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It is hard and important to make molecular
simulations easier and more rigorous

T sAD—
CAN Yo Prss T KNOW! THM DEVELOPING
THE SALT ! A SYSTEM T PASS YOU
ARBITRARY CONDIMENTS.

IT5 BEEN 20

MINUTES!

J ITLL SAVE TIME
IN THE LONG RUN!

RS
-7

e
i [Premil

| find that when someone’s taking time to do
something right in the present, they're a
perfectionist with no ability to prioritize,
whereas when someone took time to do
something right in the past, they're a master
artisan of great foresight.

One important project of the Shirts group:
Making free energy calculations easier

More efficient analysis of samples
collected from simulations [

Benchmarking and validation of
molecular simulation methods
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How do we extract thermodynamic
properties from simulations?
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The central idea: Statistical mechanics

e We are sampling from a parametric distribution

e Possibly statisticians might have something to
say about this problem ... ?

e If they did, would we understand them?
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Turns free energy calculations into a
maximum likelihood problem
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Maximize, setting derivative equal to zero

Error bounds by propagation of derivatives

How can statistics help? An example
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® Sample problem: free
energy of solvation

Logistic Regression: Given characteristics
. . "
PF(”’) _ e,B(F—W) (F), what is the most likely response (W)?

Pr(=W)

Reverse Logistic regression: Given a
response (W), what are the most likely
characteristics (F)?

BAR is minimum variance free energy
estimate of data extracted from two states
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M. R. Shirts, E. Bair, G. Hooker, and V. S. Pande. Phys. Rev. Lett. 119:5740 (2003)
C. H. Bennett, J. Comp. Phys, 22:245 (1976)
M. R. Shirts and V. S. Pande. J. Chem. Phys. 122:144107 (2005)



Maximum likelihood results:

Frequently, multiple states are needed Multistate Bennett Acceptance Ratio
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M. R. Shirts and J.D. Chodera, J. Chem. Phys. 129, 124105 (2008)
' Vardi (1985), Gill et al. (1988), Kong et al. (2003), Tan (2004)
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. ° Shrink the size
W, = Di(xn) ® Reduce to BAR for two states
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> NpPy(x,) e Inlarge N limit:

‘ ( ' k=1
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® = [(W'wW) ! -NJ! e Estimator is unbiased

® Provably the lowest variance
If | run N simulations, can | optimally use reweighting estimator
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data from all N to compute statistics?

Histograms and MBAR Yields lots of tricks to calculate other
400 statistical quantities
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¢ Density of states Q(U) * In MBAR, density of states is a 0 (A = [{A)e](Oaa+ O — 20.4)'"

sum of weighted delta functions

Q(E) = 2 wid(E-E) e Formulas also valid if e Can sample from K

# Not good for visualizing, good Ni=0 (states at which no states, reweight at
for computing numbers samples are taken) arbitrary other states

¢ Used to compute expectations

¢ Example: (A) =) A(E)Q(E)eFE

¢ Optimal weights w; from MBAR



MBAR has improved properties to WHAM
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We need benchmarks and standards
for statistical calculations
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e Paliwal and Shirts, J. Chem. Theory Comput, 7, 4115 (2011)

e 100 starting configurations

e |nput files and reference energies for Gromacs, Amber,
Desmond

pymbar 2.0

® Much more efficient: 1-3
orders of magnitude faster

A Python implementation of the multistate Bennett
acceptance ratio (MBAR)

® More examples
e Automated setup.py

e https://simtk.org/home/
pymbar
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Validating the error estimates of free
energy methods

Uncertainty estimates compared for anthracene solvation
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Developing Benchmarks Using MBAR to validating simulation

parameters for free energies

AAG kd/mol

¢ Effort started at Boston free energy application 2
meeting (contact me if interested in partipating!) 3
[]
e Data for users: ©
. . € __Lluw=1.0nm | @ Q O
e 40-100 starting coordinates o
e Files f tiole simulati S From energies of MK
iles for multiple simulation programs - Lo 0.95nm @ o o states evaluated at
e Systems g samples from K
imulati
® T4 Lysozyme ® Ldeut=0.9nm | | @ Q o simuiations
e FKBP 2 l
e Other systems (Trypsin, DNA gyrase) E Ldow=0.85nm | @ Q Q Compute free
B energies of MK
e Collect data from users ¢ b= gtates
L = LJcut= 0.80 nm . O O
® Binding data from users 8
® Method details and time taken %

Can use data from one parameter set to
predict AAG from converged parameters
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PME order=3 PME order=4 PME order=5 PME ordsr= AAG for methane solvation (kJ/mol)
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AAG as a function of PME parameters(Legend box has fourier spacings in nm)

Allows us to identify fast simulation
parameter choices with negligible
difference from converged parameters




Can also perform simulations in
multiple chemical states
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Improves sampling by swapping between
intermediate states

Gibbs sampling: a statistical technique for
sampling multidimensional spaces

e Geman and Geman, 1984

® 6,226 citations as of May 2012
e Given: a joint probability distribution P(x,y)
e Task: Generate samples from P(x,y)

® Algorithm
1. Start with a sample (xi,yi)
2. Sample from P(x|yi) to obtain Xi1 y

3. Sample from P(y|xi+1) to obtain yi.1 | | |

A

4. Rinse and repeat 2 and 3

Replica exchange and expanded ensemble:
two ways to use multiple states to
improve sampling

T T4
T To
Ts Ts
Ta Ta
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Te I Te
t 1o ts 4 t 2 3 1

min [1,exp (—(BLE1 + B2B2) + (B2F1 + f1E2)]  min [1,exp (=1 E1 + g1 + B2E1 — g2)]

Gibbs sampling to make rejectionless
Monte Carlo for expanded ensemble

Assume states yk, k=1,N

States have unnormalized conditional probability Q(yix)
Normalize probabilities: P(yi|x) = Q(yilx) / Yk Q(y«|x)
Propose new state j with probability P(yj|x)

Accept with probability 1

Independence sampling

® Features of sampling directly with the conditional distribution
o Allows for nonlocal moves
™ No rejected moves
0 But requires enumeration of the conditional probabilities

Chodera and Shirts, J. Chem. Phys,135, 194110 (2011)



Large speedup in state sampling,
significant speedup in coordinate sampling
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Replica exchange with alanine dipeptide

OBC GBSA implicit solvent, Amber ff99sb

2000 iterations, sample from temperature distribution
every 1 ps

20 temperatures, 270 K to 450 K

°
® (Code: OpenMM on NCSA Lincoln GPU’s
e Approximately 80x speedup over single core AMBER @ (T,

e Compare 2 types of swaps
e One sweep of neighbor swaps
e Random pairwise N3 = 8000 times

(1-Ao) TACF Tsin() Tsin(w)
Neighbor swaps 92+1 ps 80+2 ps 11049 ps 66+6 ps
All swaps 2.62+0.01 ps | 1.60+0.06 ps| 8.7+0.4 ps *9.1J_r0.5 ps
Theoretical 36x speedup Actual 7-12x speedup

over Metropolis over Metropolis

A better strategy to improve replica
exchange in state space

® Any set of moves in space of permutation of states preserving
P(x,y) is valid:
e SO:

e Perform multiple random swaps before continuing with coordinate
sampling

e OR: Perform multiple neighbors swaps before continuing with
coordinate sampling

® Need N log N to randomize for equal energy states
e 103%-10° random swaps seems to work pretty well

Gibbs sampling in multidimensional
parameter spaces

e What about swapping Hamiltonians and temperatures?
e What about restraint and alchemical Hamiltonians?
e Swapping neighbors becomes complicated

e (Can perform Gibbs sampling over all states, or over
each topologically compact region



2D replica exchange:
alanine dipeptide with umbrella sampling

10 restraints in each direction in (¢,P) space

100 umbrella simulations total + one unbiased simulation ® y
Hamiltonian exchange between the restraint Hamiltonians
2000 iterations (swaps every 5 ps), N3 = 108 swaps in A
(1-A2)? TAcF Tsin() Tsin(y)
Neighbor swaps 82+4 ps 31+1 ps 57+2 ps | 27.1+1 ps
All swaps 24.2+0.3 ps 5.5+0.1 ps 9.9+0.1 ps | 6.1+0.1 ps

T T

Theoretical 3.4x speedup Actual 4-5 x speedup
over Metropolis over Metropolis

“Mutate” ligands to common

Expanded ensembles for
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How do we know if we’re sampling
from the correct distribution?

Run the same system, same options,
but two different temperatures

Py(E) = Q1 'Q(E)e” P
Py(E) = Q' Q(E)e P2E

P\(E) _ Q2 (s,-p)E
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Validation of Volume Fluctuations in NPT

Parrinello-Rahman
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Quantitative visualization of ensembles

E4vs. log probability ratio for vrescale (linear)

!E:vs. probability ratio for vrescale (nonlinear)
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Other improvements

e (Can separate kinetic and potential energies
® Means can use for MC algorithms as well
e NPT simulations
e (Can look at distribution of E + PV
e (Can look at distribution of V alone
e (Can look at joint distribution of E and V

e Grand canonical simulations (fluctuating N)
e Python implementation

e https://simtk.org/home/checkensemble




Towards best practices?
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What is Alchemistry?

Alcher o alchemical e free
physical processes, such as the ree enargy of igand binding 1o a macromolecular receptor, o the ransler of a small moleculo
ror

e Collaborative project for improved simulation setup

e Consortium gradually forming for simulation
validation and benchmarking

. vVl Thanks!

® Free energy analysis: John Chodera (Berkeley), Eric Bair
(UNC), Giles Hooker (Cornell), Vijay Pande (Stanford)

® Free energy validation: Himanshu Paliwal (UVa)
e |mproved Sampling: John Chodera (Berkeley)
e Money:

e NIHNRSA

e Ralph E. Powe Jr. Faculty Enhancement Award

e University of Virginia FEST fund
e NSF CHE-1152786

Take home messages

Statisticians are frequently inspired by physical scientists:
we really need to check back to see where they extended
and fixed what we do.

Maximum likelihood methods are powerful ways to calculate
unknown parameters from statistical samples

Statistical validation of simulation methods is required!
Gibbs sampling provides an efficient way to get fast
sampling in p(x,y) by sampling (in an independent or
correlated manner) from p(y|xi) and p(x|yi)

Passing arbitrary condiments rigorously is a good idea



