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Outline

lllustration of the method

Applications:
Modeling the CaM-free conformation of adenylate cyclase
CO diffusion in myoglobin

Activation loop conformational transition in insuline receptor kinase



The Free Energy (potential of mean force)

Consider a system & subject to a potential V' (x)

p(m) X e—V(az)/kBT

Introduce [V functions of the system’s coordinates (collective variables)

0(x) = (0:1(x),...,0n(x))

The PMF A7 (z)associated to the @(x) variables is defined via their probability
density function

Ar(z) = —kgTInZ~! /e_v(w)/kBT H 6(0(x) — z)dx




Temperature Accelerated Molecular Dynamics

Suppose we could simulate:

. OAT (2
Nz = 97 \/ZkBTvn( t)

The trajectory would sample

p(Z) - G—AT(z)/kBT

Then to cross over free energy barriers we could take

kBT z AAT(Z)



Temperature Accelerated Molecular Dynamics

Suppose we could simulate:

 [oAre

\/QkBTWU(t)

The negative gradient of the PMF (mean force) can be computed locally via an
expectation on &, conditional on 8(x) = z .

Multi-scale approach:

e given a point z, compute the mean force locally from MD of @ variables
constrained (or restrained) at f(x) = z

o evolve 2
—> re-initialization problems for the *



Temperature Accelerated Molecular Dynamics

Suppose we could simulate:

. OAT (2
Nz = 97 \/ZkBTvn( t)

Seamless scheme (E, Ren,Vanden-Eijnden J. Comput. Physics (2009)):

evolve z and x concurrently, with two different time-scales, exchanging data at
every step.


http://www.informatik.uni-trier.de/~ley/db/journals/jcphy/jcphy228.html#ERV09
http://www.informatik.uni-trier.de/~ley/db/journals/jcphy/jcphy228.html#ERV09

Temperature Accelerated Molecular Dynamics

L. M. & E. Vanden-Eijnden Chem. Phys. Lett., 426, 168 (2006)

Consider the system of equations

Where 77‘” and 7)” are independent white noises, «y and 4 are different frictions,
and ﬁ ﬁ are different temperatures.

They describe the evolution of the system (x, z) € R” x R under the potential

N
Ud(z, 2) = V() + %ﬁ; S (25 — 0;(2))>
=1



Temperature Accelerated Molecular Dynamics

L. M. & E. Vanden-Eijnden Chem. Phys. Lett., 426, 168 (2006)

Consider the system of equations

When /5 — 0, the dynamics of z(t) is approximately

V25 = \/25 yn; (t
Where
Aer(2z)=—-B"'Inz™! /exp —BV (x) — =Pk Z(z] —0(x))* | dx

— A7(2) as kK — o0

The limiting equation is a result of standard averaging theorems (G.C. Papanicolaou,
Rocky Mt. ). Math. 6,653 (1976); G.C. Papanicolaou, in: R.C. Di Prima (Ed.), Lect. Appl. Math., 16, American

Mathematical Society, | 977; E.Vanden-Eijnden, Comm. Math. Sci. |, 2003 )



Temperature Accelerated Molecular Dynamics

Simulate the coupled system with 7/'7 small and K large to explore the PMF landscape
Ar(z).Use 571 > 371 to cross energy barriers prohibitive for uncoupled 8 (x(t))
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40ns of standard MD simulation 40ps of TAMD with T'/T ~ 17



Temperature Accelerated Molecular Dynamics

Advantages of TAMD:

Untargeted exploration

Can be used with many collective variables

TAMD borrows ideas from other enhanced sampling methods:

Metadynamics (Laio & Parrinello, PNAS 2002 ...)
AFED (Tuckerman and coworkers: Rosso et al. JCP 2002 ...)
Methods thought to be used to reconstruct A7 (z) by direct sampling.

Rather: use TAMD for a quick exploration of the PMF surface, and then reconstruct
it at a second stage with different methods.



To be published soon..
If you have comments, please drop me an email




Reconstruction of PMF surfaces and reaction pathways

Combine TAMD with other methods

|::> Single Sweep for PMF surface reconstruction

String method for finding reaction pathways



Single-sweep method for PMF calculations

L. M. & E. Vanden-Eijnden J. Chem. Phys., 128, 184110 (2008)
Three separate, independent stages:

|) Use TAMD to rapidly explore the unknown PMF landscape

2) Compute the gradient of the PMF (a.k.a mean force) at points selected from the
TAMD trajectory

3) Use an interpolation/variational method to reconstruct globally the PMF from
the mean force data (no more MD)

Advantages: does not rely on histograms; the computational effort is concentrated
on the mean force calculations: simulations independent from each other that are
distributed on clusters.



Stage 2: Computing the mean force

Extract points z; from TAMD trajectory and simulate

8V(w)
Ox;

00 ; (a:)

Z(@ () — 21.) - /287y nE (1)

YT; =

Now with 2. fixed!

Estimate the mean force from

T
fi=1 /O R(O(@(1) — 1) dt | ~ —V.A(2)

K can be chosen in such a way that one gets accurate estimate but without making
the system too stiff



Interpolation using Radial Basis Functions
(Single-Sweep)
L. M. & E. Vanden-Eijnden J. Chem. Phys., 128, 184110 (2008)

We introduce a RBF representation of the PMF

K
A(z) = Z arps(|z — zk|)
k—1

and determine the unknown parameters by optimizing an objective function defined
as the difference between the calculated gradients and those from the
representation

2 K K 2
‘ — S: ‘ ;: ak’vz¢a(|zk — Zk’|) + £

k=1 k'=1

K
B(a,0) = > [VoA(z) + i
k=1

2
Different RBF can be used. A typical choice are gaussian functions ¢-(u) = exp (—2%2)

(For the case of different 0 see M. Monteferrante, S. Bonella, S. Meloni, G. Ciccotti Mol. Sim., 35, 1116 (2009))

The centers do not have to lie on a regular grid: the method can be used in more
than 2 dimensions. In our case, centers are extracted from the TAMD trajectory.



