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A model with vaccination

SIV model by Kribs-Zaleta and Velasco-Hernández (2000)
S =# of susceptibles, I = # of infectives,
V = # of vaccinated, N = S + I + V population size
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βSI/N
(infection rate)

cI
(recovery rate)

φS
(vaccination rate)

θV
(loss of vaccination)

µN
(birth rate)

µS
(death rate)

µI

σβVI/N (σ ∈ [0, 1])
(infection of vaccinated)

µV
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ODE representation

S′ = µN − βSI
N
− (µ+ φ)S + cI + θV

l ′ = β
(S + σV )I

N
− (µ+ c)I

V ′ = φS − σβVI
N
− (µ+ θ)V

(1)

Equation (1) has a unique solution satisfying
0 ≤ S, I,V ≤ S + I + V = N
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ODE and equilibria

We are interested in the long-term behavior of the model
Does the disease become extinct or endemic?

Find equilibria of the ODE (1)
R0 = basic reproduction number
= “# of cases one case generates in its infectious period”
a disease-free equilibrium (I = 0) of (1) exists
R0 < 1⇒ the equilibrium is asymptotically stable
R̃0 = basic reproduction number without vaccination
R̃0 > 1⇒ the disease-free equilibrium is unstable
R0 < 1 < R̃0 (and appropriate parameter choice)
⇒ two endemic equilibria (I > 0) exist
One is asymptotically stable, one is unstable
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Equilibria of the ODE

Reduction of dimension
s = S/N = 1− i − v = proportion of susceptibles

i = I/N proportion of infectives

1

1

v = V/N = proportion of vaccinated

d0.86

0

d0.59

0.18

d0.46

0.31

disease-free equilibrium

stable endemic equilibrium

unstable endemic equilibrium
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Stochastic models

Stochastic model corresponding to the deterministic model
Replace the deterministic rates by (independent)
non-homogenous Poisson processes

An individual of type S becomes of type I at the jump time of
the respective processes
Jump rates are constant in-between jumps
Example. Infection rate (at time t): β S(t)I(t)

N

Questions
What is the difference between the two processes for large N?
Can the stochastic process change between the domains of
attraction of different stable equilibria (for large N)?
When does this happen?
For which population size N is it possible/probable?

Peter Kratz: Large deviations for Poisson driven processes in epidemiology Aix Marseille Université



Alternative model with immigration

We require a modification of the SIV-model in order to ensure
that the process doesn’t get stuck at I = 0

Immigration of infectives at rate α > 0 (small)

S′ = µN − βSI
N
− (µ+ φ+ α)S + cI + θV

l ′ = αN + β
(S + σV )I

N
− (µ+ c + α)I

V ′ = φS − σβVI
N
− (µ+ θ + α)V

(2)
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Equilibria with immigration

For α ≈ 0 (but α > 0 sufficiently small) the equilibria and the
regions of attraction remain similar
The “disease-free” equilibrium satisfies I ≈ 0 (but I > 0)

i = I/N proportion of infectives

1

1

v = V/N = proportion of vaccinated

d0.83

0.01

d0.64

0.14

d0.42

0.34

disease-free equilibrium

stable endemic equilibrium

unstable endemic equilibrium
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Numerical solution of the ODE

We require a numerical method for solving the ODE
Anguelov et al. (2014): Non-standard finite difference scheme
which is elementary stable

The standard denominator h of the discrete derivatives is
replaced by a more complex function φ(h)
Nonlinear terms are approximated in a nonlocal way by using
more than one point of the mesh
The equilibria and their local stability is the same as for the
ODE
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Poisson models

Z N(t) := x +
1
N

k∑
j=1

hjPj

(∫ t

0
Nβj(Z N(s))ds

)
(3)

= x +

∫ t

0
b(Z N(s))ds +

1
N

∑
j

hjMj

(∫ t

0
Nβj(Z N(s))ds

)
d = number of compartments (susceptible individuals, ...)
N = “natural size” of the population
Z N

i (t) = proportion of individuals in compartment i at time t
A = domain of process (compact)
Pj (j = 1, . . . , k ): independent standard Poisson processes
Mj (t) = Pj (t)− t : compensated Poisson processes
hj ∈ Zd : jump directions
βj : A→ R+: jump intensities
b(x) =

∑
j hjβj (x)
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Law of large numbers

Deterministic model

φ(t) := x +

∫ t

0
b(φ(s))ds = x +

∫ t

0

k∑
j=1

hjβj(φ(s))ds (4)

Theorem (Kurtz)

x ∈ A, T > 0, βj : Rd → R+ bounded and Lipschitz. There exist
constants C1(ε),C2 > 0 (C1(ε) = Θ(1/ε) as ε→ 0, C2

independent of ε) such that for N ∈ N, ε > 0

P
[

sup
t∈[0,T ]

|Z N(t)− φ(t)| ≥ ε
]
≤ C1(ε) exp(−C2

N
log N

ε2).

In particular, Z N → φ almost surely uniformly on [0,T ].
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Rare events

Recall (LLN): Z N → φ almost surely uniformly on [0,T ]

But: A (large) deviation of Z N from the ODE solution φ is
nevertheless possible (even for large N, cf. Campillo and
Lobry (2012))

Fix T > 0; D([0,T ]; A) := {φ : [0,T ]→ A|φ càdlàg};
Quantify

P[Z N ∈ G], P[Z N ∈ F ]

for G ⊂ D open, F ⊂ D closed (N large)
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Legendre-Fenchel transform

Legendre-Fenchel transform
x ∈ A position, y ∈ Rd direction of movement

L(x , y) := sup
θ∈Rd

`(θ, x , y)

for
`(θ, x , y) = 〈θ, y〉 −

∑
j

βj(x)(e〈θ,hj〉−1)

L(x , y) ≥ L
(
x ,
∑

j βj(x)hj
)

= 0

L(x , y) <∞ iff
∃µ ∈ Rk

+ s.t. y =
∑

j µjhj and µj > 0⇒ βj(x) > 0

“Local measure” for the “energy” required for a movement
from x in direction y
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Rate function

Rate function (x ∈ A)

Ix ,T (φ̃) :=

{∫ T
0 L(φ̃(t), φ̃′(t))dt for φ̃(0) = x and φ̃ is abs. cont.

∞ else

Ix ,T (φ) = 0 iff φ solves (4) on [0,T ]

Interpretation of Ix ,T (φ̃): the “energy” required for a deviation
from φ
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Large deviations principle

For appropriate assumptions (which are satisfied for the
SIV-model with immigration)

Theorem (work in progress)

For G ⊂ D([0,T ]; A) open and x ∈ A,

lim inf
N→∞

1
N

logP[Z N ∈ G] ≥ − inf
φ̃∈G

Ix ,T (φ̃).

For F ⊂ D([0,T ]; A) closed and x ∈ A,

lim sup
N→∞

1
N

logP[Z N ∈ F ] ≤ − inf
φ̃∈F

Ix ,T (φ̃).

Problem: βj(x)→ 0 for x → ∂A is possible
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Exit from domain

G = domain of attraction of an equilibrium x∗; x ∈ G
When does Z N exit from G (and enter the domain of attraction
of another equilibrium)?

τN := inf{t > 0|Z N(t) ∈ A \ G}
Where does Z N exit G (and “on” which trajectory)?
T > 0, y , z ∈ A.

V (y , z,T ) := inf
φ:φ(0)=y ,φ(T )=z

Iy ,T (φ)

V (y , z) := inf
T>0

V (y , z,T )

V̄ := inf
z∈∂G

V (x∗, z)

The minimal energy required to go from y to z in [0,T ],
respectively from y to z, respectively form x∗ to the boundary
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Time of exit

For appropriate assumptions:

Corollary (work in progress)

x ∈ G, δ > 0.

lim
N→∞

P[eN(V̄+δ) > τN ] = 1, lim
N→∞

P[eN(V̄−δ) < τN ] = 1.

This follows from the LDP (once it is completely established)
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Place of exit

For appropriate assumptions:

Theorem (work in progress)

x ∈ G, F ⊂ ∂G closed, infz∈F V (x∗, z) > V̄ .

lim
N→∞

P[Z N(τN) ∈ F ] = 0.

In particular, if there exists a z∗ ∈ ∂G such that for all z 6= z∗

V (x∗, z∗) < V (x∗, z), then for δ > 0,

lim
N→∞

P[|Z N(τN)− z∗| < δ] = 1.

Problem: ∂G is the “characteristic boundary” of G, i.e., for
x ∈ G, limt→∞ φ(t) 6= x∗.
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Diffusion approximation

Y N(t) = x+

∫ t

0
b(Y N(s))ds+

1
N

∑
j

hjWj

(∫ t

0
Nβj(Y N(s))ds

)
,

Wj (j = 1, . . . , k ): standard independent Brownian motions

Theorem (Kurtz)

There exists a RV X = X (N,T ) whose distribution is independent
of N with E[exp(λX )] <∞ for some λ > 0 such that

sup
0≤t≤T

|Z N(t)− Y N(t)| ≤ X
log N

N
.

Problem: Kurtz’ Theorem does not explain the long-term
behavior of the process

Pakdaman et al. (2010):
Z N and Y N can differ not only quantitatively but also qualitatively
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