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One important project of the Shirts group:
Making free energy calculations easier

More efcient collection of 
samples from simulations

More efcient alchemical 
transformations

More efcient analysis of samples 
collected from simulations

Benchmarking and validation of 
molecular simulation methods

Ease of use of simulations

It is hard and important to make molecular 
simulations easier and more rigorous

How do we extract thermodynamic 
properties from simulations?

Simulations
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The central idea: Statistical mechanics

�• We are sampling from a parametric distribution

�• Possibly statisticians might have something to 
say about this problem . . . ?

�• If they did, would we understand them?

λ =

∫ 1

0
Eθ[U(w, θ)]dθ∆A =

∫ 1

0

〈
dU

dλ

〉
dλ

How can statistics help? An example

PR(W)

PF(W)

�• Sample problem: free 
energy of solvation

PF (W )

PR(−W )
= eβ(F−W )

Logistic Regression: Given characteristics 
(F), what is the most likely response (W)?

Reverse Logistic regression: Given a 
response (W), what are the most likely 

characteristics (F)?

F

R

Turns free energy calculations into a 
maximum likelihood problem

P(W|R)

P(W|F)

P(F|W)P(R|W)

Maximize, setting derivative equal to zero

Error bounds by propagation of derivatives

BAR is minimum variance free energy 
estimate of data extracted from two states 
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Frequently, multiple states are needed

∆F1→N = −β−1 ln
ZN

Z1
= −β−1 ln

Z2

Z1
· Z3

Z2
· · · ZN

ZN−1
=

N−1∑

n=1

∆Fn→n+1

Shrink the size

Attenuate 
the interactions

If I run N simulations, can I optimally use 
data from all N to compute statistics?

Θ = [(WTW)−1 − N]−1

Wnk =
Pk(xn)

K∑
k′=1

Nk′Pk(xn)

δ∆Fij = β−1(Θii + Θjj − 2Θij)
1
2

�‘

Maximum likelihood results: 
Multistate Bennett Acceptance Ratio

Vardi (1985), Gill et al. (1988), Kong et al. (2003), Tan (2004)

�• Reduce to BAR for two states

�• In large N limit:

�• Error is normally distributed

�• Estimator is unbiased

�• Provably the lowest variance 
reweighting estimator

M. R. Shirts and J.D. Chodera, J. Chem. Phys. 129, 124105 (2008)
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Histograms and MBAR

Density of states (U)

Used to compute expectations

Example:〈A〉=  A(E) (E)e- E

In MBAR, density of states is a 
sum of weighted delta functions

(E) = i wi (E-Ei)

Not good for visualizing, good   
for computing numbers

Optimal weights wi from MBAR 
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Yields lots of tricks to calculate other 
statistical quantities 

δ 〈A〉k = | 〈A〉k |(ΘAA + Θkk − 2ΘAk)
1/2

�• Formulas also valid if 
Nk=0 (states at which no 
samples are taken)

�• Can sample from K 
states, reweight at 
arbitrary other states

qk(x) = e−βEk(x)

qA(x) = A(x)e−βEk(x)
〈A〉k =

∫
A(x)e−βEk(x)dx∫

e−βEk(x)dx

qi(x) = e−βEi(x)

qj(x) = e−βEj(x)
∆F = β−1 ln

∫
qi(x)dx∫
qj(x)dx



MBAR has improved properties to WHAM

M. Fajer, R. V. Swift, J. A. McCammon J. Comp. Chem, 30, 719-1725 (2009)

Propane Dihedral Angle by 
Umbrella Sampling Replica Exchange

But you 
don�’t have 
to take my 
word for it!

pymbar 2.0

�• Much more efcient: 1-3 
orders of magnitude faster

�• More examples

�• Automated setup.py

�• https://simtk.org/home/
pymbar

MBARMBAR
simulation data

reweighting 

methods

Michael R. Shirts
John D. Chodera

We need benchmarks and standards 
for statistical calculations

�• Paliwal and Shirts, J. Chem. Theory Comput, 7, 4115 (2011)

�• 100 starting congurations

�• Input les and reference energies for Gromacs, Amber, 
Desmond

- + -+

Validating the error estimates of free 
energy methods

�• 10 different free energy 
methods

�• Repeat calculations 100 
times

�• Compare analytical 
uncertainties with actual 
sample variance

�• Also use bootstrap error 
estimates



Developing Benchmarks

�• Effort started at Boston free energy application 
meeting (contact me if interested in partipating!)

�• Data for users:
�• 40-100 starting coordinates

�• Files for multiple simulation programs

�• Systems
�• T4 Lysozyme

�• FKBP

�• Other systems (Trypsin, DNA gyrase)

�• Collect data from users
�• Binding data from users

�• Method details and time taken

Using MBAR to validating simulation 
parameters for free energies

LJcut= 0.9 nm

LJcut= 0.95 nm

LJcut= 0.85 nm

LJcut= 1.0 nm

LJcut= 0.80 nm
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Compute  free 
energies of MK 

states

Can use data from one parameter set to 
predict G from converged parameters

Allows us to identify fast simulation 
parameter choices with negligible 

difference from converged parameters

Prediction using only benchmark set Tested results

∆∆G for methane solvation

∆GB −∆GE -0.110±0.021 -0.213±0.089 -0.202±0.013 N.A N.A

∆GB −∆GO -0.107±0.020 -0.330±0.089 N.A -0.154±0.013 N.A

∆GE −∆GO 0.003±0.004 -0.117±0.096 N.A N.A 0.007 ±0.002

(kJ/mol)

∆∆G for anthracene solvation with a vdw cutoff 1.3 nm

∆GB −∆GE 0.168±0.585 0.314±0.155 -2.035±0.021 N.A N.A

∆GB −∆GO 0.169±0.585 0.465±0.156 N.A -1.978±0.021 N.A

∆GE −∆GO 0.001±0.005 0.151±0.170 N.A N.A -0.002±0.0004

(kJ/mol)



Can also perform simulations in 
multiple chemical states

Improves sampling by swapping between 
intermediate states

Replica exchange and expanded ensemble: 
two ways to use multiple states to 

improve  sampling

t1 t2 t3 t4t1 t2 t3 t4t1 t2 t3 t4

T1

T2

T3

T4

T5

T6

min [1, exp (−(β1E1 + β2E2) + (β2E1 + β1E2)]

t1 t2 t3 t4t1 t2 t3 t4t1 t2 t3 t4

T1

T2

T3

T4

T5

T6

min [1, exp (−β1E1 + g1 + β2E1 − g2)]

Gibbs sampling: a statistical technique for 
sampling multidimensional spaces

�• Geman and Geman, 1984 

�• 6,226 citations as of May 2012

�• Given: a joint probability distribution P(x,y)

�• Task: Generate samples from P(x,y)

x

y

�• Algorithm

1. Start with a sample (xi,yi)

2. Sample from P(x|yi) to obtain xi+1 

3. Sample from P(y|xi+1) to obtain yi+1

4. Rinse and repeat 2 and 3

Gibbs sampling to make rejectionless 
Monte Carlo for expanded ensemble

�• Assume states yk, k=1,N

�• States have unnormalized conditional probability Q(yi|x)

�• Normalize probabilities: P(yi|x)  =  Q(yi|x) / k Q(yk|x)

�• Propose new state j with probability P(yj|x)

�• Accept with probability 1

�• Independence sampling

�• Features of sampling directly with the conditional distribution
Allows for nonlocal moves

No rejected moves

But requires enumeration of the conditional probabilities

Chodera and Shirts, J. Chem. Phys,135, 194110 (2011)



Large speedup in state sampling, 
signicant speedup in coordinate sampling
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A better strategy to improve replica 
exchange in state space

�• Any set of moves in space of permutation of states preserving   
P(x,y) is valid:

�• SO:

�• Perform multiple random swaps before continuing with coordinate 
sampling

�• OR: Perform multiple neighbors swaps before continuing with 
coordinate sampling

�• Need N log N to randomize for equal energy states

�• 103-105 random swaps seems to work pretty well

Replica exchange with alanine dipeptide

�• OBC GBSA implicit solvent, Amber ff99sb 
�• 2000 iterations, sample from temperature distribution 

every 1 ps
�• 20 temperatures, 270 K to 450 K 
�• Code: OpenMM on NCSA Lincoln GPU�’s

�• Approximately 80x speedup over single core AMBER

�• Compare 2 types of swaps

�• One sweep of neighbor swaps

�• Random pairwise N3 = 8000 times

(1- 2)-1 ACF sin( ) sin( )

Neighbor swaps 92±1 ps 80±2 ps 110±9 ps 66±6 ps

All swaps 2.62±0.01 ps 1.60±0.06 ps 8.7±0.4 ps 9.1±0.5 ps

Theoretical 36x speedup 
over Metropolis

Actual  7-12x speedup 
over Metropolis

Gibbs sampling in multidimensional 
parameter spaces

�• What about swapping Hamiltonians and temperatures?

�• What about restraint and alchemical Hamiltonians? 

�• Swapping neighbors becomes complicated

�• Can perform Gibbs sampling over all states, or over 
each topologically compact region



2D replica exchange: 
alanine dipeptide with umbrella sampling

�• 10 restraints in each direction in ( , ) space

�• 100 umbrella simulations total + one unbiased simulation

�• Hamiltonian exchange between the restraint Hamiltonians

�• 2000 iterations (swaps every 5 ps), N3 = 106 swaps in 

(1- 2)-1 ACF sin( ) sin( )

Neighbor swaps 82±4 ps 31±1 ps 57±2 ps 27.1±1 ps

All swaps 24.2±0.3 ps 5.5±0.1 ps 9.9±0.1 ps 6.1±0.1 ps

Theoretical 3.4x speedup 
over Metropolis

Actual  4-5 x speedup 
over Metropolis

Expanded ensembles for 
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�“Mutate�” ligands to common 

OEt

O

N

O
O

OEt

O

N

O
O

O

O

N

O
O

O

O

N

O
O

OMe

OMe

OMe
O

O

N

O
O

O

O

N

O
O

L2 L3 L5

L6 L8 L9

OEt

O

N

O
O

OM

L2

O

O

N

O
O

L9

OEt

O

N

O
O

OM

L2

Ligand binding sampling accelerated 

Expanded 
Ensemble

Gibbs Sampling 
Simulations

Independent State 
Simulations

Average 
transition times



How do we know if we�’re sampling 
from the correct distribution?

P1(E) = Q−1
1 Ω(E)e−β1E

P2(E) = Q−1
2 Ω(E)e−β2E

Run the same system, same options, 
but two different temperatures

P1(E)

P2(E)
=

Q2

Q1
e(β2−β1)E

ln
P1(E)

P2(E)
= ln

Q2

Q1
+ (β2 − β1)E

Quantitative visualization of ensembles

2- 1: 24  from true value

2- 1: 0.66  from true value

Validation of Volume Fluctuations in NPT
Parrinello-Rahman

Berendsen

Other improvements

�• Can separate kinetic and potential energies
�• Means can use for MC algorithms as well

�• NPT simulations
�• Can look at distribution of E + PV 

�• Can look at distribution of V alone 

�• Can look at joint distribution of E and V

�• Grand canonical simulations (uctuating N)

�• Python implementation
�•  https://simtk.org/home/checkensemble



Towards best practices?

�• Collaborative project for improved simulation setup 

�• Consortium gradually forming for simulation 
validation and benchmarking

Take home messages

�• Statisticians are frequently inspired by physical scientists: 
we really need to check back to see where they extended 
and xed what we do.

�• Maximum likelihood methods are powerful ways to calculate 
unknown parameters from statistical samples

�• Statistical validation of simulation methods is required!

�• Gibbs sampling provides an efcient way to get fast 
sampling in p(x,y) by sampling (in an independent or 
correlated manner) from p(y|xi) and p(x|yi)

�• Passing arbitrary condiments rigorously is a good idea

Thanks!�• Y�’all

�• Free energy analysis: John Chodera (Berkeley), Eric Bair 
(UNC), Giles Hooker (Cornell), Vijay Pande (Stanford)

�• Free energy validation: Himanshu Paliwal (UVa)

�• Improved Sampling: John Chodera (Berkeley)

�• Money:

�• NIH NRSA

�• Ralph E. Powe Jr. Faculty Enhancement Award

�• University of Virginia FEST fund

�• NSF CHE-1152786


