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Introduction

General context

High dimensional problem in tensor spaces:

Given b € Y, seek u € X solution of Lu = b.

e L: X — Y alinear and continuous isomorphism

° X= 4®;:1 Xu
e X (resp. Y) is equipped with the norm || - ||x (resp. || - ||v)

[-11x

(resp. Y) a tensor Hilbert space of dual X’ (resp. V).

Typical problems:
e Stochastic partial differential equations (SPDE)

e Parametric partial differential equations

e High dimensional algebraic systems in tensor format arising from discretization
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Introduction

Application: Stochastic PDEs arising from fluids

Problem: Find u: (x,£) € Q x E — u(x, &) in X = [*(E, dP¢; V) solution of
L(u(-,€);€) = b(§), as. .

with uncertainties represented by m € N random variables on (2, B, P¢): £ € R™, and Van
Hilbert space of functions on Q C R

Considered examples:

e Reaction-Advection-Diffusion problem: non-symetric problem
L=—vA+c(€) -V + a(€) with X = [*(E, dP¢; Hy(Q))
e Oseen problem: non-symetric saddle point problem

L= ( ’”(E)Avfa(@'v N ) with X = [*(E, dPe; Hy(2)) x L*(Z, dPe; I*(Q))

Difficulty: Curse of dimensionality ~» Model reduction

e Reduced basis approaches [Rozza]

e Low rank tensor approximation (Proper Generalized Decomposition) [Nouy]
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Introduction

Low rank approximation

O Approximation in tensor subset foru € X~ u € 8x C X

Rank-r canonical tensors: m
X

R0 = {3 @ étio € X, | with X= o R X,
i=1 p=1 p=1

Other: Tucker tensors, Tensor train tensors, Hierarchical Tucker tensors [Khoromskij]

O Best approximation in Sx
u € Ils,(u) = argmin ||[v—u|| ~ u€ argmin|[Lv— b||.
vESx vESy

® Progressive constructions of approximations with Greedy approach [Temlyakov]

Limitation of the classical approach:

% Bad convergence rate for usual norm || - ||« (ex.: || - || for non symmetric operator L)

X Weakly coercive problems
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Introduction

Low rank approximation

© Approximation in tensor subset foru € X~ u € 8x C X

Rank-r canonical tensors:

Ri(X) = {Z‘”@“z olevw,es} with X = [*(E,dP) @ V=S®Q V

i=1

~+ Deterministic/Stochastic separation s = 2
Other: Tucker tensors, Tensor train tensors, Hierarchical Tucker tensors [Khoromskij]

O Best approximation in Sx
u € Ils,(u) = argmin ||[v—u|| ~ u€ argmin |[Lv— bl||.
vESy vESy

® Progressive constructions of approximations with Greedy approach [Temlyakov]

Limitation of the classical approach:

% Bad convergence rate for usual norm || - ||« (ex.: || - ||z for non symmetric operator L)

% Weakly coercive problems
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Introduction

Fig. Reaction-diffusion-advection problem : comparison of convergence error for

[| -]« =] - ||2 for a Ry approximation
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Introduction

Main goal of the talk

Goal:

Present an approximation strategy to solve high dimensional PDEs (ex.: stochastic)
in tensor subsets relying on best approximation problem formulated using ideal norms.

Ideal algorithm (1A)
Perturbed ideal algorithm (PA)
Ad-Re-Di problem

Oseen problem

Conclusions
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Idea ithm (1A)

Outline

Ideal algorithm (1A)
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Ideal algorithm (IA)

Ideal norm

Problem:
Given b € Y find the solution u of
Lu=0»b

e L: X — Y linear operator of adjoint L* : Y — X, b€ Y
Riesz operators Rx : X — X' (resp. Ry : Y — Y')

Vu,we X (u, wyx = (u, Rew)x x» = (Rxu, w)xr x = (Rxu, Rxu)x

® [ is continuous
Lv, w
sup sup {Lv, W)y y =p>0.
vex wer [|VlIxl[wlly

e [ is weakly coercive
L
infsupM =a>0.
veX ey [[vllxllwlly
e We have the stability condition for L

of|[Lufly < |ullx < BI[Lul|y

= Under these assumptions L is an isomorphism [Ern].
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Ideal algorithm (IA)

How to choose the norms || - ||[xand || - ||y ? [Cohen,Dahmen]

-1l =1L My < -l = 1127 Iy

e This choice leads to a problem ideally conditioned i.e. « = 8 = 1.

® Possibility to choose a priori and arbitrary || - ||x ~ "Goal oriented approximations"

Interpretation: Such a choice implies Vv, w € X

(v, wyx = (Lv, Lw)y = (Lv, Ry 'Lw)y y = (v, Ry 'L" Ry 'Lw)x
= Ix=Ry'L"Ry'L < Ry = LRy 'L* & Ry = L'R; 'L

Example: algebraic system
e Le R™" ubecR"

e X=Y=R"

® Ry=1ILRy=LL"

o [lully = [[L%ullo = [[L"ullx
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Ideal algorithm (IA)

Best approximation problem

O Best approximation problem u ~ uin Sy C X

2 s, ) = v o= ee] o |82 = Bl = i || o= & 2

® Equivalent problem:

in[|Lv — b
i Hl -

e Non computable norm || - ||y
® Exact gradient type algorithm
We seek {1, y¥} >0 C 8x x Ygiven u = 0st.
¥ = R/'(Le* b)),
{ ubtl e Tog, (uf — Ry 'L yF).

e This ideal gradient type algorithm converges in one iteration.
e R, '(Lv — b) not affordable in practice !

e How to compute practically ITs, ?
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Perturbed ideal algorithm (PA)

Outline

Perturbed ideal algorithm (PA)
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Perturbed ideal algorithm (PA)

First step

To compute:
Find y* € Ysit. y* = Ry ' (Lu* — b)
e A°:Y— Yisanon linear mapping s.t Vy € {L(Sx — b); v € Sx} we have
1A°(9) = ¥l <6llylly, 5 €(0,1)
e y"is an approximation of R, 'L(u" — b) "with" a precision §

How ?

e Preconditionned iterative solver [Powell & al.]

e Greedy construction in a fixed small low-rank subset (ex.: R;) [Temlyakov]
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Perturbed ideal algorithm (PA)

Second step

To compute:
Find u* € 85 st. &' € CE(uk - R;l(L*yk))-

e (°: X — Xis a non linear mapping giving an approx. of u* — R;'(L*y*)

— either with a fixed rank r,
¢ =1Is,.

= |n that case S§< = 8y is fixed at each iteration.
— or with a fixed precision ¢ € (0, 1) s.t.

C = [T and [|C°(v) — V][x < e||V]]lx, VveX
= In that case 8§ = R,, (X) may change at each iteration.

How ?

1. s = 2:Rank-r SVD, s > 2: HOSVD, Alternating Minimization Algorithm

2. Greedy construction in a fixed small low-rank subset: adaptativity, large rank r, fixed
precision
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Perturbed ideal algorithm (PA)

Summary of the algorithm

Set u’ =0, Z?) = 0 and Sy a low rank tensor subset.
Gradient loop: for k = 0 to K do
1. Projection: y; = argmin ||y — r*||y; with #* = Ry (Lu* — b)
yez§
2. Set m = 0;
Loop for A%: while err(y%,, r*) < 6 do

a) m=m+1;

b) Correction: w’fn = arg min ||y1'<n_1 +w— ,k”Y;
yESy
O Set Zh = 7, + span{wh;
d) Projection: y’fn = arg min ||y — ’kHY§
yeZk,
3. Compute "™ € € (u* — Ry'L*yF)

Remark: Stopping criterion based on

kK Kk k k k k
err (Y ) = 177 = Yol v/l lly <6~ 1y = Yy [/ 1Y plly < 6

14/ 37




Perturbed ideal algorithm (PA)

Greedy approximations for C°:
Weak greedy algorithm: [Temlyakov]

Let 8x be a low rank tensor subset, find {um} m>1, with um € Sx + - +8x =8¢ C X

foruyg =0
1) Correction Wm: Wm € arg mgn ||A5R;1(va b+ Lup—1)||y
vESy

2) Update: upy = ttm—1 + Wi € S
3) Stopping criterion: If m = ror ||C5(v) — v||x < ¢|v||x then uk = u,,

Convergence result: [Billaud,Nouy,Zahm]
The weak greedy algorithm for a fixed rank subset Sx converges under some criterions

depending on 4.

15/ 37
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Perturbed ideal algorithm (PA)

Convergence of the overall algorithm ...

... with fixed rank:
Proposition: [Billaud,Nouy,Zahm]

Assuming 0 < 25 < 1 then the sequence {u¥} > is s.t.

1
1B 1x < (26)*[1E°|x + 25||E“Hx,v1<> 0

1—
with EF = (u* — u) and E' = (u — TIg (u))
... with fixed precision:
Proposition:
Assuming 0 < §(1 + €) < 1 then the sequence {uf}> is s.t.
E|Ix < (1 + £)8)"[|E°lx + - 5/14llx Ve > 0.

&£
(1+¢)

Remarks:

® Convergence in two phases : decreasing and stagnation for both kind of algorithms.

® Practical interest of the second algorithm
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Ad-Re-Di problem

Outline

Ad-Re-Di problem
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Ad-Re-Di problem

Test case

Stochastic reaction-advection-diffusion problem:
We seek u(x, &) satisfying a.e. in 2

—Au+cVutau = f, inQ
u = 0, ondf)
® f(x) = 191 (x) - 192 (x)
o c(x,&) =&(3 —x,x — 3),& € U(—350,350) =0 —
e a(x, &) =&, & € InlU(0.1,100)

Discretization:
® Approx. x = (x1,x2): @ with N = 1521 nodes ~Vy C V
® Approx. &: piecewise polynomial chaos of degree 5 with the dimension § = 72 ~5p C S

Algebraic system: dimension s = 2

Lu=0»b

withu € X=RY@ R’ L € R"™Y @ R”*" and b € RN @ R’.
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Ad-Re-Di problem

Tested norms:

P N
1. Canonical norm: ||v||3 = Z 2:(1/,7)2 Ry =Iv® Ip.

i=1 i=1

Xy = 1

P N
2. Weighted norm: ||v||3, = Z Z(w(xi)vij)z : Ry = diag(w(xi))? @ Ip,
=1 i=1
w(x) = 1000 - 1p(x) + Lo\ p(x). @
Q
Xo = 0
~ "Goal oriented": measure a quantity of interest localized in D: =0 a=1

Q(v) = |—;|/Dvdx.

Confronted approaches: Approximation in R.(X), with r fixed.

v Singular Value Decomposition (SVD): Ideal rank-r reference approximation
v Classical algorithm (CA):

min |[Lv — b||,
vESx

v Perturbed algorithm (PA) : with § € {0.01,0.05,0.2,0.5,0.9} with fixed rank r

M. Billaud Friess (ECN)
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Ad-Re-Di problem

First results

Fig.1 Convergence error for || - ||z and || - ||w with Sx = Rgo(X), — 6 = 0.9, — § = 0.5, — § = 0.2, —
6 =0.05,— 6 = 0.01, — SVD,--- CA
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® Better result with PA then for CA for both norms
® Convergence closer to SVD for decreasing § — 0

® Convergence slightly deteriorated for the w-norm
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Ad-Re-Di problem

Interest of a weighted norm

Fig.2 Convergence error with rank for both || - || and || - ||w with — T, — U2
10° 10°
= =
= =
= 102 < 1072 |- 1
= =
| |
= =2
104 1074 [ \
| | | | | |
5 10 15 20 5 10 15 20
r r

e Similar approximations when compared to the reference with the 2-norm

® 7, is a better approximation when computed and compared to reference with w-norm.
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Ad-Re-Di problem

Fig.3 Comparison of first spatial modes of u; and u,,
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e Different spatial modes of %, and u,

e Features differently captured
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Ad-Re-Di problem

Fig.4 Comparison of the mean value and variance of u; and u,,

Mean of Q(u) Variance of Q(u)
10° ‘ 10° =
—,
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S 1077 e 107} i
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r r
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Ad-Re-Di problem

Gradient algorithm

Fig.5 Convergence study of the gradient type algorithm for different § for the 2-norm and 8x = Ry (X)
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e Convergence behavior consistent with theoric result (decreasing +stagnation)

e Good result, either for "large" 6 (near 0.5)

e Similar result for both 2-norm and w-norm
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Ad-Re-Di problem

Tab.1 Measured convergence rates of the linear phase for gradient type algorithm.

; 0 0.90 | 0.50 0.20 0.05 0.01
4 0.78 | 0.36 ~0 ~ S
10 082 | 042 | 0.183 ~ ~
20 086 | 0.48 | 0.197 | 0.051 0.011

Tab.2 Measured stagnation values for gradient type algorithm.

) 090 | 050 | 020 | 005 | 001
25/(1 — 20) E i 6.6e-1 | T.ie-1 | 2.1e2
4 33e-1 | 5.6e2 | 49e3 | 3564 | 3.0e5
10 52e-1 | 13e-1 | 17e-2 | 1.8e-3 | 3.3e-5
20 64e-1 | 15e-1 | 19e2 | 1.2e-3 | 7.3e-5

e Convergence rate near § than 26

e Stagnation values overestimated: smaller than theoretical bound 26/(1 — 29)
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Oseen problem
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Oseen problem
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Oseen problem

General framework

Problem:
Given b= (f,g) € Y = X| x M}, find (u, p) € X = Xz X M; solution of

AutBip = f < Lu=h
Byu = g :

® Continous and linear operators A : X3 — X}, Bi : Xi — M/ with A* : X1 — X}, Bf : M; — X;

® Ais weakly coercive:
<AV, W)X{ ,X1
sup —————— > a > 0.
ueke vek; ||ullx, [[vl1x;
with K; = {v € Xi;Vq € Mi; (Biv, @)pp p, = 0}
® B; satisfies the inf-sup condition:
<Bivv q)M{,Mi
sup ———— = [3; > 0.
a€Mivex; [[vlIx;llallag

® The product space X is equipped with (-, -)x = (-, -)x, + (-, )m,-

= Under these assumptions L is an isomorphism [Bernardi,Ern].
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Oseen problem

Best approximation problem

® Best approximation problem in 8x, C X, and in 8y, C M;

IIg x Ilg =SHar; min v—aull} + — 2
Sx, (1) Sy, (0) g (5,0) €85y XS I 1%, + g — ol

® Equivalent approximation problem:

arg  min__[|Ry ' (L(v,q) — (@)Y
(v,9) €8x, X Spyy !

® Perturbed gradient type algorithm

Seek {uk,pk,yk}kzo C 8x, X 8um, X Ygiven v, p° s.t.

yk = (Vk7 qk) = AtsR;l(Luk - b)’
e T, (uF — Ry (AW + By ),
P e s, (0F — Ry (Bivh)).

® Different approximations are constructed for p and u.

® Problem fully coupled when computing y*.
® Perturbed algorithm:

1. approximation with "§-precision” of y*

2. approximation with a fixed rank (ry, 1) or fixed precision (1, u1) for uand p separately.
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Oseen problem

Convergence results

Proposition 1: fixed rank

Assuming 0 < § < 1/+/8 then the sequence {u*, pt}i> is s.t.

IIE¥|Ix < (v88)* ||E°||x+ [|Er|]x, Yk > 0

\[
with Ek = (uk - U pk - P),EH - (u - HSXZ (“)717* HSMl (P))

Proposition 2: fixed precision 7, .

Assuming 0 < §(1 + €) < 1/+/2 then the sequence {u*, pt}i>¢ is s.t.

IE"||x < (V28(1 + €)M IE°]Ix + |lullx, Yk > 0

&
1—+/26(1+¢)
with e = max(”h I'L)' u= (u7 p)

® Two phases of convergence : decreasing, stagnation

® A priori estimate when iterates are computed with fixed precision depend on the more coarse
approximation.

® Global error estimation due to R;l
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Oseen problem

Test case

Oseen equations with uncertain parameters:

Given (E, B(E), P¢) a probability space, find

u=(1,0)
—_——
2=, 1f d 2/, 12 =1
we V= HQ)pe P=1(E1(Q)
o - u=(0,0) u=(0,0)
satisfying a.e. in 2
—vAu+aVu+p 0, inQ o= Q
V~u = O, an 2_X1:0/ X1£1

u = u onof) u=(0,0)

Uncertainties on a and v are represented by random variables
o (&) =w+&, 6 ~U-1,1)

o a(€) = a(1+ &), & ~ N(0,1)

Discretization: Stochastic Galerkin approach

e Space: P, — Py ~ n = 2189, m = 568 nodes

e Uncertainties: polynomial chaos of degree 3~ p = 10

=V, ®SCVand V,,® S, CP
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Oseen problem

Algebraic system: dimension s = 2

Finduec X, =R"®@R’andp e M; = R" @ R stt.

A B u\ ([ f
B 0 p ) \ g
with A € R™" @ RP*? Bc R™" @ RF*Fand fc R* @ R”, g € R™ ® R”.

P N
Canonical norm: ||v||; = Z Z(vi}-)z

=1 i=1

AR;'A* + B*R;,'B AR,'B*
= R, = L ® In, Ry, = m®IP$Ry:< oA 15 Ry, %

BRy'A* BRy,'B*
Confronted approaches: Approximations with fixed precisions 7, 1
e Singular Value Decomposition (SVD): Ideal rank-r reference approximation since s = 2

e Perturbed Algorithm (PA): § € {0.05,0.1,0.2,0.5,0.7} withn = l.e— 6and = l.e — 4
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First results

Oseen problem

Fig.6 Comparison of the relative convergence to reference in || - ||2 for both pressure and velocity
10° T T T T 10° T T T T
‘ —_—0=0.7
— §=0.5
107 = 107 J——0=02
= N\ = — 0=0.1
= \ = —— §=0.05
S \ <
T ' s 108 -e-SVD |
= ¢ = Y
3 [ S
S [ X N
| ] | )
= 1072 | ‘. ) 10712 “ |
' [
' [}
' [
' 1
1
10716 I I -— 10716 I I = =t -
0 4 6 8 10 2 6 8 10
modes m

® Good agreement with the reference

® [nfluence of the pressure approximation on the velocity
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Oseen problem

Fig.7 Comparison of both mean and expectations of velocities and pressure for the SVD reference (left)

and the computed approximation PA (right)

® Mean profiles in good agreement with the deterministic profiles

e Good agreement between the two approaches
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Oseen problem

Gradient algorithm

Fig.8 Convergence study of the gradient type algorithm for different § for the 2-norm and with the resp.
precisions p = 107, u = 10~*

0
10 B : | Tab.3 Measured convergence rates of the linear phase for
I 9=07 4 gradient type algorithm.
. [ — 0=0.5 ]
107 — 502 || 5 [ 070 [ 050 | 020 [ 0.1 | 0.05
e B —_—o01 |l Th. | 0.99 | 0.71 | 0.28 | 0.14 | 0.07
B 10— i 52005 | Me. | 0.37 | 0.27 | 0.06 | 0.09 | 0.03
= E -
= F | Tab.4 Measured stagnation values for gradient type
-~
S S| 1 algorithm.
= 3
= - B
— = . 0 0.70 | 0.50 | 0.20 0.1 0.05
il i Th. (10=%) [ 100 [ 3.41 [ 1.39 [ 1.16 | 1.07
1077 F E Me. (10~°) | 553 | 5.28 | 5.08 | 5.04 | 5.03
1075 L | | | | = Both rate of convergence and stagnation value
0 5 10 15 20 overestimated
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Outline

Conclusions
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Conclusions

Overview

Conclusion: Robust model reduction approach

v ldeal minimal residual formulation with ideal norms ~» Convergence improvement
V" Validation on SPDEs with application arising from fluids mechanics

V' Arbitrary choice of the norm associated to a specific problem ~+ Goal oriented
Need of improvement: Algorithm for R,

® Preconditioned solvers [Powell]

e Approximation of Ry ' in low tensor subsets [Giraldi,Nouy,Legrain]

e Stopping criterion for the dual problem ~ Still an open problem
Futher exploration:

e "Real" goal oriented explorations ~» PhD of O.Zahm, in collaboration with A. Nouy

e Uzawa algorithm for HD saddle point problems in collaboration with V. Erlacher
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