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Outline 

 model uncertainty formalism [Kennedy, O’Hagan 2001] 

reality = model ( parameters )  +  model discrepency mod( ) 

Bayesian estimation of ,  | data 

 Description of the physical problem 

a plasma created by a laser beam hits an obstacle 

uncertainty on the collision time predicted by the model? 

 Resolution 

We tune some parameters (without uncertainty) [Haan et al, 2009] 

reality = model( ) + mod( ) + numerical uncertainty num [ASME 2010] 

the monotonic behaviour of the output is taken into account 
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input x computer model output ycode 

observation yobs 

Formalism for the quantification of uncertainties 

reality yreal 

model error mod 

measurement error mes 

KOH approach: Kennedy, O’Hagan, JRSS, 2001 – Higton et al, SIAM J. Sci. Comput., 2004 

The ‘universal’ parameters of the physic model * are unknown =>  is a random vector 

Even with *, there is a discrepancy  mod between the model and the reality:  mod is an 

Gaussian process with hyper-parameters . 

unknown physical 
parameters  

data 

yreal (x) = ycode (x, *) + mod(x, )     x X Rd     (X: validity domain),y  Rq  

yreal (xi) = yobs,i + mes
i  xi  Data, mes is a random vector 

 and  : random vectors with ‘unknown’ pdf 
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Bayesian framework 

yreal (x) = ycode (x, *) + mod(x, )  

yreal (xi) = yobs,i + mes
i 

 

Bayes theorem: 

Ppost( ,  | data) = P(data | , ) . ( , ) / Lpost 

• P(data | , )  likelihood 

• ( , )  prior probability 

• Lpost = ∫ P(data | , ). ( , ) d  d posterior (or total)  likelihood 

 

Resolution 

• if  fixed, ycode linear,  & mes Gaussian, then  Gaussian (analytical expression) 

=>‘plug-in’ approach, with  estimated by maximum likelihood or cross validation 

 [Bachoc, Computational Statistics and Data Analysis, 2013] 

• General case : Markov Chain Monte-Carlo 

=> need to emulate the code with a metamodel 
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KOH framework 
yreal (x) = ycode (x, *) + mod(x, ) 

ycode (x, ) = T fx + Zx ( ) : kriging metamodel at each x (regression + GP) 

yobs,i = T fxi + Zxi ( ) + mod(xi, ) - mes
i xi  Data 

 

Resolution 

• for each experiment “xi”, construct the metamodel from Ni points ( j,ycode(xi, j)) 

• The likelihood P(data | , ) is then known 

• MCMC resolution: Ppost( ,  | data) = P(data | , ) . ( , ) / Lpost 

• We finally obtain the pdf of  ynew, |data for the prediction of a new experiment xnew 

Extensions 

• uncertainties on x (metrology, experimental setup...) 

• tuning of “non-universal” parameters: Han, Santner, Rawlinson, Technometrics, 2009 

Ppost( , mod | data, t) = P(data | , mod, t). ( , mod) / Lpost(t) 

with Lpost(t) = ∫ P(data | , mod, t). ( , mod) d  d mod and t = argmax Lpost(t). 
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‘simple’ application of the KOH framework 

Aim: 

• comprehension of the method; 

• (possible) difficulties 

 

Experiments that are mainly 1D 

• 1D code is sufficient => ‘quick’  simulations 

 

Few unknown parameters 

• MC resolution is sufficient 

 

=> astrophysical POLAR experiments on the laser facility 

LULI 
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Accretion column in astrophysics 

Polars are close binaries containing a magnetic white dwarf 

accreting material from a secondary star. 

The matter is channelled to radial flow toward the magnetic pole. 

Cropper M., Space Science Reviews 54 (1990) 

Wasner B., Cataclysmic variable stars (Cambridge Astrophysic Series,1995) 

Etoile 

secondaire 

Naine blanche fortement 
magnétique (B > 10 MG) 

colonne d’accrétion 



8 

A radiative shock occurs in the accretion column  

The falling matter hits the white dwarf surface 

at hypersonic velocity. 

A reverse shock propagates through the 

accretion column. 

Cooling processes in the shocked region slow 

down the shock. 

Wu,  Space Sci. Rev. 93 (2000) 

Cropper M. et al., PTRSA 360 (2002) 

Drake R.P. Astropys.Spac. Sci. 298 (2005) 

White Dwarf 

secondary star 

This shock could be studied with computer models, but how to validate these models? 

=> laboratory experiments 

Michaut, ApSS 322, 77 (2009) 
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Fluid parameter Astrophysics LULI facility 

shock length 100 km 0,5 mm 

cooling time 1 sec 50 ns 

accretion velocity [km/s] 100 80 

Mach number > 10 3 

Rps = Eint / Erad >> 1 2 × 104 

Bops = Fth / Frad >> 1 15 

 = tcool / thydro << 1 1 

The radiative flow is characterized by dimensionless numbers 

reachable in laboratory with high-power laser facilities 

Scaling laws under the assumptions: 

• optically thin medium, collisional shock, single temperature medium; 

• curvature, Compton cooling, thermal conductivity, and gravitational field neglected. 

 
Kylafis N.D. & Lamb D.Q. , Astrophys ; J. Suppl. Ser. 48 (1982) 

Falize E. et al. Astrophys. Space Science 322 (2009) 

dimensionless 

numbers 

Falize E. et al. ApJ, 730, 96  (2011) 
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Experimental concept 

        Obstacle  the obstacle 

Falize E. et al. Astrophys. Space Science 336 (2011) 

A flow of 

plasma is 

created by the 

laser heating 

The flow hits an 

obstacle to produce 

a reverse shock. 

The flow is 

collimated 

by a tube 
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• LULI: laser facility at Ecole Polytechnique, Palaiseau 

• First POLAR campaign in 2009-10 

• preliminary experiments to demonstrate the feasibility 

• => Uncertainty Quantification of  computer model 

• Second campaign in 2012 (diagnostics not fully available yet) 

É. Falize1,2, C. Busschaert1,2, B. Loupias1, M. Koenig3, A. Ravasio3, C. Michaut2 

1 CEA/DAM/DIF, F-91297, Arpajon, France 

2 LUTH, Observatoire de Paris, Université Paris-Diderot, 95190 Meudon, France 

3 LULI, Unité Mixte 7605 CNRS-CEA-Ecole Polytechnique, Palaiseau, France 
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collision time 

z 

time 

Reverse 

shock 

Expanding 
plasma 

vacuum 

Tube 

Quartz 

CH sheet Laser 

2009-2010 POLAR campaign on LULI facility: 

8 experiments with collision time observations. 
E. Falize et al. HEDP, 8  (2012) 

Ti or Al sheet 

The aim of this study is to calibrate the simulation parameters from 

these 8 experiments and to quantify the uncertainty on the prediction 

of the collision time of a new experiment. 

z 

time 

simulation 

experimental results  

(from 2 shots) 
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input x simulation   S (x, )  

input errors x: 

geometry, density, laser 

pulse... 

observation D 

reality T 

model error mod 

measurement error D epistemic uncertainties 
unknown physical 

parameters  data 

data Sources of uncertainty : V&V framework 

physical model 

numerical error num 

ASME V&V 20-2009 Standard for Verification and Validation in Computer Fluid Dynamics and Heat Transfer 

Data:  uncertainty on collision time measurement: T = D + D 

 variations in hardware & laser drive: xT = xD + x for each expt. 

Simulation: 

 T (x) = S (x, ) + mod(x) + num(x); 

 uncertainty on input parameters  

 model form uncertainty mod 

 numerical uncertainties num 
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Sequence of the study 

 Reduction of the number of random parameters from a global 

sensitivity study (Morris method): 12 => 6 

 Approximation of the code with a kriging metamodel for the 6 

remaining random parameters 

 Errors on x propagated on the metamodel => errors on y due to x 

unknown 

 Numerical uncertainties obtained from a grid convergence study 

 Resolution 
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13 unknown parameters 
 11 uncertain inputs x: 

 5 target parameters: sheet densities & thicknesses (2 materials), tube length 

 5 laser parameters: energy Emeasured, duration and shape, measured outside the 

chamber window 

  

laser transmission coefficient kLaser from the outside chamber to the target 

  

 2 unknown physical parameters are: 

the CH opacity scale factor xopa  

 the electronic flux limiter felec. 

p1 p2 p3p1 p2 p3
time 

laser power 

As the code input is Etarget = Klaser * Emeasured , 

we need only 12 variables to construct the emulator 
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A Global Sensitivity Analysis helps 
us to remove 6 factors among the 12 

Morris method: 
 

12 factors xi, that is 13 

differential simulations « One 

At a Time » OAT ; 

32 trajectories OAT indexed 

by j. 

for each xi,j, we obtain the 

collision time differential yi,j. 

* is the mean of | y| and  is 

the standard deviation of y. 

non linear or coupling effects 

same results for CH/Al target 

Morris M., Technometrics 32 (1991) 

Saltelli A. et al., Sensitivity Analysis,  John 

Wiley and Sons, Chichester (2000). 

6 factors remain: 

LCH, Lpusher, Ltube, EL, dL and felec. 

6 factors are removed: 

CH, pusher, p1/2/3, xopa.  
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We have built a surrogate of the 
simulation outputs for each type of target 

Surface response 

 for nominal CH/Ti target 

Kriging surrogates *. ~2000 points for each target, 2/3 to construct the surrogate & 

1/3 to validate it.  
*Lophaven, Nielsen, Søndergaard, IMM-REP-2002-13. 

felec 

The validation rmse (62ps) is negligible 

compared to data uncertainties. 
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Huge experimental errors in this preliminary campaign 

 laser measurement errors: 

energy U = 15% uncorrelated 

duration U = 10% uncorrelated 

shape (modes 1-4)  U = 15%  uncorrelated 

 

 target characterization errors: 

sheet densities U =  1 to 10% correlated 

sheet thicknesses   U = 10 to 20% correlated 

tube length U = 20% uncorrelated 

 

 

 

 Collision time measurement errors: 

U = 250 ps (~2-3%)  uncorrelated 

 collision time 

z 

time 

Expanding 
plasma 

vacuum 

  

 Tube 

Quartz 

CH/Ti 

or 

CH/Al 

Laser 

pulse 
(1.5ns, 300-400J) 

tcoll ≈ 8-12ns 
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Total uncertainty on collision time D (for a known input x) is obtained by 

propagating input uncertainties x through the simulation with a Monte-Carlo 

method (Gaussian PDF with U=2 ).  

Data uncertainties are huge ( D ≈ 1.5 ns compared to observation time tcoll = 

0.25 ns) mainly due to poor target characterizations. 

Total data uncertainty is about U ≈ 3 ns. 
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We use diffusion instead of transport for the thermal model, with an electronic flux 

limiter: 

•  geometric mean between felec* Ftheoretical and computed flux Te. 

The laser energy is measured outside the chamber, not on the target: 

•  Etarget = Emeasured * Klaser 

•  Klaser comes from the non-perfect transmission into the last lenses. 

2 unknown parameters  : flux limiter & laser transmission  

Initial statistical model: T (x) = S (x, ) + mod(x) + num(x) 

For a given target, x is only the laser energy E. 

The statistical model becomes: 

T (E) = S (Klaser*E, felec) + mod(E) + num(E) 



21 

num obtained from a grid convergence study  

laser nc 

ray-trace 

laser absorption 

CH 

• The laser energy is absorbed along ray-traces until the critical density nc. 

• A part of the energy is deflected according to the density gradient at nc. 

• This gradient is very sharp, and needs a very fine mesh resolution. 

Eabs errors are estimated with the GCI method on a simplified problem (only CH 

and X-ray diffusion scheme). The grid was halved 7 times (maximum reasonable 

run time). The convergence is very low: apparent order p << 1 

Eabs
converged mesh = Eabs

nominal mesh  *(  Knum + num ) with num ~ N(0, num). 

This uncertainty is propagated on the model with a Taylor expansion. 
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final statistical model 

T (E) = S (Knum*Klaser*E, felec) + mod(E, Lcor, mod) + ∂S/∂E*Klaser*E* num 

T (ED) = D (ED) + D(ED) for the data points 

Bayesian inference 

We infer KLaser & mod from the data D and 

we tune Lcor &  felec in order to maximize the posterior likelihood 

       posterior                           likelihood            *      prior 

Ppost(kLaser, mod | D, Lcor,felec) = P(D | kLaser, mod,Lcor,felec) * (kLaser, mod) / Lpost 

 ( Lcor, felec) = argmax Lpost 
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(kL) uniform on [0.6 ; 1]  

Non-informative Jeffreys prior ( ) taking into account the observation errors 

 Robert C.P., The Bayesian Choice, Springer-Verlag, New York, (1994) 

Jeffreys H., Proceeding of the Royal Society of London, Ser. A (1946) 

Prior  (kL, ) = (kL). ( )  

Gaussian Process mod(x,Lcor, mod) 

mod(x) ~ N(0, mod) and < mod(x), mod(x’)> = exp –(x-x’)2/Lcor
2 (Gaussian correlation) 

Jeffreys prior for X=(Xi)i=1,n and Xi ~N ( , 2+vi): 

 

For same observation errors vi=v: 

 

v=0 gives the classical Jeffreys prior: 
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t fixed 

Inner loop 

calibration 

MCMC 

Outer loop: tuning 

global optimization algorithm 

simulated annealing 

genetic algorithm 

t = argmax Lpost(t) 

t  T 

Algorithm: double loop for calibrating  and tuning t   

Ppost( |data,t) & Lpost(t) 

here  is a 2D vector (=> MC) and t is 2D also => ‘scanning’ of T 
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sampling of  Klaser(k) & mod(k) 

Inner loop 

calibration 

Outer loop 

tuning 

total likelihood = k post(k) 

felec(j) & Lcor (j) given 

Calibration of (Klaser, mod) and tuning of (felec,Lcor) 

j = 1, J 

k = 1, K 

post(k) = likelihood(k) * prior(k) 
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Predictive uncertainty on collision time: 

non monotonic behavior of tcoll = F(E)! 

CH/Titanium targets CH/Aluminum targets 

Only 5 realizations plotted, Lcor = 50J 

c
o
lli

s
io

n
 t

im
e
 ±

2
 (

n
s
) 

laser energy (J) 

Taking into account monotonic behavior in kriging surrogate: 

[Kleijnen, van Beers, 2001] bootstrap in both papers, the likelihood 

[Da Veiga, Marrel, 2012] truncated normal laws  is not consistent with monotonicity 

likelihood=0 if realizations ym at Em are non monotonic => Ppost ( ym,  | data, ym monotonic) 

c
o
lli
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n
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2
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laser energy (J) 
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T (E) = S (Knum*Klaser*E, felec) + mod(E) + ∂S/∂E*Klaser*E* num 

sampling of  Klaser(k) & mod(k) 

realization T(Ei) at points {Ei}i=1,I Inner loop 

calibration 
Outer loop 

tuning 

total likelihood = k post(k) 

felec(j) & Lcor (j) given 

Algorithm: double loop & monotonic realizations  

j = 1, J 

k = 1, K 

monotonic 

realization ? 

post(k) = likelihood(k) * prior(k) 

post(k) = 0 

yes 

no 
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Posterior probability Ppost(kLaser, mod) 

kLaser 

kLaser 

m
o
d

 

mod (ns) 

mean = 0.74 ns 

mean = 0.87 m
a
rg
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posterior PDF (UA) 

The tuning parameters that maximize the 

posterior likelihood are: 

•  felec = 0.096 

•  Lcor = 150 J 
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Predictive uncertainty on collision time 

CH/Titanium targets CH/Aluminum targets 

Only 100 monotonic realizations plotted 
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Summary 

 The KOH framework [2001] was applied to a real 1D-problem. 

 Another source of uncertainty is the numerical errors [ASME 2009] 

 2 tuned parameters and 2 calibrated ones [Han 2009] 

 Likelihood with monotonic behavior of the output as a function of E 

N.B. The numerical resolution is possible here due to the very low dimension. 

Future work 

 multi-fidelity codes (i.e. different grids) with multi-fidelity kriging 

emulator [Le Gratiet & Garnier, 2012, submitted to International 

Journal of Uncertainty Quantification]. 


