

Bayesian calibration and uncertainty quantification of computer models

Application to the simulation of astrophysical radiative shocks

Jean Giorla¹, J. Garnier², É. Falize¹, B. Loupias¹

¹ CEA/DAM/DIF, F-91297, Arpajon, France ² Laboratoire J-L Lions, Université Paris VII, 75013 Paris, France

contact: jean.giorla@cea.fr

Outline

model uncertainty formalism [Kennedy, O'Hagan 2001]

reality = model (parameters β) + model discrepency $\varepsilon_{mod}(\theta)$

Bayesian estimation of β , θ | data

Description of the physical problem

a plasma created by a laser beam hits an obstacle uncertainty on the collision time predicted by the model?

Resolution

We tune some parameters (without uncertainty) [Haan et al, 2009]

reality = model(β) + $\varepsilon_{mod}(\theta)$ + numerical uncertainty ε_{num} [ASME 2010]

the monotonic behaviour of the output is taken into account

Formalism for the quantification of uncertainties

<u>KOH approach</u>: Kennedy, O'Hagan, JRSS, 2001 – Higton et al, SIAM J. Sci. Comput., 2004 The 'universal' parameters of the physic model β^* are unknown => β is a random vector Even with β^* , there is a discrepancy ε_{mod} between the model and the reality: ε_{mod} is an Gaussian process with hyper-parameters θ .

$$\begin{split} y_{real} (x) &= y_{code} (x, \beta^*) + \epsilon_{mod} (x, \theta) \quad \forall x \in \mathbf{X} \subset \mathbb{R}^d \quad (\mathbf{X}: \text{validity domain}), y \in \mathbb{R}^q \\ y_{real} (x_i) &= y_{obs,i} + \epsilon_{mes}^{\quad i} \quad \forall x_i \in \text{Data}, \, \epsilon_{mes} \text{ is a random vector} \\ \beta \text{ and } \theta : \text{random vectors with 'unknown' pdf} \end{split}$$

Bayesian framework

$$\begin{cases} y_{real} (x) = y_{code} (x, \beta^*) + \varepsilon_{mod} (x, \theta) \\ y_{real} (x_i) = y_{obs,i} + \varepsilon_{mes}^{i} \end{cases}$$

Bayes theorem:

 $P_{\text{post}}(\beta, \theta \mid \text{data}) = P(\text{data} \mid \beta, \theta) \ . \ \pi(\beta, \theta) \ / \ L_{\text{post}}$

- $P(\text{data} | \beta, \theta)$
- $\pi(\beta, \theta)$

•
$$L_{\text{post}} = \int P(\text{data} \mid \beta, \theta) . \pi(\beta, \theta) \, d\beta \, d\theta$$

likelihood prior probability posterior (or total) likelihood

Resolution

- if θ fixed, y_{code} linear, π & ε_{mes} Gaussian, then β Gaussian (analytical expression)
 =>'plug-in' approach, with θ estimated by maximum likelihood or cross validation [Bachoc, Computational Statistics and Data Analysis, 2013]
- General case : Markov Chain Monte-Carlo

=> need to emulate the code with a metamodel

KOH framework

 $\begin{aligned} y_{real} (x) &= y_{code} (x, \beta^*) + \varepsilon_{mod}(x, \theta) \\ y_{code} (x, \beta) &= \beta^T f_x + Z_x (\beta) : \text{kriging metamodel at each } x \text{ (regression + GP)} \\ y_{obs,i} &= \beta^T f_{xi} + Z_{xi} (\beta) + \varepsilon_{mod}(x_i, \theta) - \varepsilon_{mes}^{i} \forall x_i \in \text{Data} \end{aligned}$

Resolution

- for each experiment " x_i ", construct the metamodel from N_i points (β_j , $y_{code}(x_i, \beta_j)$)
- The likelihood P(data | β , θ) is then known
- MCMC resolution: $P_{post}(\beta, \theta \mid data) = P(data \mid \beta, \theta) \cdot \pi(\beta, \theta) / L_{post}$
- We finally obtain the pdf of y_{new} , β , θ |data for the prediction of a new experiment x_{new} Extensions
- uncertainties on x (metrology, experimental setup...)
- tuning of "non-universal" parameters: Han, Santner, Rawlinson, Technometrics, 2009 $P_{post}(\beta, \varepsilon_{mod} \mid data, t) = P(data \mid \beta, \varepsilon_{mod}, t) \cdot \pi(\beta, \varepsilon_{mod}) / L_{post}(t)$ with $L_{post}(t) = \int P(data \mid \beta, \varepsilon_{mod}, t) \cdot \pi(\beta, \varepsilon_{mod}) d\beta d\varepsilon_{mod}$ and $t = \operatorname{argmax} L_{post}(t)$.

'simple' application of the KOH framework

Aim:

- comprehension of the method;
- (possible) difficulties

Experiments that are mainly 1D

• 1D code is sufficient => 'quick' simulations

Few unknown parameters

• MC resolution is sufficient

=> astrophysical POLAR experiments on the laser facility LULI

Accretion column in astrophysics

Polars are close binaries containing a magnetic white dwarf

accreting material from a secondary star.

The matter is channelled to radial flow toward the magnetic pole.

Cropper M., Space Science Reviews 54 (1990)

A radiative shock occurs in the accretion column

This shock could be studied with computer models, but how to validate these models? => laboratory experiments

The radiative flow is characterized by dimensionless numbers reachable in laboratory with high-power laser facilities

Falize E. et al. ApJ, 730, 96 (2011)

Scaling laws under the assumptions:

- optically thin medium, collisional shock, single temperature medium;
- curvature, Compton cooling, thermal conductivity, and gravitational field neglected.

Kylafis N.D. & Lamb D.Q. , Astrophys ; J. Suppl. Ser. 48 (1982) Falize E. et al. Astrophys. Space Science **322** (2009)

Experimental concept

Falize E. et al. Astrophys. Space Science **336** (2011)

- LULI: laser facility at Ecole Polytechnique, Palaiseau
- First POLAR campaign in 2009-10
 - preliminary experiments to demonstrate the feasibility
 - => Uncertainty Quantification of computer model
- Second campaign in 2012 (diagnostics not fully available yet)

É. Falize^{1,2}, C. Busschaert^{1,2}, B. Loupias¹, M. Koenig³, A. Ravasio³, C. Michaut²

- ¹ CEA/DAM/DIF, F-91297, Arpajon, France
- ² LUTH, Observatoire de Paris, Université Paris-Diderot, 95190 Meudon, France
- ³ LULI, Unité Mixte 7605 CNRS-CEA-Ecole Polytechnique, Palaiseau, France

2009-2010 POLAR campaign on LULI facility: 8 experiments with collision time observations.

E. Falize et al. HEDP, 8 (2012)

The aim of this study is to calibrate the simulation parameters from these 8 experiments and to quantify the uncertainty on the prediction of the collision time of a new experiment.

Data: uncertainty on collision time measurement: $T = D + \varepsilon_D$ variations in hardware & laser drive: $x_T = x_D + \varepsilon_x$ for each exp^t. Simulation:

> T (x) = S (x,β) + $ε_{mod}$ (x) + $ε_{num}$ (x); uncertainty on input parameters β model form uncertainty $ε_{mod}$ numerical uncertainties $ε_{num}$

Sequence of the study

- Reduction of the number of random parameters from a global sensitivity study (Morris method): 12 => 6
- Approximation of the code with a kriging metamodel for the 6 remaining random parameters
- Errors on x propagated on the metamodel => errors on y due to x unknown
- Numerical uncertainties obtained from a grid convergence study
- Resolution

13 unknown parameters

- 11 uncertain inputs x:
 - 5 target parameters: sheet densities & thicknesses (2 materials), tube length

p1 p2 p3

5 laser parameters: energy E_{measured}, duration and shape, measured outside the chamber window
laser,power

Iaser transmission coefficient k_{Laser} from the outside chamber to the target

2 unknown physical parameters are:

the CH opacity scale factor x_{opa}

the electronic flux limiter f_{elec}.

As the code input is $E_{target} = K_{laser} * E_{measured}$, we need only 12 variables to construct the emulator

A Global Sensitivity Analysis helps us to remove 6 factors among the 12

Morris method:

- 12 factors x_i, that is 13 differential simulations « One At a Time » OAT ;
- 32 trajectories OAT indexed by j.
- for each $\Delta x_{i,j}$, we obtain the collision time differential $\Delta y_{i,j}$.
- μ* is the mean of |Δy| and σ is the standard deviation of Δy.

Morris M., Technometrics 32 (1991) Saltelli A. et al., Sensitivity Analysis, John Wiley and Sons, Chichester (2000).

We have built a surrogate of the simulation outputs for each type of target

Kriging surrogates *. ~2000 points for each target, 2/3 to construct the surrogate & 1/3 to validate it.

*Lophaven, Nielsen, Søndergaard, IMM-REP-2002-13.

Huge experimental errors in this preliminary campaign

18

Total data uncertainty is about $U \approx 3$ ns.

Total uncertainty on collision time D (for a known input x) is obtained by propagating input uncertainties ε_x through the simulation with a Monte-Carlo method (Gaussian PDF with U=2 σ).

Data uncertainties are huge ($\sigma_{D} \approx 1.5$ ns compared to observation time $\sigma_{tcoll} = 0.25$ ns) mainly due to poor target characterizations.

2 unknown parameters β : flux limiter & laser transmission

We use diffusion instead of transport for the thermal model, with an electronic flux limiter:

• geometric mean between $f_{elec}^* F_{theoretical}$ and computed flux ∇T_e .

The laser energy is measured outside the chamber, not on the target:

- $E_{target} = E_{measured} * K_{laser}$
- K_{laser} comes from the non-perfect transmission into the last lenses.

Initial statistical model: T (x) = S (x,
$$\beta$$
) + $\varepsilon_{mod}(x)$ + $\varepsilon_{num}(x)$

For a given target, x is only the laser energy E.
The statistical model becomes:
$$T(E) = S(K_{laser}*E, f_{elec}) + \varepsilon_{mod}(E) + \varepsilon_{mum}(E)$$

$\boldsymbol{\epsilon}_{num}$ obtained from a grid convergence study

- The laser energy is absorbed along ray-traces until the critical density n_c.
- A part of the energy is deflected according to the density gradient at n_c.
- This gradient is very sharp, and needs a very fine mesh resolution.

 E_{abs} errors are estimated with the GCI method on a simplified problem (only CH and X-ray diffusion scheme). The grid was halved 7 times (maximum reasonable run time). The convergence is very low: apparent order p << 1

 $E_{abs}^{converged mesh} = E_{abs}^{nominal mesh} * (K_{num} + \eta_{num})$ with $\eta_{num} \sim \mathcal{N}(0, \sigma_{num})$. This uncertainty is propagated on the model with a Taylor expansion.

final statistical model

 $T (E) = S (K_{num} * K_{laser} * E, f_{elec}) + \varepsilon_{mod}(E, L_{cor}, \sigma_{mod}) + \partial S / \partial E * K_{laser} * E * \eta_{num}$ $T (E_D) = D (E_D) + \varepsilon_D(E_D) \text{ for the data points}$

Bayesian inference

We infer $K_{Laser} \& \sigma_{mod}$ from the data D and we tune $L_{cor} \& f_{elec}$ in order to maximize the posterior likelihood

$$\begin{array}{ll} \text{posterior} & \propto & \text{likelihood} & * & \text{prior} \\ P_{\text{post}}(\textbf{k}_{\text{Laser}}, \sigma_{\text{mod}} \mid \textbf{D}, \textbf{L}_{\text{cor}}, \textbf{f}_{\text{elec}}) = P(\textbf{D} \mid \textbf{k}_{\text{Laser}}, \sigma_{\text{mod}}, \textbf{L}_{\text{cor}}, \textbf{f}_{\text{elec}}) * \pi(\textbf{k}_{\text{Laser}}, \sigma_{\text{mod}}) / \textbf{L}_{\text{post}} \\ (\textbf{L}_{\text{cor}}, \textbf{f}_{\text{elec}}) = \operatorname{argmax} \textbf{L}_{\text{post}} \end{array}$$

Prior $\pi(\mathbf{k}_{\mathsf{L}}, \sigma) = \pi(\mathbf{k}_{\mathsf{L}}). \pi(\sigma)$

 $\pi(\mathbf{k}_{L})$ uniform on [0.6 ; 1]

Non-informative Jeffreys prior $\pi(\sigma)$ taking into account the observation errors

Robert C.P., The Bayesian Choice, Springer-Verlag, New York, (1994)

Jeffreys H., Proceeding of the Royal Society of London, Ser. A (1946)

Gaussian Process ε_{mod}(x,L_{cor},σ_{mod})

 $\varepsilon_{mod}(x) \sim N(0, \sigma_{mod})$ and $<\varepsilon_{mod}(x), \varepsilon_{mod}(x') > = \exp -(x-x')^2 / L_{cor}^2$ (Gaussian correlation)

Algorithm: double loop for calibrating β and tuning t

here β is a 2D vector (=> MC) and t is 2D also => 'scanning' of T

Calibration of (K_{laser} , σ_{mod}) and tuning of (f_{elec} , L_{cor}) j = 1, J f_{elec}(j) & L_{cor}(j) given k = 1, K sampling of $K_{laser}(k) \& \sigma_{mod}(k)$ Outer loop tuning Inner loop calibration

post(k) = likelihood(k) * prior(k)

total likelihood = Σ_k post(k)

Predictive uncertainty on collision time: non monotonic behavior of t_{coll} = F(E)!

Taking into account monotonic behavior in kriging surrogate:[Kleijnen, van Beers, 2001] bootstrapin both papers, the likelihood[Da Veiga, Marrel, 2012] truncated normal lawsis not consistent with monotonicity**likelihood=0 if realizations y_m at E_m are non monotonic => Ppost (y_m, \beta | data, y_m monotonic)**

Algorithm: double loop & monotonic realizations

 $T(E) = S(K_{num} * K_{laser} * E, f_{elec}) + \varepsilon_{mod}(E) + \partial S / \partial E * K_{laser} * E * \varepsilon_{num}$

Predictive uncertainty on collision time

CH/Aluminum targets

Summary

□ The KOH framework [2001] was applied to a real 1D-problem.

Another source of uncertainty is the numerical errors [ASME 2009]

- 2 tuned parameters and 2 calibrated ones [Han 2009]
- Likelihood with monotonic behavior of the output as a function of E
- N.B. The numerical resolution is possible here due to the very low dimension.

Future work

multi-fidelity codes (i.e. different grids) with multi-fidelity kriging emulator [Le Gratiet & Garnier, 2012, submitted to International Journal of Uncertainty Quantification].