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Presentation

o Jointwork with: T. Lelievre and G. Stoltz (MicMac INRIA project team,
ENPC, Marne-la-Vallée, France). Talk mainly based on ideas out of:

s 11'T. Lelievre, MR and G. Stoltz: Langevin dynamics with
constraints and computation of free energy differences.

s 10'T. Lelievre, MR and G. Stoltz: Free energy computation: a
mathematical perspective.

o Inthis talk, I will focus on:
Jarzynski-like non-equilibrium simulation and thermodynamic integration
with Langevin dynamics and constraints.
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» Free energy and phase-space.

» Markov fluctuation theory.

#® Discussion on numerical schemes.
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Part |: Free energy and phase-space.
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Thermostatted molecular models

# Model: a classical Hamiltonian system H : RN — R:

1 _
H(p,q) = ngM '+ V(g)

o M =diag(my,...,mn).

» Introduction of a coupling with a thermostat of temperature, 3! = k7.
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Thermostatted molecular models

o The resulting dynamics shall be an ergodic Markov process satifying the
statistical assumption:

Time average = Spatial average

5[ eaopwa ==

# Typical configurations given by Boltzmann Law (NVT case):

o) — [ (g, p)ePH@P) dqdp
L fe—ﬁH(Cbp)dqdp
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Molecular simulation: Multi-timescale problem

# Short range interaction (covalent): Rapidly oscillating quantity (~ 10~1° s).
# Large range interaction (electrostatic): (~ 10712 s).

# Reaction coordinates (slow macroscopic variables ~ 109 s, limit of
computational range):

f:R3N—>Rd

Example:
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What is free energy F' ?

» Free energy is defined by the equilibrium (marginal) distribution of ¢ € R,
a "slow” variable, or reaction coordinates. For any observable ¢ of ¢

/gp(z)e_BF(z)dz
(@) = L2

» Define X, = {q € RY|¢0w(q) = 2} the sub-manifold associated with the
value z of the raction coordinate £.

» Define 4= (dq) the conditional surface measure on X, verifying the
slice integration dq = ¢ (q)=»(dq)dz
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What is free energy F' ?

o We get, up to an additive constant:

F(z) = —3~ I fy_e PV @i, (dg)

o Goal: numerical computation of z — F(z)

o Gives information on the dynamics of ¢t — &(q;) (Transition State Theory).
when the time scale of the latter is separated from the other degrees of
freedom’s ones (averaging principle).
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Computing free energy F

# Two main class of methods:
s Adaptive biasing methods.

s Non-equilibrium simulation of Jarzynski type (and Thermodynamic
Integration as a limit).

CECAM 2012 —p.10



Computation strategies

Fixed constraint Switching constraint

%> <:

Biasing (with or without_adaptivity)
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Jarzynski non-equilibrium dynamics.

# Add a constraining force (switching) to a molecular system of the form
+V & . dX(t), where dA(t) is a Lagrange multiplier with constraints

§(qe) = 2(t) .
o Starts at equilibrium .

o Compute the total energy variation of the system which is only due to the
switching (denoted W, 1 = the work).

® Usetheidentity: F(z(T)) — F(2(0)) = —BInE(e=#Wo,r+Corrr—Corro)y
o Corr is a corrector induced by the constraints on momenta.

#® Requires several replicas to average with respect to E.
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Thermodynamic integration

X

X

>

Assume the switching is infinitely slow and small.

The Jarzynski identity formally becomes of the Thermodynamic
Integration form:

F(z+dz)— F(z) = (W), + (Corr) .14, — (Corr) ,,

where 6}V is the virtual work= virtual energy variation only due to a
virtual switching dz.

( ).is the equlibrium distribution with constraint £(¢) = z.
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Free energy and phase-space

# When we perform evolving constraints ¢t — z(¢) on a mechanical system
with state (g, p), the state of the system must satisfy the holonomic
constraints:

£(g) = 2
VE(q)M~'p = 2.

o This defines a new (symplectic) phase-space denoted X, ; with a
phase-space symplectic measure oy _ , (dqdp).

o This also defines a free energy:

1
Falz:2) =~ 5l [ e 1000y (dgap),
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Free energy and phase-space

# This free energy is related the first free energy to be computed through:

. 1 —pBCorr ;
F(z) — Frga(z,2) = _E In{e pC =%, 4

®  Where () Corr. :(q) = 55 detGa(q)) — 527G/ (9)2.

o Where (i) ( ). is the Gibbs probability distribution proportional to
o MR gy (dgdp).

®  Where (iii) Gp(q) = VEM ~1VE(q) (Gram matrix of constraints).

o Thusifyou can compute averages with respectto ( ), ;, you can
compute F' out of Fi.q (and vice versa).
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Part Il: Markov fluctuation theory.
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Markov fluctuation theory

o Markov fluctuation theory is a Markov formalism which enables to
derive statistical mechanical concepts and fluctuation theorems for open
classical systems.

o We present things in discrete time, and we abuse notations and
NEVER mention momenta reversal when it is necessary.

® n=0...N isthe time parameter.

® (:N — R?? are the "thermodynamical”’ parameters that evolves in time
(THINK ¢ = (z,2).

® (E.,ref-(dx))is the measurable state space indexed by ¢ (THINK
phase-space: E¢ is the phase-space ox_ . (dqdp), and the (non-finite)
reference measure ref(dz) is the associated phase-space measure).
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Markov fluctuation theory: dynamics

® Pro(x,dx’) = Pee(x, 2" )refe (da') is the probability transition of a
Markov chain from state space E: to E. . (THINK: combination of a
mechanical dterministic dynamics with evolving constraints and
fluctuation/dissipation of momenta due to coupling with a thermostat).

® 7c(dx) = pic(x)ref (dr) is a stationary probability density in E. related in
some sense to the dynamics. (THINK: it is the stationary distribution of
the latter dynamics when the constrinats do not evolve).

o Denote the path distribution under the latter dynamics:

Law¢(o..n)(dxo ... dzy) =
m¢(0) (d20) P (0),¢(1)(T0, d21) - - Pe(n—1),¢(n) (Tn—1, dn).
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Markov fluctuation theory: entropy

# Inthis context, we can define some concepts of entropy:

s The entropy production is given by the log-likelyhood between the
path distribution and its time reversal:

dLaWC(On)

ro ey Tl =1 ey Tp).
Sprod (Zo n;C(0...n)) ndLan(n...O) (0 Tp)

s Its average yields the relative entropy between the paths
distribution and its time reversal:

/Sprod( I C(O T n)) dLaWC(On) — Ent(LaWC(On) HLaWC(nO))Z 0

s The positivity of the latter is a form of the second law of
thermodynamics.
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Markov fluctuation theory: entropy

X

The state (microscopic) entropy is given by the log-likelyhood between
7w and the reference distribution:

dm
Se(z) :== —1In drefi( z) = — Inmc(z).

Its average is the Shannon entropy of 7.

The exchanged entropy is the difference between the two:

Sexch(ilfo, N R C(O .. n)) — SC(n) (le‘n) — SC(O)(ZE()) — Sprod(ibo, N C(O ..

_ Zl Cm,<m+1 xm,xm+1)
PCm—i—l Cm (xm—l-lv xm)

The exchanged entropy does not depend on 7 and is thus explicitly

computable in general.
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Markov fluctuation theory: entropy

The latter notions of entropy have two fundamental properties:
s They are additive in the following sense:

S(xoy .., xn;C(0...n))+ S(xp, xpnt1;¢(n...n+1)) =
S(xoy ..., Tn+1;C0...n4)).

s They are skew-symmetric under time-reversal:

ST,y x0;¢(n...0)) =—=S(x0,...,2,;C(0...7n)).
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Markov fluctuation theory: fluctuation theorem

# Fluctuation theorems are based on the following consequence of skew
symmetry: for any 6 € [0, 1] and for any path functionals 1:

E¢(n...0) (w(Xf,’L, Cee Xg)e—(1—9)Sprod(X8,...,Xf;;c(n...O)))

» Inthe above, (X,...,X,) (resp. (X{,...,X?))is distributed according
to Law(o...n) (r€sp. Law¢(,,...0))-
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Galavotti-Cohen theory

# The Galavotti-Cohen theory is a large deviation theory of the latter
identity when:

s The system is stationary: ( is fixed through time and thus irrelevant,
and  is the stationary distribution of the dynamics P:

W(y):/EP(x,y)w(a:)ref(dx).

s Thereis a lack of detailed balance (non-equilibrium): S;,,.q4 # 0.
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Galavotti-Cohen theory

o The asymptotics n — +o0o Is considered so that by the law of large
number and using additivity of entopy:

1 1
lim —Spr0d(Xo, ..., Xn) = lm  —Sexen(Xo, .., Xpn) = ep.

n—-+oo N n——+oo 1}

® epis called the steady state entropy production.

o The fact that S..., IS explicitly computable yields pertubative theory
(Kubo, Onsager, linear response).
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Jarzynski-Crooks identity

# The Jarzynski-Crooks theory is the oppsite case
s The systemis not stationary: ((0...n) really depends on time.

s Thereis a detailed balance (equilibrium) if ¢ is kept fixed and 7 Is a
Gibbs state.

o From the fact that = is Gibbsian, one can derive notions of energy, free
energy, work, heat, etc..

® So we introduce the notation:

e PHeref o (dx)

o Where in the above H.(z) is the energy of state x and /3 the inverse
temperature. Z; is the associated normalisation constant.
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Jarzynski-Crooks identity

o Assume now that the Markov transition is given in the combination form:

P er(z,dz"") = / Te(x,dz")De ¢ (2, da™) Te (2, dz'™)
CC/EEc,CENEEC/

o T, is a Markov probability transition that verfies the detailed balance:
me(dx) Te(x, dx") = 7o (da") Te (2!, d).

THINK: any reasonable dynamics of a coupling with a thermostat .

o D isa deterministic transition that verifies time symmetry and
conserve the reference measure so that the following modified detailed
balance :

refc(dx) D¢ ¢ (2, da’) = refer (da’) Der ¢ (2, dx).

THINK: a time dependent Hamiltonian flow.
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Jarzynski-Crooks identity

# Note that if ( = {’ (stationarity) and D conserves energy, then the Gibbs
distribution is the equilibrium distribution of the full Markov dynamics
(detailed balance):

WC(dCIZ) PC,C(CIZ, da:’) — WC(dZIZ,) PC,C(CIZ,, dac)
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Jarzynski-Crooks identity

o We can now refine the path by considering the following addition of
states:

(Zvna xn—l—l) — (chy :Cn—|—1/47 ajn—|—3/47 :Cn—|—1)7

where x,, /4 IS Obtained after the first transition T (,,, x,,43,4 after
D¢n)¢c(n+1) @and z,,1 after the second transition T¢(,,41).

# This enables to define the heat exchanged between time n and n + 1 by
the energy variation due to 7T

Q(n,n+1) = Heny1) (Tnt1) = Hena1) (Tng3ya) T Hen) (Tng1/a) — Hen) (Tn)

# As well as the work received between time n and n + 1 by energy
variation due to D: :

1)=H —H -
W(n,n +1) ¢(n+1) (5’7“+3/4) ¢(n) (xn+1c/E42AM 2012  —p.28




Jarzynski-Crooks identity

o The energy conservation (first law of thermodynamics) amounts to the
decomposition:

Hent1)(@nt1) — Hey (@n) = Qn,n+ 1) + W(n,n +1).

o We needto extend mutatis mutandis the notions of Sp.0q and Sexcn by
Incorporating the new states x,, 1 /4, T,,43/4.

#» A direct computation using the detailed balance conditions of the
transitions 7 and D  yields the following formula for the entropy
exchange:

Sexch (Tns Tpt1/4, Tnts/as Tny1;C(n...n+ 1)) = BOA(n,n + 1)
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Jarzynski-Crooks identity

# The definition of entropy state for Gibbs distribution yields:

ZC(n—l—l)
Z¢(n)

Scn+1)(@nt1) = Sen) (@n) = B(H¢(nt1) (Tn41) — Hegny(2n)) +1In

= B(H¢ 1) (@nt1) — Hen) (Tn) — (Frgd,c(nt1) — Fred,c(n)))s

» Inthe above we define the free energy by Figa ¢ = —5 In Z.
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Jarzynski-Crooks identity

» As aconsequence the identity S¢(,1+1) — S¢(n) = Sexch + Sprod CaN be
rewritten as:

Z¢(n
Sprod(xna Ln+1; C(na n -+ 1)) — 6W(n7 n+ 1) + In clnt ] .

Z¢(n)

o The fluctuation theorem then yields the Crooks-Jarzynski identity: for
any 0 € |0, 1] and for any path functionals :

EC(On) (QP(XO, L ,Xn)e—GW(Xo,X1/4,...,Xn;C(O...n))) _

AL o (n

» With the work given by W(zp,, Tyyt1/4, Timt3/4, Tmt1; C(n,n + 1)) =

He(m+1)(@mt374) = Hem)(@m174)- CECAM 2012  —p.31




Thermodynamic integration

# Inthe limit of infinitely slow and small switching, we formally get:
Sprod — O;

that is to say the transformation is quasi-static .

# As aconsequence, at least formally:

— . fC (SIZ)?TC(CZZIZ)CZC

where f:(z).d(¢ (force times displacement) is the energy variation of a
virtual deterministic transition D¢ 4 and starting at x.
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Part Ill: Numerical schemes.
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Langevin equations and constraints

o The Langevin equations with constraints we consider can be derived
without ambiguity from two ingredients:

s An Hamiltonian dynamics arising from the Lagrangian:

1

subject to the time evolving constraint: £(q(t)) = z(t).

s A stochastic dynamics given by an Orstein-Uhlenbeck process on
the tangential part of momenta (the part verifying V&(q)M ~1p = 0).

s We directly give the equations of motion and study the qualitative
properties on the numerical schemes.
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Langevin equations and constraints

# The equations of motion are then given by:

(th = M 'p, dt,

dpr = —=VV (qr) dt — :YP(Qt)M_lpt dé"‘\UP(Qt) AWy + Yf(Qt) dAe
Diss;zgation Fluct‘ft:ation Constra;r:ingforce

\f(qt) — Z(t)v (CQ)

N\

# Inthe above, the fluctuation dissipation identity shall hold:

2
opol =2 — oy, T,

g

and ~p only apply to the tangential part of velocity: yp(q)v =0if v is
orthogonal (for M) to the submanifold £(q) = =.

#® ) isthe Lagrange multiplier associated with the constraints gC ) and is
CECAM 2012 ~ —p.35
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Numerical scheme

® We fix atime schedule;
0,At,... NAt=T,

and abuse notation z(n) = z(nAt).

o The state space at time n is chosen to be the phase-space

)y (r), ZnE D) =2(n) that is to say (¢, p) must satisfy:
z\n), At

z(n+1) — z(n)

At
This choice will be motivated later on.
# Inthe part Il notation:
z(n+1) — z(n)
C(n) = (Z(’n/)7 At ), EC(n) = Ez(n),z(n—{—lA)t—z(n) .
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Numerical scheme

# Asin part Il, we want to construct the scheme from a splitting of the
form :

Peny,c(n+1) = Tem)Den) cnr1) L (nt1)3

o T, isa Markov transition of an Orstein-Uhlenbeck process on tangent
space (time step 2).

®  Dem).c(nt1) IS @ deterministic transition given by a velocity-Verlet
scheme with constraints (time dependent RATTLE).
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Deterministic part

# The velocity-Verlet scheme is a variational integrator obtained from the
discrete Lagrangian:

1 (Qn—|—3 4 — 4n+1 4)T (Qn—|—3 4 — Qn+1 4)
£d(Qn+1/47Qn—|—3/4) 25 / At / M / At /

(V(qnt1/a) + V(qnys/a)),

N | —

with constraints £(q,,11/,4) = 2(n) and £(gp43/4) = z(n + 1).

o The variational structure yields time-symmetry and symplecticity (and in
particular conservation of phase-space measure).
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Deterministic part

# The equations of motion are then:

r At i
pn—|—1/2 _ p”+1/4—7VV(q"+1/4) . Vﬁ(q”+1/4)>\ —|—1/4,
qn—l—l _ qn + At ]\4—1pn—|—1/27

§@") = 2(tug1)  (Cy),
n At n n n
pn—|—3/4 —p +1/2—7VV(Q —|—3/4) o Vé’(q —|—3/4)>\ +3/4

L/

VE(THT Mt =% (Cy),

\

#® x can be chosen arbitrarily. We have chosen x = Z(”“A)t_ #(n)

the next iteration, (C,) is already enforced up to order O(At?).

so that at
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Thermostat part

# The Markov transition probability 7" associated with the thermostat
coupling is integrated using a mid-point rule:

5t o
pn T = pn ZVP(Q”)(Z?” +p"“/4> + 4/ —=op(¢")G™.

G™ Is a normalized Gaussian random vector.

o The latter implicit scheme can be computed exactly using projections
and by solving a linear system.
# It can be shown to:
s (i) Leaves invariant the orthogonal part of momentum.

s (i) Satisfy detailed balance with respect to the Gibbs distribution
(associated to the usual kinetic energy) on tangent space.
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Exact discrete Jarzynski identity

# By gathering carefully all the discussion of the present talk, we obtain an
exact Crooks-Jarzynski identity for the preceeding numerical scheme.

o Define the work as

N—-1
Wz(O...N) _ Z \[{(qn—l—3/4jpn—|—3/4) . H(qn+1/4,pn—|—1/4)j

"~

energy variation of hamiltonian integrator

n=0

#® We are then able to prove the exact Jarzynski identity:

— Wz C z —z _C z —z
o BOW.0...n)+ OIT N, (N—|—i)t (0) OIT 0y, (1)At (0) )

F(2(N))—F(2(0)) = —BInE(
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Improved work estimators

X

The use of the work:
W(n,n + 1) = H(q"3/*, prt3/4) — [ (gntH/4, pnti/4)

IS unstable in the thermodynamical limit . The reason: it keeps track of
the time step errors and does not become small.

The infinitesimal work as a nice expression as ” dispalcement times
force” in the time continuous limit:

OW(qe,pe) = dH (g, pe) = qt VE(qe)dAs = 2(t)d ),
~  ——

displacement force

where in the above we have used the principle: the work is the energy
variation of the dynamics only due to the Hamiltonian part of the time
continuous dynamics.
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Improved work estimators

# As aconsequence, a consistant (for At — 0) choice for the work is:

Winn 4 1) = (z(n -+ 1A)t— z(n)>T (}\n+1/4 n )\n—i—3/4> |

where (A\"+1/4 \n+3/4) are the Lagrange multipliers in the Verlet scheme.
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Improved work estimators

X

One can check that the latter choice is indeed asymptotically preserving
in the thermodynamical integration limit, in the sense that we may show
that that:

)\n—|—1/4 i )\n—|—3/4
At

Frga(z 4+ dz,0) — Frz4(2,0) = { )2(1).0,at-dz + O(AL?),

where in the above ( ).)0,a: denotes the stationary distribution of the
scheme with fixed (non-evovling) constraints.

Note that { )..0.at = T0.0 + O(At?) an ’\”+1/4(g*;”+3/4 is indeed of
order 0 in At.
All the preceeding formulas (Crooks and TI) still hold in the time

continuous limit.
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Conclusion

o We hace present a formal Markov fluctuation theory to derive exact
Crooks identities for numerical schemes in molecular simulation.

# Thereis a compromise to between time-step errors and unstability of
the weights.

#® OPEN problem: Is there a systematic way to optimize such a
compromise ?
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