
Greedy algorithms for high-dimensional eigenvalue

problems

V. Ehrlacher
Joint work with E. Cancès et T. Lelièvre
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Motivation

High-dimensional problems are ubiquitous: quantum mechanics, kinetic models,
molecular dynamics, uncertainty quantification, finance, multiscale models etc.

How to compute u(x1, · · · , xd ) with d potentially large?

The bottom line of deterministic approaches is to represent solutions as linear
combinations of tensor products of small-dimensional functions (parallelepipedic
domains):

u(x1, · · · , xd) =
∑

k≥1

r1
k (x1)r

2
k (x2) · · · r

d
k (xd )

=
∑

k≥1

(

r1
k ⊗ r2

k ⊗ · · · ⊗ rd
k

)

(x1, x2, · · · , xd ).
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Curse of dimensionality

Classical approach: Galerkin method using standard finite element discretization
with N degrees of freedom per variate.

u(x1, · · · , xd ) ≈
∑

(i1,··· ,id )∈{1,··· ,N}d

λi1,··· ,id φ
1
i1 ⊗ · · · ⊗ φd

id
(x1, · · · , xd),

where the basis functions
(

φj
i

)

1≤i≤N, 1≤j≤d
are chosen a priori and the real

numbers (λi1,··· ,id )1≤i1,··· ,id≤N are to be computed.

DIM = Nd

This is the so-called curse of dimensionality ([Bellman, 1957])
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Greedy algorithms

Progressive Generalized Decomposition: Here, we consider an approach
proposed by:

Ladevèze et al. to do time-space variable separation;

Chinesta et al. to solve high-dimensional Fokker-Planck equations in the
context of kinetic models for polymers;

Nouy et al in the context of uncertainty quantification.

They are related to the so-called greedy algorithms introduced in nonlinear
approximation theory: ([Temlyakov, 2008], Cohen, Dahmen, DeVore, Maday...)

The idea is to look iteratively for the “best tensor product”. At the nth iteration
of the algorithm, an approximation un of the function u is given by:

u(x1, · · · , xd ) ≈ un(x1, . . . , xd ) =

n
∑

k=1

r1
k ⊗ r2

k ⊗ · · · ⊗ rd
k (x1, · · · , xd).

un(x1, · · · , xd ) = un−1(x1, · · · , xd) + r1
n ⊗ r2

n ⊗ · · · ⊗ rd
n (x1, · · · , xd ).

DIM = n × Nd
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Existing results on greedy algorithms

Theoretical results for convex unconstrained minimization problems: [Le Bris, Lelièvre,

Maday, 2008], [Cancès, VE, Lelièvre, 2011], [Nouy, Falco, 2012]

A greedy algorithm has been proposed in ([Chinesta, Ammar, 2010]) for eigenvalue
problems, but no analysis.

Here, we propose two new greedy algorithms for eigenvalue problems and provide
some theoretical convergence results for these.
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Prototypical example

Ω = (−L1, L1) × · · · × (−Ld , Ld) where for all 1 ≤ i ≤ d , Xi = (−Li , Li) is a
bounded open interval of R.
We wish to compute the lowest eigenvalue µ and an associated eigenvector
u(x1, · · · , xd ) of the Schrödinger operator − 1

2∆ + Φ on L2(Ω):

−
1

2
∆u + Φu = µu,

where Φ(x1, · · · , xd ) ∈ Lq(Ω) with q = 2 if d ≤ 3, q > 2 for d = 4 and q = d/2
for d ≥ 5.

Weak formulation of the eigenvalue problem:

H := L2(Ω), V := H1
0 (Ω),

∀v , w ∈ H , 〈v , w〉H =
∫

Ω vw ,

∀v , w ∈ V , a(v , w) := 1
2

∫

Ω
∇v · ∇w +

∫

Ω
Φvw ,
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Prototypical example

The function u(x1, · · · , xd ) and the eigenvalue µ are then solutions of:

∀v ∈ V , a(u, v) = µ〈u, v〉H , µ = min
v∈V ,v 6=0

a(v , v)

‖v‖2
H

, u = argmin
v∈V ,v 6=0

a(v , v)

‖v‖2
H

.

At each iteration of the algorithm, only low-dimensional functions are computed,
for instance pure tensor product functions

Σ :=
{

r1 ⊗ r2 ⊗ · · · ⊗ rd , r1 ∈ H1
0 (X1), · · · , rd ∈ H1

0 (Xd )
}

. (1)
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General setting and main assumptions

Let V , H be separable Hilbert spaces such that

(AV) V ⊂ H is dense and the injection V →֒ H is compact (i.e. the weak
convergence in V implies the strong convergence in H).

Let 〈·, ·〉H denote the scalar product on H .

Let a : V × V → R be a continuous symmetric bilinear form such that

(AA) ∃η ≥ 0, such that the bilinear form 〈·, ·〉a defined by

∀v , w ∈ V , 〈v , w〉a := a(v , w) + η〈v , w〉H

defines a scalar product on V whose associated norm ‖ · ‖a is equivalent to
the original norm on V .

Let Σ ⊂ V satisfying

(A1) Σ is a non-empty cone of V i.e. 0 ∈ Σ and ∀(z, c) ∈ Σ × R, cz ∈ Σ;

(A2) Σ is weakly closed in V ;

(A3) Span (Σ) is dense in V .
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Eigenvalue problem in the general framework

All the previous assumptions are satisfied in our prototypical example!

We wish to compute the lowest eigenvalue µ of the bilinear form a(·, ·) and an
associated H-normalized eigenvector u ∈ V , which satisfy

µ = min
v∈V ,v 6=0

a(v , v)

‖v‖2
H

, u = argmin
v∈V ,v 6=0

a(v , v)

‖v‖2
H

.

In particular, we have

∀v ∈ V , a(u, v) = µ〈u, v〉H .

The greedy algorithm computes iteratively a sequence (zn)n∈N ⊂ Σ and the
approximation un of u given at the nth iteration of the algorithms satisfies

un ∈ Span {z0, z1, · · · , zn} .
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Three greedy algorithms

Rayleigh Greedy algorithm ([Cancès, VE, Lelièvre, 2013]);

Residual Greedy algorithm ([Cancès, VE, Lelièvre, 2013]);

Explicit Greedy algorithm ([Chinesta, Ammar, 2010]);

All these algorithms begin with some initial guess u0 ∈ V .

The initial guess u0 ∈ V is defined as follows:

Initialization n = 0: find z0 ∈ Σ such that

z0 ∈ argmin
z∈Σ, z 6=0

a(z, z)

‖z‖2
H

; (2)

set u0 := z0

‖z0‖H
and λ0 := a(u0, u0).
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Pure Rayleigh Greedy algorithm

Rayleigh quotient: ∀v ∈ V , J (v) :=

{

a(v,v)
‖v‖2

H
if v 6= 0,

+∞ if v = 0.

The Rayleigh Greedy Algorithm reads:

Iteration n ≥ 1: find zn ∈ Σ such that

zn ∈ argmin
z∈Σ

J (un−1 + z) . (3)

Set un = un−1+zn

‖un−1+zn‖H
, λn := a(un, un) and n = n + 1.
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Residual Greedy algorithm

The Residual Greedy Algorithm reads:

Iteration n ≥ 1: find zn ∈ Σ such that

zn ∈ argmin
z∈Σ

1

2
‖un−1 + z‖2

a − (λn−1 + η)〈un−1, z〉H . (4)

Set un = un−1+zn

‖un−1+zn‖H
, λn := a(un, un) and n = n + 1.

Why is it called Residual? (4) is equivalent to

zn ∈ argmin
z∈Σ

1

2
‖Rn−1 − z‖2

a,

where Rn−1 is the element of V such that

∀v ∈ V , 〈Rn−1, v〉a = λn−1〈un−1, v〉H − a(un−1, v).
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Euler equations for the Residual algorithm on a very simple

case

In the previous prototypical example, with d = 2 and Φ = 0 (In this case, we can
take η = 0).

Σ =
{

r1 ⊗ r2, r1 ∈ H1
0 (X1), r2 ∈ H1

0 (X2)
}

,

If zn = r1
n ⊗ r2

n ∈ Σ, the Euler equations associated to the previous mininmization
problem read































[

∫

X1
|r1

n |
2
]

(−∆x2 r
2
n (x2)) +

[

∫

X1
|∇x1 r

1
n |

2
]

r2
n (x2)

=
∫

X1
[−∆x1,x2un−1(x1, x2) − λn−1un−1(x1, x2)] r

1
n (x1) dx1,

[

∫

X2
|r2

n |
2
]

(−∆x1 r
1
n (x1)) +

[

∫

X2
|∇x2 r

2
n |

2
]

r1
n (x1)

=
∫

X2
[−∆x1,x2un−1(x1, x2) − λn−1un−1(x1, x2)] r

2
n (x2) dx2,

These equations leads to a system of coupled nonlinear equations, which are
solved through an alternating direction method (fixed-point procedure).

V. Ehrlacher (CERMICS) Greedy algorithm CEMRACS 2013, 31st July 2013 15 / 32



Convergence results in infinite dimension

Theorem (Cancès, VE, Lelièvre, 2013)

Provided that (AA), (AV), (A1), (A2) and (A3) are satisfied, the iterations of the
Rayleigh (up to a slight modification) and Residual Greedy algorithms are
well-defined, in the sense that there always exists at least one solution to (2), (3)
and (4).
Besides, the sequence (λn)n∈N converges to λ, an eigenvalue of the bilinear form
a(·, ·), and if Fλ denotes the set of H-normalized eigenfunctions of a(·, ·)
associated with the eigenvalue λ,

d(un, Fλ) := inf
w∈Fλ

‖un − w‖a −→
n→∞

0.

If the eigenvalue λ is simple, the sequence (un)n∈N strongly converges in V
towards an element wλ ∈ Fλ such that ‖wλ‖H = 1.

Unfortunately, λ may not be the smallest eigenvalue of a: this depends strongly
on the choice of the initial guess u0. But this seems to be a pathological case, and
in all the numerical results we have performed so far, the limit was the smallest
eigenvalue of the bilinear form a(·, ·).
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Convergence results in finite dimension

Lojasiewicz inequality: [Lojasiewicz, 1965], [Levitt, 2012]

Lemma

Let us assume that the dimension of V is finite and let D := {v ∈ V , 1/2 < ‖v‖H < 3/2}. Besides, let Fλ

be the set of H-normalized eigenvectors of a(·, ·) associated to λ. Then, J : D → R is analytic, and there
exists K > 0, θ ∈ (0, 1/2] and ε > 0 such that

∀v ∈ D, d(v, Fλ) := inf
w∈F

λ

‖v − w‖a ≤ ε, |J (v) − λ|1−θ ≤ K‖∇J (v)‖a. (5)

Theorem (Cancès, VE, Lelièvre, 2013)

Let us assume (AA), (AV), (A1), (A2), (A3) and that the dimension of V is finite. Then, for the Rayleigh and
the Residual algorithm, the whole sequence (un)n∈N strongly converges in V towards an element wλ of Fλ.
Besides, if θ denotes the same real number appearing in (5), the following convergence rates hold:

if θ = 1/2, there exists C > 0 and 0 < σ < 1 such that for n large enough,

‖un − wλ‖a ≤ Cσn ; (6)

if θ 6= 1/2, there exits C > 0 such that

‖un − wλ‖a ≤ Cn
−

θ

1−2θ . (7)
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Explicit Greedy algorithm

The Explicit Greedy algorithm ([Chinesta, Ammar, 2010]) is only defined for sets Σ
which are embedded manifolds.

For zn ∈ Σ, we denote by TΣ(zn) the tangent space in V to Σ at the point zn.

Iteration n ≥ 1: for n ≥ 1, find zn ∈ Σ such that

∀δzn ∈ TΣ(zn), a(un−1 + zn, δzn) − λn−1〈un−1 + zn, δzn〉H = 0. (8)

Set un = un−1+zn

‖un−1+zn‖H
, λn := a(un, un) and n = n + 1.

This leads to a system of coupled nonlinear equations similar to the “Euler
equations” associated to the minimization problems of the other algorithms, which
can also be solved through a fixed-point procedure.

No mathematical results on this method, the existence of a solution to (8) is not
guaranteed in general even if the algorithm seems to work in practice.
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Tangent space to rank-1 tensor product functions

Rank-1 tensor product functions

Σ :=
{

r1 ⊗ r2 ⊗ · · · ⊗ rd , r1 ∈ H1
0 (X1), · · · , rd ∈ H1

0 (Xd )
}

, (9)

zn = r1
n ⊗ r2

n ⊗ · · · ⊗ rd
n ,

TΣ(zn) :=
{

δzn

(

s1, s2, . . . , sd
)

, s1 ∈ H1
0 (X1), · · · , sd ∈ H1

0 (Xd )
}

, (10)

where

δzn

(

s1, s2, . . . , sd
)

= s1 ⊗ r2
n ⊗ · · · ⊗ rd

n

+r1
n ⊗ s2 ⊗ · · · ⊗ rd

n

+ · · ·

+r1
n ⊗ r2

n ⊗ · · · ⊗ sd .
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Orthogonal versions of the algorithms

[Le Bris, Lelièvre, Maday, 2009], [Nouy, Falco, 2011]

The so-called Orthogonal versions of these greedy algorithm read:

Iteration n ≥ 1: find zn ∈ Σ as in the first step of the algorithms (Rayleigh,
Residual, Explicit).

Find (cn
1 , · · · , cn

n ) ∈ R
n such that

(cn
1 , · · · , cn

n ) ∈ argmin
(c1,··· ,cn)∈Rn

J

(

n
∑

k=1

ckzk

)

;

Set un =
Pn

k=1 cn
k zk

‖
Pn

k=1 cn
k zk‖

H

. If 〈un, un−1〉H ≤ 0, set un = −un and set n = n + 1.

The first theorem (in infinite dimension) still hold for the orthogonal versions of
the Rayleigh and Residual algorithm.
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Practical implementation

When Σ is the set of rank-1 tensor product functions (9), an alternating direction
fixed-point procedure is used to solve the Euler equations associated to the
minimization problems to compute the functions (r1

n , · · · , rd
n ) at each iteration

n ∈ N
∗.

Residual and Explicit algorithms: only requires the inversion of one-variable
linear problems.

Rayleigh algorithm: requires the full diagonalization of one-variable bilinear
forms.

Need for an evaluation of the constant η for the Residual algorithm.

V. Ehrlacher (CERMICS) Greedy algorithm CEMRACS 2013, 31st July 2013 21 / 32



Outline

1 Algorithms and theoretical convergence results

2 Numerical examples

V. Ehrlacher (CERMICS) Greedy algorithm CEMRACS 2013, 31st July 2013 22 / 32



Toy numerical tests with matrices

H = V := R
N1×N2 , Σ :=

{

r1(r2)T , r1 ∈ R
N1 , r2 ∈ R

N2
}

.

For all M1, M2 ∈ V ,

a(M1, M2) := Tr
[

MT
1

(

P1M2P
2 + Q1M2Q

2
)]

,

with P1, Q1 ∈ R
N1×N1 and P2, Q2 ∈ R

N2×N2 symmetric matrices.

Computing the smallest eigenvalue of a(·, ·) is equivalent to computing the
smallest eigenvalue of the symmetric tensor
A = (Aijkl )1≤i ,k≤N1, 1≤j,l≤N2

∈ R
(N1×N2)×(N1×N2), where Aijkl = P1

ikP
2
jl + Q1

ikQ
2
jl .
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First buckling mode of a microstructured plate
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un: outer-plane component of the displacement field

n = 0 n = 1
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un: outer-plane component of the displacement field

n = 2 n = 4
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un: outer-plane component of the displacement field

n = 9 n = 39
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Numerical results

0 20 40 60 80 100 120 140 160 180
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

n

er
r 

la
m

bd
a

 

 
PReGA
PRaGA
PEGA

0 20 40 60 80 100 120 140 160 180
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

n
er

r 
H

1
 

 
PReGA
PRaGA
PEGA

V. Ehrlacher (CERMICS) Greedy algorithm CEMRACS 2013, 31st July 2013 28 / 32



Numerical results
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Conclusions

Electronic structure calculations: theoretical and practical issues

Parametric eigenvalue problems: the eigenvalue is itself a high-dimensional
function!

Nonlinear eigenvalue problems: ex:Gross-Pitaevskii model

−∆u + u3 = µu.
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E. Cancès, VE, T. Lelièvre Convergence of a greedy algorithm for high-dimensional convex nonlinear
problems, M3AS, 2433-2467, 2011.
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Thank you for your attention!
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Computation of the first buckling mode of a

microstructured plate
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Strain tensors of the plate

Let Ωx := (0, 1), Ωy := (0, 2), E : Ωx × Ωy → R (Young modulus) and ν > 0
(Poisson coefficient), F < 0, h thickness of the plate, (ux , uy , v) : Ωx × Ωy → R

3

displacement field of the plate, u = (ux , uy).

Space of cinematically admissible displacement fields:

V u :=
{

u = (ux , uy ) ∈
(

H1(Ωx × Ωy )
)2

, ux(x , 0) = uy (x , 0) = 0 for almost all x ∈ Ω

V v :=

{

v ∈ H2(Ωx × Ωy ), v(x , 0) = v(x , 2) =
∂v

∂y
(x , 0) =

∂v

∂y
(x , 2) = 0 for almost

Membrane strain

ǫ
u

:=





∂ux

∂x
1
2

(

∂ux

∂y +
∂uy

∂x

)

1
2

(

∂ux

∂y + ∂ux

∂y

)

∂uy

∂y



 ǫ
v

:=





1
2

(

∂v
∂x

)2 1
2

(

∂v
∂x

∂v
∂y

)

1
2

(

∂v
∂x

∂v
∂y

)

1
2

(

∂v
∂y

)2





ǫ := ǫ
u

+ ǫ
v

Curvature strain

χ :=

[

∂2v
∂x2

∂2v
∂x∂y

∂2v
∂x∂y

∂2v
∂y2

]
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Potential energy of the plate

W (u, v) :=

∫

Ωx×Ωy

E (x , y)h

2(1 − ν2)

[

ν
(

Trǫ
)2

+ (1 − ν)ǫ : ǫ
]

dx dy

(membrane energy)

+

∫

Ωx×Ωy

E (x , y)h3

24(1 − ν2)

[

ν
(

Trχ
)2

+ (1 − ν)χ : χ

]

dx dy

(bending energy)

−

∫

Ωx

Fuy (·, 2) dx (external forces)
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Stationary equilibrium of the plate

Stationary equilibrium of the plate:
(

u0, v0
)

∈ V u × V v such that

W ′
(

u0, v0
)

= 0.

(

u0, v0
)

∈ V u × V v such that v0 = 0 and

u0 ∈ argmin
u∈V u

E(u),

with

E(u) :=

∫

Ωx×Ωy

E (x , y)h

2(1 − ν2)

[

ν
(

Trǫ
u

)2

+ (1 − ν)ǫ
u

: ǫ
u

]

dx dy
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Buckling modes of the plate

There is buckling if and only if the smallest eigenvalue of the Hessian
dW 0 := W ′′(u0, v0) is negative. An associated eigenvector is the first buckling
mode of the plate. Since v0 = 0,

dW 0
(

(u1, v1), (u2, v2)
)

= dW 0
u (u1, u2) + dW 0

v (v1, v2),

with

dW 0
u (u1, u2) :=

∫

Ωx×Ωy

E (x , y)h

(1 − ν2)

[

νTrǫ
u1

Trǫ
u2

+ (1 − ν)ǫ
u1

: ǫ
u2

]

dx dy

dW 0
v (v1, v2) :=

∫

Ωx×Ωy

E (x , y)h3

12(1 − ν2)

[

νTrχ
v1

Trχ
v2

+ (1 − ν)χ
v1

: χ
v2

]

dx dy

+

∫

Ωx×Ωy

E (x , y)h

(1 − ν2)

[

νTrǫ
u0

Tre
v1,v2

+ (1 − ν)ǫ
u0

: e
v1,v2

]

dx dy

e
v1,v2 :=





∂v1

∂x
∂v2

∂x
1
2

(

∂v1

∂x
∂v2

∂y + ∂v1

∂y
∂v2

∂x

)

1
2

(

∂v1

∂x
∂v2

∂y + ∂v1

∂y
∂v2

∂x

)

∂v1

∂y
∂v2

∂y





V. Ehrlacher (CERMICS) Greedy algorithm CEMRACS 2013, 31st July 2013 37 / 32



Buckling mode of the microstructured plate

V u :=
{

u = (ux , uy ) ∈
(

H1(Ωx × Ωy )
)2

, ux = uy = 0 on Γb

}

,

V v :=
{

v ∈ H2(Ωx × Ωy ), v = ∇v · n = 0 on Γb ∪ Γt

}

.

dW 0
(

(u1, v1), (u2, v2)
)

= dW 0
u (u1, u2) + dW 0

v (v1, v2),

To determine whether there is buckling, we only need to compute the smallest
eigenvalue of the bilinear form av := dW 0

v : V v × V v → R.

Continuous setting: Σ :=
{

r ⊗ s, r ∈ V v
x , s ∈ V v

y

}

with

V v
x :=

{

r ∈ H2(Ωx), r(0) = r ′(0) = r(2) = r ′(2) = 0
}

and V v
y := H2(Ωy ).

Discrete setting: cubic splines ⊗ cubic splines.
The resolution of the full discretized problem via classical galerkin methods would
require the computation of the lowest eigenvalue of one 106 × 106 matrix!
With the greedy algorithm, we only need the diagonalization (Rayleigh) or the
inversion (Residual and Explicit) of several matrices whose maximum size is
2000 × 2000.

V. Ehrlacher (CERMICS) Greedy algorithm CEMRACS 2013, 31st July 2013 38 / 32


	Algorithms and theoretical convergence results
	Numerical examples

