitors of
enhanced specificity?

I What is the free energy difference between the two
conformational states?



Informal problem statement

Compute for minimal cost best possible representative paths of
conformational change from conformation A to conformation B.

representative path: center of an isolated cluster of trajectories.



Collective variables

Transition paths might not cluster adequately
—in full configuration space.

Assume, however, there is a smaller set of collective variables,
functions of the configuration x ,

ζ1 = ξ1(x), ζ2 = ξ2(x), . . . , ζν = ξν(x), abbreviated as ζ = ξ(x),

such that in colvar space,
paths cluster into one or several distinct isolated bundles.

e.g., torsion angles φ and ψ.



Best possible: tube in colvar space of specified cross-section area
for which the flow rate of distinct reactive trajectories is maximum

—Best local maxima wanted.

Minimal cost: make simplifications to limit sampling to paths in
colvar space. (Also, minimize programming effort by using existing
features of simulators.)

Simplification: a narrow tube.
—a maximum flux transition path (MFTP)



An alternative to maximum flux: maximum probability

I minimizing Onsager-Machlup action, Olender & Elber (1996)

I minimizing free energy, Maragliano, Fischer, Vanden-Eijnden &

Ciccotti (2006)
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Free energy function

Assume Newtonian dynamics with initial positions x and velocities
drawn from the canonical ensemble with inverse temperature β.
Let ρξ(ζ) be the probability density of ζ = ξ(x).
An “effective energy” function F (ζ) is obtained via

e−βF (ζ)
def
= ρξ(ζ) = 〈δ(ξ(x)− ζ)〉,

sometimes called a free energy function.



Metric tensor

The appropriate metric to measure distance from ζ to ζ + dζ is

|dζ|ζ = (dζTM(ζ)dζ)1/2

with metric tensor

M(ζ)−1
def
= mtot

〈
ξx(x)M−10 ξx(x)T

〉
ξ(x)=ζ

where M0 is a diagonal matrix of masses.

The distance |dζ|ζ is cartesian RMSD!



The formula

The maximum flux transition path (MFTP)

ζ = Z (s), 0 ≤ s ≤ 1,

minimizes ∫ 1

0
eβF (Z)(det M(Z ))−1/2 |Zs |Zds︸ ︷︷ ︸

arc length

where Z = Z (s), Zs = (d/ds)Z (s),

Zhao, Shen, and Skeel, J. Chem. Theory Comput., 2010,

building on work by E. Vanden-Eijnden et al.



Claim: An MFTP is the best representation of trajectories
obtainable at minimal computing cost.

Discussion deferred.

Objective: a more efficient algorithm for calculating an MFTP.

Examples of MFTPs follow:



Three-hole potential

The MFTP at different temperatures
and the minimum energy path



MFEP vs. MFTP for alanine dipeptide in vacuo at T = 300 K.
Contours of (zero-temperature) free energy in increments of 0.6
kcal/mol in ϕ and ψ torsion angles, red squares are MFTP, and
black line is MFEP.



Double basin Gō model of CDK2 kinase

813 DOFs, 7 colvars ζ = Z (s)

Same final results
for 3 different initial paths.
Reorientation of α-helix C
is rate-limiting step.

free energy F (Z (s))
Huang, Zhao, Dickson, Skeel &

Post (2012)
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F (ζ) and its Hessian

I Free energy differences can be constructed from free energy
derivatives using piecewise quadratic interpolation.

I Calculating an approximate Hessian seems infeasible.



To simplify discussion

consider case of Cartesian coordinates scaled so that masses are 1:
Find ζ = Z (s), 0 ≤ s ≤ 1, that minimizes∫ 1

0
eβF (Z)|Zs |ds

given Z (0) and Z (1).

(Difficulties due to colvars are technical only.)



many minima
We consider the computation of local minima (in path space).

Start from an initial guess,
which could be a straight line for a simple problem.

Fluxes of different minima can be compared.



Minimize a discrete integral?

Generally, the most effective approach would be
to discretize the integral ∫ 1

0
eβF (Z)|Zs |ds

and minimize the resulting sum.

However, accelerated minimization methods
assume a local quadratic model,
and this is not appropriate.

Conclusion: use a dynamical embedding for minimization.



Embedding minimization in dynamics

Let the path evolve in time

ζ = Z (s, t), t ≥ 0.

The goal is to

define
∂

∂t
Z = · · · so that

d

dt

∫ 1

0
eβF (Z)|Zs |ds < 0

and integrate until path becomes stationary.



d

dt

∫ 1

0
eβF (Z)|Zs |ds =

∫ 1

0

(
∂

∂t
Z

)T

eβF (Z)|Zs |
(

I − ZsZT
s

|Zs |2

)(
β∇F (Z )− 1

|Zs |2
Zss

)
ds

To make this negative, define

∂

∂t
Z = α

(
−β∇F (Z ) +

1

|Zs |2
Zss

)
+ λZs

where α > 0 and λ is arbitrary. Choose α = 1.



Parameterizing the path

arbitrariness in parameterization ζ = Z (s),
manifested in the underdetermined Euler-Lagrange equations(

I − ZsZT
s

|Zs |2

)(
− 1

|Zs |2
Zss + β∇F (Z )

)
= 0.

Possible normalization: s = relative arclength

|Zs | = constant , i.e., ZT
s Zss = 0.

determines λ.
Let L = |Zs |.



Spatial discretization

Let z =
[

z1, z2, . . . , zK−1
]T

be the replica colvars defining a
piecewise linear path.
For the dynamics use

d

dt
zk = fk(z) + λkτk(z)

where

fk = −β∇F (zk) +
zk+1 − 2zk + zk−1

L2∆s2

and τk(z) is a tangent vector—given by upwinded differencing:

if f T
k (zk+1 − zk−1) > 0, use zk − zk−1; else, . . . .



Temporal discretization

As a single system, the equations have the form

d

dt
z = f (z) + τ(z)Λ

where Λ = diag(λ1, λ2, . . . , λK−1).
Only rough accuracy needed; stability is the main aim.
A semi-implicit scheme:

1

∆t
(z ′ − z) = f (z) + (z ′ − z)T2(z) +

(
τ(z) + (z ′ − z)T1(z)

)
Λ

where T1, T2 are tridiagonal.
Also, Vanden-Eijnden and Heymann. J. Chem. Phys., 2008.

For purpose of discussion, neglect implicit terms.



The simplified string method

E, Ren, and Vanden-Eijnden, J. Chem. Phys., 2007.

dispenses with Λ and imposes parameter normalization by a
2-stage process:

z̄ = z + ∆tf (z)

z ′ = eqlz(z̄)

where eqlz
redistributes the replicas along the path defined by z̄ .
When the solution becomes stationary, we have only that

eqlz(∆tf (z∗) + z∗)− z∗ = 0,

not f (z∗) = 0.



Also, z∗ depends on ∆t.



A good fix

is to retain Λ.
E, Ren, and Vanden-Eijnden, Phys. Rev. B, 2002.

The stationary solution then satisfies both

f (z∗) + τ(z∗)Λ∗ = 0

and the constraint
z∗ = eqlz(z∗).

Also slightly enhancing stability:



Convergence test

‖|z ′ − z∗‖ ≈ ‖z ′ − z‖
‖f (z ′)− f (z)‖

‖f (z ′)‖

where f (x∗) = 0.
Ratio of error estimate to actual error for Mueller potential:



Step size control

Step sizes for the Mueller potential:





Because most of the time is spent calculating ∇F (ζ) at replicas
along the path,
the computation is highly parallelizable:

MPI for Python: mpi4py

Lisandro Dalćın, CONICET, Santa Fé, Argentina



Challenges

I noisy gradient: step size selection and convergence test must
tolerate noise

I cost of gradient evaluation increases with size of minimization
step.
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The Dirac delta function

Convenient to work with a blurred delta function:

δε(s) = (2πε2)−1/2 exp(−s2/(2ε2))

e.g., ε = 1 degree

effectively stiff restraints



Energy function and metric tensor

Calculation of the free energy

F (ζ) = − 1

β
log〈δ(ξ(x)− ζ)〉

requires extensive sampling.
However, the gradient can be expressed as an average conditioned
on ξ(x) = ζ:

∇F (ζ) = − 1

β
〈∇ζ log δ(ξ(x)− ζ)〉ξ(x)=ζ .

Additionally, recall that

M(ζ)−1 = mtot

〈
ξx(x)M−10 ξx(x)T

〉
ξ(x)=ζ

.



Averaging

It is practical to compute M(ζ), ∇ζF (ζ), and 1st derivative of
M(ζ) w.r.t. ζ

as averages from a single (yet very long) simulation

at a point ζ for which we have a value x such that ξ(x) ≈ ζ
(to initiate the Markov chain).

an equilibration (burn-in) phase is followed by a production phase:

sampling for alanine dipeptide uses 50+500 ps of Langevin or
Nosé-Hoover dynamics per gradient evaluation.
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Underlying assumption #1

Assume trajectories are confined to the tube from Aξ to Bξ.

This transforms a PDE in high dimension
to one that is essentially one dimensional.

Underlying assumption #2

Assume that paths ζ = Z (s),
but not trajectories ζ = ξ(X (t)),

are well approximated by
those of the Brownian dynamics.



The geometric property

Use of metric |dζ|ζ to measure arc length and cross-section area.
ensures that the minimizing path is invariant
under a change of coordinates:

e.g., it matters not whether you use distances or their squares
—the paths are equivalent.



For comparison

Minimum resistance path (MRP) minimizes∫ 1

0
exp(βF (Z ))|Zs |−1|Zs |2Z ds.

Path depends on how colvar space is parameterized

Berkowitz, Morgan, McCammon, and Northrup,
J. Chem. Phys., 1983.

Huo and Straub, “MaxFlux . . . ,” J. Chem. Phys., 1997.



Minimum free energy path (MFEP) minimizes∫ 1

0
|M(Z )−1∇F (Z )|Z |Zs |Z ds.

It is the limiting case β →∞ of an MFTP
but with β held fixed in F (ζ;β) and M(ζ;β).

Maragliano, Fischer, Vanden-Eijnden, and Ciccotti,

J. Chem. Phys., 2006.



The MFEP neglects finite temperature effects
—in the explicit degrees of freedom.

alanine dipeptide (OPLS-AA with GBSA)

MFEP & MFTPs density of dynamical trajectories

Jiménez and Crehuet, Theor. Chem. Account, 2007.
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Initiating the Markov chains

Evaluation of ∇F (Zj) at time step n + 1
requires xj such that ξ(xj) ≈ Zj .
One can use for xj a value generated during the production phase
of sampling for Zj at time step n, e.g., the last value.
The number of equilibration steps depends on the change in Zj .
Greater increments result in longer equilibration times.
Therefore, taking larger steps may or may not be helpful.



A reference path in Cartesian space

In addition to ζ = ξ(x), we should define a reference path
x = X (s) in Cartesian coordinates.

An attractive choice:
Ask that X (s) be an MFTP in Cartesian configuration space
subject to the constraint ξ(X (s)) = Z (s).



Interpretation of M(ζ)

The point ζ in colvar space
represents a manifold in Cartesian configuration space.

The distance

|dζ|ζ =

(
dζT

(〈
ξx(x)M−10 ξx(x)T

〉
ζ

)−1
dζ

)1/2

somehow corresponds to the RMSD between Cartesian space
manifolds ξ(x) = ζ and ξ(x) = ζ + dζ(

dζT
〈(

ξx(x)M−10 ξx(x)T
)−1〉

ζ

dζ

)1/2

.



Closing Remarks

I To minimize an integral of an exponential,
embed the problem in dynamics, as in the string method.

I Yet improvements are desirable and almost certainly
attainable.
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