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The equation of 9.00 am

For any arbitrary finite T > 0, we are interested in ((X;, U;); 0 <t < T), solving
t
X, =X +/ U, ds,
0

t
U, = U0+/ B[X; plds + oW, — Y 2(U (X)) np (X)) Lgx.comy (1)
0 0<s<t

p(t) is the probability density of (X;, U,) for all ¢ € (0, T,

(W,,t > 0) is a standard R?-Brownian motion ;
The diffusion o > 0 is a constant;
D is an open bounded domain of R,

This study is a joint work with Jean Francois Jabir (University of Valparaiso) ;
Preprint on arXiv.
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The nonlinear coefficient
The drift coefficient B : D x L'(D x RY) — R4

/ b(v)(t,x,v)dv
R , whenever / W(t,x,v)dv # 0,
Blx;¢] = (1, x,v)dv R4 2)
]Rd
0 otherwise,

where b : RY — R? is a given measurable function.

Formally the function (z,x) — Bx; p(¢)] in (1) corresponds to the conditional
expectation

(t,x) — E[b(U,)/X; = x]
and the velocity equation in (1) rewrites

t
U =U + / E[b(Uy)/X,|ds + oW, + K.
0
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Motivation

The law of (X;, U;) = (x:, y:, 21, 4s, vs, wy) iS @ local probability distribution of
physical quantities (within the meaning of the statistical approach to turbulence)

40 Pgrtlcle velfmty

p(t,x,y,z,v, u, w)dxdydzdudvdw

probability

Computation of local moment fields : - _ R —

velocity

Jpsps t (2, X,y,2, v, u, w)dudvdw
1,x,y, = =E X = IRARY
CUCE) Jprs P, X, 9,2, v, u, w)dudvdw /X, = (%, 2)]
Jpms v p(t,x,y,2, v, u, w)dudvdw
(uv) (1, x,y,2) = =25 =B [, vi/X; = (x,7,2)]

 fpuge Pt X, 2, v, 1, w)dudvdw
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Lagrangian modeling for turbulent flow

On a given probability space (2, F,P), consider the fluid particle state vector
(X:, Uy, ¢,) satisfying

dX, =U,dt,
QU = [P0 X) 4 021X a

—G(t,X,) (U, — (% )(t,X,)) dt + /C(1,X,)e(t, X, )dW,,
dip; =Dy (t, Xy, 9;)dt + Dy (1, X, wt)dﬁ/r

(W, W) is a 4D-Brownian motion.

> (%D (t,x), (% DU D) (1, x) are computed as conditional expectations.
» ¢, C, G, Dy, D, are determined by the RANS closure.
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Statistical approach of turbulent flows
The Reynolds averages (or ensemble averages) are expectations :

(%)(t,x) = / U (t,x,w)dP(w).
Q
Reynolds decomposition

U (t,x,w) ={(U)(t,x) +u(t,x,w),
,@(t,x,w) = <'@>(tax) +p(t7x7w)

The random field u(z, x, w) is the turbulent part of the velocity.

Incompressible Navier Stokes equation in R3, for the velocity field
(%M, % 7)) and the pressure 2, with constant mass density o

1
8I%+(%-V)%ZVA%—EVBZ, t>0, xR,

V-% =0, t>0, xe R,
w(0,x) = U(x), x € R
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The Reynolds averaged NS Equation for the mean
velocity : RANS Equation

Assuming Reynolds decomposition, we obtain the unclosed equation
with constant mass density o

3

3
o) + 3 (@ D)o@y + Y 0, ) = v ) — Lo, (),

= = ©
VAU)=0,1>0, xe R,
(%)(0,%) = (%)(x), x € R,
where (uWu?y = (%O Dy — (97 D\ D), i,j) is Reynolds stress tensor.

Depending of the physics, a turbulent closure of the Reynolds stress is
associated to the RANS Equation.

Direct modeling of the Reynolds stress, or turbulent viscosity model, ...
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An alternative viewpoint to compute the Reynolds
stress [by Stephen B. Pope]

Let pg(t,x; V) be the probability density function (PDF) of the random field
% (t,x), then

@O0 = [ VOpeltxviav.
R3

@ OUN o0 = [ VOV pe(a, i Vav.
R3

The closure problem is reported on the PDE satisfied by the probability density
function pg.

In a series of papers (see e.g. Pope 85), Stephen B. Pope propose to model
the PDF pg with a Lagrangian description of the flow,

or equivalently with the Lagrangian probability density function (the PDF
method).
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Fluid particle model family

On a given probability space (£, 7, P), consider the fluid particle state vector
(Xta Uh ¢t) SatISfyIng

dX, =U,dt,

du, = [;vx@xr, X))+ vAL%) (1, X,)| dt

—G(t,X,) (U, = (%) (2, X)) dt + /C(1, X,)e(t, X, )dW,,
dipy =D\ (1, Xy, )dt + Dy (1, X, wt)dﬁ/r

(W, W) is a 4D-Brownian motion.

One needs to
» compute de Eulerian fields (% ) (1, x), (% D% D)(1,x).
» determine ¢, C, G, D, D, by the RANS closure.
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Numerical Experiments : comparison with wind
measures

In [Bernardin Bossy Chauvin Drobinski Rousseau Salameh 2009]

The MM5 model is run for 3
days between March 23rd and
25th, 1998 over the 3 nested
domains with 3 with respective
horizontal resolutions of 27, 9

e ~
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243'” conditions are taken from the
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Stochastic Lagrangian Models || Mireille Bossy CEMRACS August, 132013 || 10



The numerical framework

Our computational domain D.
For example, a given cell of the NWP
solver.

Boundary condition :

Vx € aD) <%>(t’x) = Vext(t7x)

(Vext is the MMS5 forcing.)
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The guidance with an external velocity field

The Downscaling method
Let D be an open set of R3, and a velocity Ve given at 9D :

dXt = Utdt,
U, = {—éV(@)(t, X,)

(3 +360) XD 0, - @), x)) | ar

++/Coe (1, X,)dW,

+ Z (Vext (s, Xs) — Us-) l{X.,EOD}-
0<s<t

The jump term should ensure that

(%) (t,x) = Vext(t,x),Vx € OD.
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The guidance with an external velocity field

Boundary condition

Vx € 0D,

(% )(t,x) = Vexi(t, X).

f]Rd vpe(t,x,v)dv

= Vext(t,x).
fRd pl(t’ X, v)dv eXt( 7X)

/vpg(t,x,v,)dv:/ Vext (1, %) pe(t, x, v)dv
]Rd

]Rd
& / vpe(t,x,v, )dv = / vpe(t,x,v + 2(Vex (2, x) — v))dv
R¢ R
f
pe(t,x,v,) = pe(t,x,v 4+ 2(Vext (£, x) — v)), Vv € R?

leads to specular boundary condition with jump on 9D for p, ...
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The equation of 9.15 am

X, =Xo+ [y Usds,
Ur=Uo + Jo BIXs; pilds + oWi = 32 o, 2 (U, - np(Xe)) np (X,)Lix.eomy
p(t) is the probability density of (X;, U;) for all € (0, T],

Or=(0,T)xDxR and X;y=(0,T)x9D xR
Definition 1. Trace of the density along X7

~(p) : r — Ris the trace of (p(¢); ¢ € [0, T]) along X7 if it is nonnegative and satisfies,
forall in (0,7}, f in C° (Q) :

/ (u - np(x)) v(p) (s, x,u)f (s, x, u) ds doap (x) du
v

—— [ sexaptmndidir [ fOx w0 drd @)

D xRI DxRI 5
+/ (&f—l— u-Vif + B[ p.] Viuf + %A,f) (s, x, 1) ps(x, u) ds dx du
and, for dt @ doap a.e. (t,x) in (0,T) x 9D,
[ m@)ho)xdit oo, [ (@m0
RY R4
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Main Theorem

Under (H), there exists a unique solution in law to (1) in I1,,.

= { Q, probability measure onC([0, 7]; D) x D([0, T}; R), s.t.,
forallz € [0, 7], p = Qo (x(t),u(r)) ™" € L*(w; D x RY)} .
Moreover the time-marginal densities (p;, € [0, T]) is in V!(w, Q7) and admits a
trace v(p) in the sense of Definition 1 which satisfies the no-permeability
boundary condition

Jra (- np(x))y(p) (1, x, 1) du
Jra Y(p) (1, x,u) du

E{(Urnp(X:))/X; = x} = =0, di®dosp-a.e.on (0,T)

or equivalently the specular boundary condition :

Y(p)(t, x,u) = v(p)(t,x,u—=2(u-np(x))np(x)), dtddoypRdu-a.e. on (0, T)xID xR,
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The hypotheses (H)

(Hrangevin) for the construction of the linear Langevin process
(Hmvep) for the well-posedness of the Vlasov-Fokker-Planck equation

> (Hvangevin)-(i) (Xo, Uo) is distributed according to the initial law p having its
support in D x RY and such that [, o, (|xI* + [u]?) po(dx, du) < +oco.
> (Hrangevin)-(if) The boundary 9D is a compact C? submanifold of R¢.

> (Hwvep)-(i) b : RY — R? is a bounded measurable function.

> (Hmvep)-(if) The initial law o has a density py in the weighted space
L(w, D x RY) with w(u) == (1 + |u|*)% for some a > d V2.

» (Hwvrp)-(iii) There exist two measurable functions P,, Py : R — R such
that

Po(Ju]) < po(x,u) < Po(|ul), a.e. on D x R

and / (14 |u|)w P0(|u|)du < 4o00.
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Notation

= (0,1) x D x R4,
2+ ={(x,u) € xOD x R¥s.t. (u-np(x)) >0}, X :=(0,1) x T+,
g(x, ) € xOD x RYs.t. (u- np(x))<0% Y7 =(0,1) x ¥,
EO —{(x,u ) € 0D xR s.t. (u-np(x)) =0}, ¥ = (0,1) x X°,

Y7 = (0,T) x 9D x R? endowing with d\s,, := dt ® dosp(x) @ du.
dogp is the surface measure on 9D.
The weighted Lebesgue space (with w(u) := (1 + [u]?)%)

L(w,0):={¢: 0 —R; vy € LX(Q)}, with [[¢¥[|72, 0, = VOV ]l12(0))
The weighted Sobolev space
Vi(w,Qr) =C ([0, T]; L*(w,P x RY)) NL*((0,T) x D; H'(R?)),

equipped with the norm

160 o = max { [l lotexaol axa b [ (019000 ar v
X T

t€[0,7]
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Plan of the proof

» Phase 1. Construct of a solution to the linear Confined Langevin equation.

» Phase 2. Construct a density p solution of the conditional McKean Vlasov
Fokker Planck equation, with specular condition.

» Phase 3. Add the drift B[x; p] to the Langevin process constructed in Phase
1 et show that the result is the unique solution of our confined stochastic
Lagrangian model.
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Sketch of the Phase 1 -a)

Prove the well-posedness of the confined linear Langevin equation : there
exists a unique solution, defined on a filtered probability space
(Q,F, (F; t€]0,T]),P) endowed with a Brownian motion W, to

t
X,:xo—I—/ U, ds,

° (5)
U =uy+oW,—2 Z (Us— nD(XS)) nD(XS)l{XS c aD}, Vt € [0, T],

0<s<t

for any (xo,up) € (D x R U (X \ X9).
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The confined Brownian motion primitive in the half line
Starting from (Xo, Up) with X, > 0, and (B;) Brownian motion in R,

t
%:m+/%a % = Up + B.
0

Set X, = %,
U, = %S+, with & := sign(%).

Lemma B. & Jabir 2011

If pp has its support in (0, +00) x R, then .#; jumps a countable number of
times, and U, solves

U =Us+W,-2 ) U_lix_g as.

0<s<t

where W, is a Brownian motion.

( Lachal 97 : Passage time of the Brownian motion primitive at 0)
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Construction of the confined Langevin process, by
local straightening of the boundary

This method impose that oD is a compact submanifold of class C3. The local
straightening is then C2, enough to apply the Ito formula to the process in the
new system of coordinates.
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Phase 1-b) On the semigroup of the confined

Langevin process
For some test function ¢ : D x R? — R*, for all (x,u) € (D x RY)U(Z \ £°), we
define

TY(t,x,u) = Ep [(X™", U], (6)

where ((X;*, U™); ¢ € 0, T]) is the solution of (5) starting from (0, x, u)

Proposition

Assume (Hyngevin)- For all nonnegative 1 € C°(D x R?), I'V is a nonnegative

function that belongs to L?((0, T) x D; H'(R%)) and satisfies the energy equality :
ITY ()72 (pxrey + NVl 20y = 1912 (xrey: V1€ (0,T)
Furthermore, T'¥ () is solution in the sense of distributions of

ATY — (u-V,I'") — £ A,TY =0, on Qr,
T'Y(0,x,u) = (x,u), on D x RY,
¥ (t,x,u) = T¥(t,x,u — 2(u - np(x))np(x)), on T7f.

andp € (1,400), L)1, oy < 161 oy ¥ € (0,7)
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Main ingredient

Theorem

Assume (Hpangevin)- Given two nonnegative functions
fo € (D x RY) NCy(D x RY) and q € L*(X]) N Cy(X7F), there exists a unique

nonnegative function f € C}"(Qr) N C(Qr \ £9) N L2((0,T) x D; H' (RY))
solution to

Of (t,x,u) — (u- Vof(t,x,u)) — %zAuf(t,x, u) =0, forall (t,x,u) € Or,
F(0,x,u) = fo(x,u), forall (x,u) € D x R
f(t,x,u) = q(t,x,u), forall (¢t,x,u) € XF.

In addition, forthe Langevin process (x;, u;"; 1 € [ T]) startlng from
(x,u) €D x Réatsr=0and #° := inf{t > 0; x'" € 9D}, we have
f(t,x,u) = Ep [o(xf’",u;C “)l{t < g u}:| +Ep { (t— " x’éxu,uﬂ“)l{t > v u}]
Furthermore, for all t € (0, T), f satisfies
“f(t)sz(Dx]Rd) + Hf”iz(z—) + O—ZHVMfH%Z(Q,) = “fOHzZ(Dx]Rd) + Hq”f}(gj—)a
WO gy + W17, sy + 0720 = DIV 550 < Mol ey + 17, 5ot
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Interior regularity
or o € (0, 1), we further denote by D¢ the fractional derivative w.r.t. x-variables,
defined as the fractional Laplace operator of order o

DS = (=)

Theorem Bouchut 2002

Leth € L*(R x RY x RY). Assume that ¢ € L*(R x R? x R?), such that
V.9 € (L*(R x RY x RY))4, satisfies (in the sense of distributions)

2
Op+ (u- Vi) — %Auqﬁ =h, in R xR x R?. (7)

Then there exists a positive constant C

2
o
[10:¢ + (u - Vi) || 2(mxrexrey + 7||Au¢||L2(Rdede) < C( @Al @xrixra),

||VMDJ1c/3¢||iZ(]R{><]Rd><Rd) + ||D92c/3¢||L2(R><]Rd><Rd) < C(d)”hHLZ(Rx]Rdx]Rd)-
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Continuity up and along >~

Feynman-Kac formula (by the interior regularity) :

f(t,x, u) = EIP |:0(-xf)u7 u)tﬁu)l{t < ﬁxv”}] + E]P’ [Q(t - ﬁx’”,ngfwug’f,u)l{t > ﬁx,u}] .
The continuity of f up to X5 will follows from the continuity of

,v) = (B, 57" u™).

P-almost surely, for all 7 > 0, the flow (y,v) — (x"",u"") is continuous on
R? x R4,

As (y,v) ¢ 29U SF, we have 3 = " := inf{r > 0; ¥*" ¢ D}.
T T

To prove that (y,v) — 7" is continuous up to X7, follow the general argument
of the continuity of exit time related to a flow of continuous processes given in
Darling & Pardoux 1997.
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Chained PDEs

We consider also the semigroup related to the stopped process :

T%(1,x,u) = Bp [$(X5" 0, U, )],

INT, l/\T,’,Y “

where {7, n € N)} are the hitting times defined in the Main Theorem.

Corollary

Assume (Hiangevin)- Then, for all nonnegative ¢ € C°(D x R4) and all n € N*,
'Y is a nonnegative function in C,"'*(Qr) N C(Qr \ £°) and satisfies

2
AT (t,x,u) — (- VI (1, x,u)) — %AuI‘}f’(t, x,u) =0, onQr,
I'Y(0,x,u) = 1(x,u), inD x R,
TY(t,x,u) =TV (t,%,u — 2(u - np(x))np(x)), inX7.

In addition, the set {T'¥,n > 1,T = 4} belongs to L*((0, T) x D; H'(R?)) and
admits traces that satisfy the energy equality

) + I Valy 720y + ITH 117,
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Sketch of the Phase 2 : On the conditional

McKean-Vlasov-Fokker-Planck equation
We construct a probability density function satisfying (in the sense of
distribution) :

o2

Oup + (u - Vp) + (Bl 5 p] - Vup) = 5 Lup = 0in (0, 7) x D x RY,

P(O’x’ M) = pO(xv u) onD x Rda
v(p)(t,x,u) = v(p)(t,x,u — 2(u - np(x))np(x)) on (0,T) x ID x R,

Definition : Maxwellian distribution

Forgivena € R, u > 0, Py € L'(RY), such that Py > 0 on R?, a Maxwellian
distribution with parameters (a, p1, Py) is a function P : R* x RY — R* such that

P(t7 Lt) = exp{at} [m(t’ u)]ﬂ ’ (8)

where m : RT x RY — R* is defined by m(t,u) = (G(c*t) * P§ ) (u), with

1\ —|u)?
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Maxwelian bounds for the linear Vlasov-FP equation
Consider the unique solution in V;(w, Qr) to the linear problem

2
T(S)+ (B V,S) — %Aus =0 in O,
S(0,x,u) = po(x,u) on D x RY, (©)
7 (S)(t,x,u) = g(t,x,u) onXz.

Proposition
Assume (Hhvre). For B € L= ((0,T) x D; RY), for (P,, Py) as in (Hhvee)-(iii), let (g, ﬁ) be
a couple Maxwellian distributions with parameters (a, 11, P,) and (a, 1z, Po) satisfying

(al) p>1,and e (3,1).

K 2 _ o
(a2) a < 207 (u=1) 1Bllzo< (0,1 x Diety» @Nd @ > 207(1—70) ”BHi‘X’((O,T)xD;Rd)'
Then
(d1) sup / (1 + [u))w(w) [p(t,u)|* du < 400, and  inf / p(t,u)du > 0.
t€[0,7] JRY 1€(0,7] Jpa —

(d2) fp<g<p,onx;,thenp<S<p,ae onQrandp <~y (S)<p,onxf.
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Add the specular condition + the nonlinear term Blx; ]

Theorem

Under (Huvre), there exists a function p € Vi (w, Qr), and there exist v (p), v~ (p)
defined org);r and X7 respectively, with v*(p) € L*(w, X3), s.t. Vr € (0, 7],
Vi € C°(Qy),

UZ
/ (pT(w) + 4 (B[ ;0] - Vup) + 5 (Vuth - Vup)) (s, x, 1) ds dx du

— / p(t, %, W) (1, x, ) v du — / po (6, )0, x, ) v du
DxRI DxRI
[ e mp ) ()5 5 ) (55,0
+ /E— (u-np())yH () (s, x, 1 — 2(u - np (x))np (x))2h(s, X, w)dAs, (5, X, u).

In addition, there exist a couple of ngwellian distributions (F, £) such that
B§P§P7 a'e'onQT7

P <~%(p) <P, \y,-a.e.on ©F,

1) du ()
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Sketch of the Phase 3

under (P, (w(z); # € [0, T]), the canonical process ((x(z),u(z)); t € [0, T]) satisfies

{ x(1) = x(0) + /Otu(s) ds,

u(t) = u(0) + ow(t) = Y 2 (uls™) - np(x(5)) no ()15 € oD}

0<s<t

Consider p™” € V,(w, Qr) solution to the MVFP eq.

% :exp{é/OTB[x(f) 202/ ‘ ) }

Then, according to Girsanov Theorem, ((x(¢),u(z)); t € [0, T]) satisfies Q-a.s.,

x(t) +f0 )ds,
u(t) = u(0) + 2 Blx(s); pFP ()] ds + ow(t) = S 2 (u(s™) - np(x(s)) mp (x(5)) 1
0<s<t

where (w( — [y Blx P(s)] ds; t € [0,T]) is a R%-valued Q-Brownian
motion, and(@xo edxuO =
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The mild equation

p € C([0, T]; L*(D x RY)) is a solution to the following linear mild equation if, for
allt € (0,7], forall v € C>(D x RY),

(. p(1)) = (T¥ (1), po) + /O t (V¥ (e = ), Bl3 o (s)]pls) ) ds, (10)

Proposition

(i) There exists at most one solution in C([0, T]; L*(D x R%)) to the linear mild
equation (10).

(ii) The weak solution (o P(¢);¢ € [0, T]) to MVFP equation is solution to the
mild equation (10).

(iii) The time marginal Q o (x(), u(¢))~" admits a density p(r) € L*(w, D x R?)
which is solution to the mild equation (10).
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Numerical method : stochastic particle algorithm

The PIC method

The computational space is divided in cells

We use a Particle in cell (PIC) technique to compute the Eulerian fields like
(2D)(1,%).

We compute the Eulerian fields (mean fields) at the center of each sub-cell only.

ot

We introduce N, particles (X;
D.

U™ in

Each cell C contains N, particles
by constant mass density constraint.

K(.,x) =1(.,C(x)).

Np
(F))(tx) ~ NLZF(U”P) X4 /N ZK XN )
P k=1 P k=1

NP
STRXY x) =N
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Connected projects

MIAMFE for different N,

L.

» PhD Thesis of Laurent Violeau e [
on the numerical analysis of E <o e oo N-am £
SLM. First rate of convergence |- T O
result on the fluid particle < ST
algorithm for various cases of e
conditional expectation '
estimators.

» winpos : development of wind
farm simulator (with
Inria.Chile)
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