Adaptive free energy biases: doesn't matter what way you push as long as you push hard enough

Jérôme Hénin

CNRS, Aix-Marseille University

CECAM workshop, Paris 6 June 2012

we talk to everyone...

...including biologists

Biology has too many degrees of freedom

Reduced representation

"Have a bias toward action - let's see something happen now." Indira Gandhi

Adaptive Biasing Force: making things happen

Andrew Pohorille

Chris Chipot

The problem: partial sampling

Thermodynamic integration

• Basic expression:

$$\frac{dA}{d\xi} = \left\langle \frac{\partial \mathscr{V}}{\partial \xi} - k_B T \; \frac{\partial \ln |J|}{\partial \xi} \right\rangle_{\xi}^{\text{conf}}$$

(\mathscr{V} : potential energy; J: Jacobian)

•
$$\frac{\partial \mathcal{V}}{\partial \xi}$$
 is a force along ξ

• $-k_BT \frac{\partial \ln |J|}{\partial \xi}$: correction for the dependence on ξ of the phase space volume element

Timescale separation

Timescale separation

ABF: Darve and Pohorille, 2001

Intermission: statistical error analysis

- often depends on effective sampling: number of uncorrelated samples $N_{eff} = N / t_{corr}$
- biomolecules: trapped DOFs, hence $t_{corr} >= N$
- hence $N_{eff} \le 1$, everything depends on initial conditions

"We work with models of the simulation process, sidestepping the **tricky and computationally expensive problem** of **relying on simulations to provide their own error statistics**." D. Kofke and P. Cummings, Mol. Phys. 1997

"We assume that this problem has already been solved"

D. Kofke, CECAM 2012

- some cases are better behaved than others (e.g. neglected tail model)
- block averaging among acceptable options?

Implementation for large biomolecules: "collective variables module"

Giacomo Fiorin (Klein lab)

Colvars: flexible generalized coord. biases

- arbitrary dimension
- run-time combination of variables
- sophisticated variables available
- ABF, ABP (metadynamics)
- moving restraints: steered MD, targeted MD
- C++, designed for extensibility
- included in NAMD
- available for LAMMPS
- generic interface: may be ported to any MD software

Two-sided modularity: variables, algorithms

Rotation angles around preferred axes

- based on reference dimer structure
- least-square fit of whole dimer
- least-square fit of each helix
- optimal rotation split into two rotations
- gives two rotation angles

Dimer of helical transmembrane protein segments

ABF: thermodynamic force in dim > 1

- for each variable ξ_i , force is measured along arbitrary vector field v_i (*Ciccotti et al. 2005*)
- orthogonality conditions: $\begin{cases} \boldsymbol{v}_i \cdot \boldsymbol{\nabla}_{\!\!\boldsymbol{x}} \\ \boldsymbol{v}_i \cdot \boldsymbol{\nabla}_{\!\!\boldsymbol{x}} \end{cases}$

$$\begin{cases} \boldsymbol{v}_i \cdot \boldsymbol{\nabla}_{\!\!\boldsymbol{x}} \, \xi_j &= \delta_{ij} \\ \boldsymbol{v}_i \cdot \boldsymbol{\nabla}_{\!\!\boldsymbol{x}} \, \sigma_k &= 0 \end{cases}$$

- free energy gradient: $\frac{\partial A}{\partial \xi_i} = \langle \boldsymbol{v}_i \cdot \boldsymbol{\nabla}_{\boldsymbol{x}} V k_B T \boldsymbol{\nabla}_{\boldsymbol{x}} \cdot \boldsymbol{v}_i \rangle_{\boldsymbol{\xi}}$
- divergence of \boldsymbol{v}_{i} gives geometric correction (ideal gas entropy term)

Integrating n-dimension "gradients"

Helmholtz decomposition

Helmholtz decomposition

On-the-fly Poisson integration

with Tony Lelièvre (ENPC, Paris)

Monte-Carlo, PBC

Poisson, Neumann BC

ABF: cumbersome requirements

- calculate gradients (OK)
- differentiate Jacobian determinant (second derivatives):
 - design explicit generalized coordinates
 - choose "inverse gradient" field
 - calculate divergence of this field
- mutually orthogonal RCs
- RCs orthogonal to constraints
- \rightarrow not always applicable to complicated variables

Extended-system ABF (eABF)

Tony Lelièvre

Extended-system ABF (eABF)

- for each collective variable $\xi_i(x)$, add extended coordinate q_i
- coupled by harmonic spring: $V_h = \frac{1}{2}k\left(\xi_i(x) q_i\right)^2$
- separate Hamiltonian integrator using fictitious mass Lelièvre et al. JCP 2007, Zheng and Yang JCTC 2012
- pick mass and force constant based on desired fluctuation and time constant:

$$\sigma = \sqrt{\frac{k_B T}{k}}$$
$$\tau = 2\pi \sqrt{\frac{m}{k}}$$

V k

eABF: fluctuations

eABF: fluctuations

eABF: extended DOF thermalization

Do we need to thermostat the extended DOF?

eABF: selling points

- Technical requirements: just the gradients (same as metadynamics)
 - No need to calculate Jacobian or second derivatives
 - No need to design explicit generalized coordinates
 - No need to choose "inverse gradient" field
 - No need to be orthogonal to constraints
 - No need for mutual orthogonality of variables
- \rightarrow easily applicable to any combination of sophisticated variables

eABF PMF from naïve estimator

eABF: possible issues

- does the fictitious mass slow down diffusion?
- not if oscillator time scale is small (typically less than 1 ps)
- is the PMF inaccurate?
- *it is a biased estimator, <u>but:</u>*
 - the bias can be made very small with reasonable values of σ
 - there are other estimators
- beneficial effect: force smoothing (variance reduction)

eABF: time scale and convergence

eABF: length scale and convergence

An unbiased estimator

• can we correct the measured PMF based on actual sampling?

$$\rho(\xi,q) = \rho^0(\xi)e^{-\frac{\beta k}{2}(\xi-q)^2}e^{-\beta\tilde{A}(q)}$$
$$\rho(\xi) \propto \rho^0(\xi) \int e^{-\frac{\beta k}{2}(\xi-q')^2}e^{-\beta\tilde{A}(q')}dq'$$
$$\frac{d\ln\rho(\xi)}{d\xi} = \frac{d\ln\rho^0(\xi)}{d\xi} - \frac{\int\rho(\xi,q')k(\xi-q')dq'}{\int\rho(\xi,q')dq'}$$
$$\frac{dA}{d\xi} = k_BT\frac{d\ln\rho(\xi)}{d\xi} - k(\xi-\bar{q}(\xi))$$

- asymptotically unbiased
- convergence is poorer than naïve estimator!

A q-centric perspective

- proposed by Wei Yang, based on Umbrella Integration (Kästner and Thiel)
- distribution of ξ at each q value viewed as an umbrella sampling histogram

$$\rho(\xi, q) = \rho^0(\xi) e^{-\frac{\beta k}{2}(\xi - q)^2} e^{-\beta \tilde{A}(q)}$$

$$\forall q, \quad \frac{dA}{d\xi} = -k_B T \frac{d\ln\rho(\xi,q)}{d\xi} - k(\xi-q)$$

- exploit approximately Gaussian distribution: $\rho(\xi,q) \approx e^{-rac{1}{2}\left(rac{\xi-ar{\xi}_q}{\sigma_q}
 ight)^2}$
- combine histograms for all *q* values

۲

UI estimator convergence: time scale

UI estimator convergence: delayed bias

Number of samples per bin before full ABF bias is applied

UI estimator convergence: length scale

eABF: extended DOF thermalization

Do we need to thermostat the extended DOF?

Maybe we do.

eABF with Langevin dynamics

Dimension reduction: the next frontier?

Designing a low-dimension model is hard

Sometimes intuitive coordinates are just not good enough.

(Hénin et al. JCTC 2010)

How many are needed?

(intrinsic dimension)

Discovering descriptive coordinates

- target: describe peptide/protein conformation changes
- principal components analysis (PCA)
- normal mode analysis from harmonic model: easy, no prior sampling
- dihedral PCA (Altis et al. 2007)
 - problem: loss of resolution when bonded distance increases
- distance map PCA
 - problem: high dimension!
- contact map PCA
 - worth trying?

Algorithms for dimension reduction

Assumption: low-dimension object embedded in high-dimension space

image by Olivier Grisel

Determination of reaction coordinates via locally scaled diffusion map

Mary A. Rohrdanz,¹ Wenwei Zheng,¹ Mauro Maggioni,² and Cecilia Clementi^{1,a)} ¹Rice University, Department of Chemistry, Houston, Texas 77005, USA ²Duke University, Department of Mathematics, Durham, North Carolina 27708, USA

• Goal: approximate solution to the Fokker-Planck equation, as:

$$p(\boldsymbol{x},t) = \phi_0(\boldsymbol{x}) + \sum_{i=1}^{\kappa} c_i \phi_i(\boldsymbol{x}) e^{-\lambda_i t}$$

- start from Boltzmann-distributed samples
- calculate transition matrix (with local scale): $K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{||\mathbf{x}_i \mathbf{x}_j||^2}{2\varepsilon_i\varepsilon_j}\right)$
- diagonalize
- eigenvectors $\phi_i(\mathbf{x})$ are diffusion coordinates

Alanine dipeptide example

Local intrinsic dimension

SH3 domain example

Applicability of LSDMap?

- only an analysis of previous sampling
- recursive approach possible (bias, sample, analyze, repeat)

- diffusion coordinates are defined implicitly on sampled points
- differentiable extension?

Thank you