## Sediment Transport, Numerical Modeling and Reservoir Management some Concepts and Applications

CEMRACS 2013 August 6<sup>th</sup>

Magali Jodeau EDF R&D LNHE magali.jodeau@edf.fr





#### **Overview of the presentation**

What is Sediment Transport ?

Sediment Transport Modeling



Example : Modeling Reservoir Emptying

Examples of Current Research : 2011 & 2013 Cemracs Projects



![](_page_1_Picture_7.jpeg)

## What kind of sediments do we find in rivers ?

#### Granular Material

- gravel, sand
- non cohesive material
- grain size > 40µm

![](_page_2_Picture_5.jpeg)

![](_page_2_Picture_6.jpeg)

#### Cohesive Material

- Silt , clay
- Grain size < 40µm</p>
- Strong Interactions between particles
- →Cohesion and floculation

Mixing of gravels and silt :

![](_page_2_Picture_13.jpeg)

![](_page_2_Picture_14.jpeg)

![](_page_2_Picture_15.jpeg)

## Cohesive / non cohesive -> different physical properties

Flocculation : cohesive sediments may form aggregates

Consolidation of cohesive sediments

#### Bank stability : different kind of stabilities

![](_page_3_Picture_4.jpeg)

![](_page_3_Picture_5.jpeg)

![](_page_3_Picture_6.jpeg)

### **Transport of Sediments in Rivers**

## Sand and gravel → Bed load Transport

saltating and rolling near the bed of sediments

![](_page_4_Figure_3.jpeg)

#### **Fine sediments**

# Suspended transport mixing of sediments in the water Advection dispersion equation

![](_page_4_Picture_6.jpeg)

## Transport of Sediments in Rivers Sand and gravel Fit

#### → Bed load Transport

![](_page_5_Picture_2.jpeg)

![](_page_5_Picture_3.jpeg)

![](_page_5_Picture_4.jpeg)

![](_page_5_Picture_5.jpeg)

![](_page_5_Picture_6.jpeg)

![](_page_5_Picture_7.jpeg)

### **Sediment Transport Modeling : Processes**

![](_page_6_Figure_1.jpeg)

#### →Need of

- 1. a set of equations for Hydrodynamics
- 2. a set of equations for Sediment Transport and Bed Evolution
- 1 & 2 could be splitted

![](_page_6_Figure_6.jpeg)

### Sediment transport modeling : 3D/2D/1D

- Users have to choose the numerical code depending on the goal of the simulation
- 3D, 2D and 1D simulations are possible
- Empirical formulae are used for bed interaction and sediment fluxes

Sedi3D: 3D sediment transport module

![](_page_7_Picture_5.jpeg)

Courlis: 1D sediment transport module

EDF sediment transport tools Open SourceTelemac Mascaret System http://www.opentelemac.org/

![](_page_7_Picture_9.jpeg)

## Example of the 1D sediment transport numerical code

- COURLIS numerical code (Bertier et al 2002)
- One dimensional
- Part of Telemac-Mascaret system (<u>http://www.opentelemac.org/</u>)
- Coupling between 1D shallow water equations (Mascaret, Goutal and Maurel 2002) and sediment component : Splitting approach

![](_page_8_Figure_5.jpeg)

![](_page_9_Picture_0.jpeg)

#### Hydrodynamics component : Mascaret

It solves the Shallow Water Equations

Mass continuity equation

Momentum equation

$$\left| \frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} \right| = 0 \left| \frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} \left( \frac{Q^2}{A} \right) \right| = -g.A. \frac{\partial Z}{\partial x} - g.A.J$$

avec : A la section mouillée (m<sup>2</sup>) Q le débit (m<sup>3</sup>/s) Z la cote de la surface libre (m) J la pente d'énergie déterminée à partir de la relation de Strickler.

![](_page_9_Picture_7.jpeg)

### COURLIS (Bertier et al 2002)

## Sediment component for SUSPENSION transport (fine sediments) :

Advection dispersion equation for sand and silt (independent)

 $\frac{\partial AC}{\partial t} + \frac{\partial QC}{\partial x} = \frac{\partial}{\partial x} \left( kA \frac{\partial C}{\partial x} \right) + \left( E - D \right)$  Bed interactions

Partheniades and Krone formulae for erosion and deposition of cohesive sediments

$$E = M\left(\frac{\tau}{\tau_{CE}} - 1\right) \qquad D = w_s C\left(1 - \frac{\tau}{\tau_{CD}}\right)$$

• Engelund Hansen Formula for sand transport capacity  $q_s = 0.05 \sqrt{\frac{\delta d^3}{g}} \frac{K^2 R_h^{1/3} \tau_{eff}}{(\rho_s - \rho)gd} \quad C_{eq} = \frac{\rho_s q_s}{Q}$ 

$$\begin{tabular}{ll} \begin{tabular}{ll} {\bf I} {\bf E} \end{tabular} {\bf I} {\bf I} = U_s \left( C_{sand} \ge C_{eq} \end{tabular} \end{tabular} \end{tabular} {\bf I} = V_s \left( C_{sand} - C_{eq} \right) \\ {\bf I} {\bf I} \end{tabular} {\bf I} {\bf I} \end{tabular} {\bf I} {\bf I} = V_s \left( C_{eq} - C_{sand} \right) \\ {\bf I} {\bf I} \end{tabular} \end{tabular} {\bf I} {\bf I} \end{tabular} {\bf I} \end{tabular} {\bf I} {\bf I} \end{tabular} {\bf I} {\bf I} \end{tabular} {\bf I$$

$$\frac{\partial Zb}{\partial t} = \frac{D}{C_{deposition}} - \frac{E}{C_{layer}}$$

Bed evolution

## Sand Deposition test case : Soni experiment

Soni J.P. Laboratory study of aggradation in alluvial channels, Journal of Hydrology, (49), 1981

![](_page_11_Figure_2.jpeg)

## Sand Erosion test case : Newton Experiment

![](_page_12_Figure_1.jpeg)

Newton C.T. An experimental investigation of bed degradation in an open channel. Technical report,

13 -

5 Newton experiment, Meyer Peter Formula

## **Sediments in reservoirs**

![](_page_13_Figure_1.jpeg)

![](_page_13_Picture_2.jpeg)

**edf** 

![](_page_13_Picture_3.jpeg)

### **Sediments in reservoirs**

#### Lac Mead, US (Smith 1954)

![](_page_14_Figure_2.jpeg)

![](_page_14_Picture_3.jpeg)

## How to deal with reservoir sedimentation ?

#### EDF manage more than 400 reservoirs

- Reservoir emptying is performed regularly to control the state of dams or to perform works
  - Large quantities of eroded sediments
  - Need to predict downstream impacts (water quality)

#### Reservoir flushing is performed to stop reservoir sedimentation

- Need to know how to manage the flushing
- Need to forecast downstream transport of sediment

#### Numerical modeling a convenient way to deal with these questions

![](_page_15_Picture_9.jpeg)

![](_page_15_Picture_10.jpeg)

## Example : Emptying Tolla Reservoir

Tolla Reservoir (South Corsica) :

- emptying in order to perform works on the dam
- mitigate water quality degradation
- Not so many options : dilution using tributaries, settling tank, time during the year, speed of lowering and minimal elevation
- Downstream water intake for drinking water supply for Ajaccio city (53 000 inhabitants)
- Use of numerical modeling
- to estimate the quantities of eroded sediments
- To test different scenarios of emptying

Use of a one dimensional model to simulate the downstream concentrations

![](_page_16_Picture_10.jpeg)

![](_page_16_Picture_11.jpeg)

## What kind of modeling ?

- Numerical modeling a convenient way to deal with reservoir operations and prediction of downstream sediment concentration
- One dimensional modeling well suited in many cases
- Depends on the geometry of the reservoir
- No need to reproduce in detail flow and sediment transport patterns in the reservoir
- Very good results for engineering studies on previous cases :
  - St Egreve Reservoir, Valette ICSE 2012,
  - Grangent Reservoir, Bertier River Flow 2012

![](_page_17_Picture_8.jpeg)

## Sediment and Morphology of Tolla Reservoir

- 2 bathymetries (1998-2009)
- Old small dam near the main dam
- Steep slope x~2200m + upstream confluence

![](_page_18_Figure_4.jpeg)

## **Sediment properties from sampled cores**

- Silt in the downstream area (1) and sand upstream (2)
- + leaves

Upstream area (3): not modeled

![](_page_19_Figure_4.jpeg)

Feuilles

D1

### **Description of the reservoir for the model**

![](_page_20_Figure_1.jpeg)

![](_page_20_Picture_2.jpeg)

## **Initial conditions and limit conditions**

- Downstream condition : emptying scenario
- Upstream : incoming discharge
- Initial : steady state of the full reservoir

#### **Numerical parameters**

- Vertical and longitudinal meshes
- Numerical schemes (supercritical flows)

Coupling time step

$$\left(u + \sqrt{gh}\right) \frac{\Delta t}{\Delta x} < 1$$

Chosen to obtain reliable results with smallest calculation times as possible

![](_page_21_Figure_10.jpeg)

![](_page_21_Figure_11.jpeg)

#### **Results**

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

#### Bed evolution Longitudinal bed evolution

![](_page_23_Figure_1.jpeg)

#### **Emptying scenario: Comparing speed of lowering**

![](_page_24_Figure_1.jpeg)

#### Upstream discharge : no possible in situ control

![](_page_25_Figure_1.jpeg)

![](_page_25_Picture_2.jpeg)

#### What happens if there is a flood ?

![](_page_26_Figure_1.jpeg)

#### **Examples of current research**

2011 & 2013 Cemracs Projects

![](_page_27_Picture_2.jpeg)

#### Sediment transport modeling : relaxation schemes for Saint-Venant Exner and three layer models

Emmanuel Audusse, Christophe Chalons, Olivier Delestre, Nicole Goutal, Magali Jodeau, Jacques Sainte-Marie, Jan Giesselmann and Georges Sadaka

EDF, INRIA, UNIV P6

SHALLOW WATER AND EXNER EQUATIONS

$$\begin{split} \frac{\partial H}{\partial t} + \frac{\partial Q}{\partial x} &= 0, \\ \frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} \left( \frac{Q^2}{H} + \frac{g}{2} H^2 \right) &= -g H \frac{\partial z_b}{\partial x}, \\ \rho_s (1-p) \frac{\partial z_b}{\partial t} + \frac{\partial Q_s}{\partial x} &= 0, \end{split}$$

A RELAXATION SOLVER FOR THE SAINT-VENANT EXNER MODEL

$$\begin{aligned} \frac{\partial H}{\partial t} + \frac{\partial Hu}{\partial x} &= 0\\ \frac{\partial Hu}{\partial t} + \frac{\partial}{\partial x} \left(Hu^2 + \Pi\right) &= -gH\frac{\partial z_b}{\partial x}\\ \frac{\partial \Pi}{\partial t} + u\frac{\partial \Pi}{\partial x} + \frac{a^2}{H}\frac{\partial u}{\partial x} &= \frac{1}{\lambda}(\Pi - \frac{gH^2}{2})\\ \frac{\partial z_b}{\partial t} + \frac{\partial \bar{Q}_s}{\partial x} &= 0\\ \frac{\partial \bar{Q}_s}{\partial t} + \left(\frac{b^2}{H^2} - u^2\right)\frac{\partial z_b}{\partial x} + 2u\frac{\partial \bar{Q}_s}{\partial x} &= \frac{1}{\lambda}(\bar{Q}_s - Q_s)\end{aligned}$$

![](_page_28_Picture_8.jpeg)

- sediment transport modelling : relaxation schemes for Saint-Venant Exner and three layer models
- A RELAXATION SOLVER FOR THE SAINT-VENANT EXNER MODEL : SOME RESULTS

![](_page_29_Figure_3.jpeg)

#### Flow over a moveable bump

![](_page_29_Picture_5.jpeg)

sediment transport modelling : relaxation schemes for Saint-Venant Exner and three layer models

![](_page_30_Figure_2.jpeg)

**Three Layer Model** 

![](_page_30_Picture_4.jpeg)

#### Modeling and simulation of uncertainties in hydraulics and sediment transport

Emmanuel Audusse, Sébastien Boyaval, Yueyan Cao, Nicole Goutal, Magali Jodeau, Philippe Ung EDF, UNIV P13, LABORATOIRE ST VENANT

#### Sediment transport is a stochastic process

![](_page_31_Figure_4.jpeg)

How to deal with stochastic properties in numerical modeling?

![](_page_31_Picture_6.jpeg)

#### Modeling and simulation of uncertainties in hydraulics and sediment transport

![](_page_32_Figure_2.jpeg)

Figure 6. (a) Experimental probability density functions (PDFs) of  $V_x$  for  $\tau^* = 0.103$ ,  $Re_s = 426$ , H/D = 5, and S = 0.042. Inset shows the same data represented on a semilog plot. (b) Corresponding PDFs of  $V_y$ .

![](_page_32_Picture_4.jpeg)

### **Thanks for your attention !**

![](_page_33_Picture_1.jpeg)