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Motivation: risk analysis of failure for
mechanical structures under random forcing
@ Engineering Mechanics:

» — study of elastic-plastic oscillators with noise

» 2 References in Engineering literature:
— an elasto-plastic model with noise (Karnopp & Scharton, 1966)
— estimation of the variance of the deformation (Feau, 2007)

2/44



Motivation: risk analysis of failure for
mechanical structures under random forcing

@ Engineering Mechanics:

» — study of elastic-plastic oscillators with noise

» 2 References in Engineering literature:
— an elasto-plastic model with noise (Karnopp & Scharton, 1966)
— estimation of the variance of the deformation (Feau, 2007)

@ Mathematical Framework:

» — study of stochastic variational inequalities (SVI)

» A mathematical reference:
— connection between this 1D elasto-plastic model and a SVI
(Bensoussan & Turi 2007)

» mathematical properties of SVI? Can we improve engineering
methods with this new mathematical framework?
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Outline of the presentation

Q Example of a mechanical structure modeled by an
elasto-plastic oscillator

Q Framework of the stochastic variational inequality for the
elasto-plastic problem and ergodic property

e Short cycles : a new characterization of the ergodic measure

e Long cycles : characterization of the growth rate of the
deformation

e Open problems
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Example of a mechanical structure
modeled by an elasto-plastic oscillator
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lllustrative example: piping system

For a class of structures: A one dimensional (1d) model
@ global behavior of the structure

Seismic excitation (left) / Mass displacement (right):
Test vs 1d model results

\\\\\\\\\
000000000000
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Elastic behavior: start with a linear oscillator ...

Co > 0 : damping coefficient
k > 0 : stiffness
aw(t),
Cadt
x(t) : response of the oscillator

. external force white noise
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Elastic behavior: start with a linear oscillator ...

Co > 0 : damping coefficient
k > 0 : stiffness
aw(t)

T” . external force white noise

x(t) : response of the oscillator

linear case: x(f) solves

(1) + cox(t) + F(t) = “d"sz(f)", F(t) = kx(t)

—— AN

(%

b x(t)
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Elastic-perfectly-plastic behavior

elasto-perfectly-plastic case: x(t) solves
dw(t),

x(t) + cox(t) + F(t) = “T

@ |F(1)| < kY, Y : elasto-plastic bound
64 : first time going into plastic phase

6y :=inf{t > 0,|F(t)| = kY'}
|F(t)] < kY, 0<t<b
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Elastic-perfectly-plastic behavior

elasto-perfectly-plastic case: x(t) solves
aw(t),

X(t) + CoX(t) + F(t) = “ar

F(t) = k(x(t) = A1)

@ — a plastic deformation A(f) occurs in x(t) when |F(t)| = kY.
71: first time going out of plastic phase

= 1inf{t > 01, |F(t)| < kY'}

7 := inf{t > 61, x(t) stops increasing }

x(t)

‘F(t)’:]iy (91§t<7'1
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Elastic-perfectly-plastic behavior

elasto-perfectly-plastic case: x(t) solves

x(t) + cox(t) + F(t) =

aw(t),

S F() = k(D) = A(1)

A(t) stops increasing
when x(t) stops increasing.

F(t)
((t), F(t))
---------------- w [T |

| ,/ | 71 :=return to elastic phase
S F) = k) - A@)

1 & 1 .CU(t)

4
" A(Tl)
l"
—kY
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Balance between elastic and plastic

Denote

then

becomes
@ elastic |z(1)| < Y:

{}’/(f) = —(Coy(t) + kz(1)) + 241",
2(t) =

@ plastic z(t) = Y,y(t) >0or z(t) = -Y, y(t) < O:

{J/(t) = —(coy(t) £ kY) + "l
2(t) = 0

Key idea:| Switching between elastic and plastic phases
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An example of phase transition

15t elastic phase: [0, 61) 15t plastic phase: [01, 1)
y(t) = —(coy(t) + kz(1)) + "%, { y(t) = —(coy(t) + kY) + P,
z(t) = y(t) z(t) =Y
y(t) == x(t)
— N g =it > 0,]2(0) = Y

Y

@> : z(t) 7 :=inf{t > 6;,y(t) = 0}
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An example of phase transition

25 elastic phase: [ry, 6>) 2t plastic phase: [0, )
y(t) = —(coy(t) + kz(t) + "Fg2",  ¥(t) = —(coy(t) — kY) + =g,
z(t) = y(t) z(t) =Y
y(t) == x(t)
P N g =if{t>0,[2(0)] =Y}

7

-Y

= inf{t > 63, y(t) = 0}’ K\
Ty := inf{ 3, y(t) :)’/ , //\ ) z(t) 7 = inf{t > 6;,y(t) = 0}
) .
| .
. :

Y

\\ /

Oy .= inf{t > 7, |2(t)| =Y}
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A numerical example of the deformation

Figure: on the top t, x(t)

bottom t, z(t) for ¢y

(red) t, A(t) (black : plastic deformation) and at the
k=1,Y =1

TORY OF (t,x(t)) and (t,d(t))

6
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Part 2: SVI for the elasto-plastic problem
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Stochastic variational inequality modeling an
elasto-plastic problem with noise

The problem can be seen as a

@ (y(t), z(1)) reflected diffusion, A(t): reflection process
References:
SVls: [Bensoussan-Lions1982].

Theorem (Bensoussan-Turi 2007)
The process (y(t), z(t)) is the unique solution of the stochastic variational
inequality (SVI) defined by the following conditions

dy(t) = —(coy(f) + kz(t))dt + dw(t),
(dz(t) — y(f)at)(¢ — 2(1)) 20, Vip| <Y, |z() <Y

The problem can be formulated
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Stochastic variational inequality modeling an
elasto-plastic problem with noise

The problem can be seen as a

@ (y(t), z(1)) reflected diffusion, A(t): reflection process
References:
SVls: [Bensoussan-Lions1982].

Theorem (Bensoussan-Turi 2007)

The process (y(t), z(t)) is the unique solution of the stochastic variational
inequality (SVI) defined by the following conditions

dy(t) = —(coy(f) + kz(t))dt + dw(t),
(dz(t) — y(f)at)(¢ — 2(1)) 20, Vip| <Y, |z() <Y

The problem can be formulated
@ without the plastic deformation A(t),

@ without the instants of phase transition.
The variational inequality: nicely adapted to plastic/elastic transition.
— noise effect at the transition from plastic to elastic
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Characterization of the invariant probability
(balance between elastic and plastic state)

Theorem (Bensoussan-Turi 2007)
(y(1), z(t)) ergodic Markov process

@ unique invariant probability distribution v for (y(t), z(t)) and
(y(t), z(t)) ti> v (independently of the initial condition).

@ elastic domain: D := (—o0,+o0) x (=Y, Y)
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Characterization of the invariant probability
(balance between elastic and plastic state)

Theorem (Bensoussan-Turi 2007)
(y(1), z(t)) ergodic Markov process

@ unique invariant probability distribution v for (y(t), z(t)) and
(y(t), z(t)) ti> v (independently of the initial condition).

@ elastic domain: D := (—o0,+o0) x (=Y, Y)
@ plastic domains: D~ := (—o00,0) x {—=Y} and D" := (0,+o0) x {Y}

@ v has a density denoted by m is characterized by: Vo smooth,
Ap:=

Ve

1 N\
/D m(y,z){—Yyyez + (Coy + Kz)py — §soyy}dydz

1
o m(y, Y){(Coy +KY)oy(y, Y) = 5en(y, Y)idy

Biy:=

# [ mly. V(G ~ KNy, —Y) -~ genly. iy = 0

7

~~

B_p:=
16/44



Alternative method to the Monte-Carlo
simulation (1):

From ergodic theory, we know the limiting behavior of (y(t), z(t)).

@ For all bounded function f and Y(yo, Zo) € D,

lim Ef(y*o(t), z%0(t)) = /Df(y,z)m(y,z)ddeJr/ f(Y,y)m(Y,y)dy

t—oo D+

| =Y y)m(=Y.y)dy.
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Alternative method to the Monte-Carlo
simulation (1):

From ergodic theory, we know the limiting behavior of (y(t), z(t)).

@ For all bounded function f and Y(yo, Zo) € D,

lim Ef(y*o(t), z%0(t)) = /Df(y,z)m(y,z)ddeJr/ f(Y,y)m(Y,y)dy

t—oo D+

| =Y y)m(=Y.y)dy.

@ But, it is also well known that

t—oo A—0

lim Ef(y’(t), z%(t)) = lim )\/OO e MEF(yYo(t), z0(t))dt.
0
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Alternative method to the Monte-Carlo
simulation (2)
@ Denote uy(yo, z0; f) =E | [ exp(—At)f(y¥o(t), z%(t))dt].
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Alternative method to the Monte-Carlo
simulation (2)
@ Denote uy(yo, z0; f) =E | [ exp(—At)f(y¥o(t), z%(t))dt].

@ Equivalent characterization of the asymptotic limit:

AU+ Auy = f(y,z) in D
AUy + Biuy, = f(y,Y) in Df
Auy+ B uy, = f(y,=Y) in D

Nonlocal problem : y — uy(y, Y, f) are continuous.
¥(Y0,20) € D

lim (0,201 1) = [ Hy. 2)m(y. 2)dydz
- D

+ [y my dy+ [ty =Vimly.~Ydy
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Alternative method to the Monte-Carlo
simulation (2)

@ Denote uy(yo, z0; f) =E | [ exp(—At)f(y¥o(t), z%(t))dt].
@ Equivalent characterization of the asymptotic limit:
AU+ Auy = f(y,z) in D

AUy + Biuy, = f(y,Y) in Df
Auy+ B uy, = f(y,=Y) in D

Nonlocal problem : y — uy(y, Y, f) are continuous.
¥(Y0,20) € D

I|m AUN(Yo, 20; f /fy, z)dydz

+ [y myVdy+ [ fy. - Y)miy. Yoy
@ This result is fundamental for the numerical resolution of m : alternative
method to Monte-Carlo, that requires simulations for long durations.

Publication: [Bensoussan, Mertz, Pironneau, Turi 2009], SIAM Journal on
Numerical Analysis , Volume 47 Issue 5
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Alternative method to the Monte-Carlo
simulation (3)

Superposition of three local problems:
Q

Avy+Av, = f In D7
A+ B,vy, = f. in DT,
AW+ B_vy =17 In D,

with v,(07,Y)=0,v\(0~,-Y) =0,
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Alternative method to the Monte-Carlo
simulation (3)

Superposition of three local problems:

Q
A+ Avy, = f in D,
A+ B,vy, = f. in DT,
AW+ B_vy =17 In D,
with v,(07,Y)=0,v\(0~,-Y) =0,
Q
Aty +Ary = 0 in D,
Aty + Byny =0 in DT,
Aty +B_my =0 in D,
with 7#(0", Y)=1,7"(0",-Y) =0,
Q

Amy +Bimy, =0 in DT,
Ary +B_m, =0 in D,

with 7+(0*, Y) = 0,7 (0, - Y) = 1.

{ Ay +Ar, = 0 in D,
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Alternative method to the Monte-Carlo
simulation (4)

@ We look for p, and p_:

Vy+ pymy + p-m, continuousin (0,+Y)
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Alternative method to the Monte-Carlo
simulation (4)

@ We look for p, and p_:

Vy+ pymy + p-m, continuousin (0,+Y)

@ Finally, we solve the following linear system:
with

_( 7O Y)=77(0",Y) (07, Y)—7(0",Y)
= ( +( +7_ )_7T+(0_7_Y) 7T_(O+7_Y) _W_(O_’_Y)>

then - .
o6)- (e
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Y =1
— 1 and

=1 Kk =

It: Co= 1,
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Numerical result: co=1,k=1and Y =2

"m2.txt"
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@ plot of m with the deterministic method,
—2<z<2, —-7<y</.
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Part 3: Short cycles for a new
characterization of the ergodic measure
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Short cycle (trajectory)

Short cycle: path, solution of the SVI, starting from a point

(y,z) € D and which contains

@ only one phase evolving in D (elastic domain)

@ |and only one phase evolving in D" or D~ (plastic domains).

y(t) :== a(t)

T :zginf{t > 0, |z(t)| =Y, y(t) = 0}

—Y
AV

\

Short cycle
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Short cycle (PDE)

@ Goal: characterization of a short cycle by a PDE approach of

IE/ f(y(s),z(s))ds, VI bounded function on D.
0
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Short cycle (PDE)

@ Goal: characterization of a short cycle by a PDE approach of

IE/ f(y(s),z(s))ds, VI bounded function on D.
0

@ Define v(y, z; f) the solution of

( .
(elastic phase)
—yV; + (Coy + kz)v, — 3v,, =fin D,

{ (plastic phase) (Pv)
(coy + kY)vy — 2, = fin D*,
X ((}OJ/ — ;(»/)‘(y — %Ebﬁd/ — f irl [)__

with the local boundary conditions
v(0",Y;f)=0and v(0~,-Y;f) = 0.

We call v(y, z; f) a short cycle.
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Analysis of short cycles/ new ergodic theorem

Theorem (Analysis of short cycles, A. Bensoussan, L.M.)
There exists a unique solution to (P,) of the form

v(y,.z;f) =" (V: )0y + ¢ (v )1ycor + w(y, z; f)

where
w is a bounded function

(v,Y), y>0, ¢7(0F;f)=0and

—(Coy + kY)oy + 30, = f
f(y,—Y)7 y<07 SO_(O_'f):O

—(coy — kY)py + 50,
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Analysis of short cycles/ new ergodic theorem

Theorem (Analysis of short cycles, A. Bensoussan, L.M.)
There exists a unique solution to (P,) of the form

V(%Z; f) = ‘70+(y; f)1{y>0} ‘i‘SD_(y; f)1{y<0} + W(sz? f)

where
w is a bounded function

—(coy + kY)g) + 305,

fly,Y), y>0, ¢ (0% f)=0and
—(Coy — kY)py + 50, = f

(y;=Y), y<0, ¢ (07;f)=0.
Theorem (New ergodic theorem, A. Bensoussan, L.M.)
A new characterization of the ergodic measure:
- v(07, Y )+ v(0T, =Y, 1)
v(f) = 2v(0-, Y; 1)

[Bensoussan, Mertz 2012], CRAS An analytical approach to
the ergodic theory of a stochastic variational inequality
[Khasminskii,1980] — ergodic measures written as cycle ratio
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How can we apply the short cycles In
engineering?

the frequency of occurence of short cycles
= the frequency of occurence of plastic phases
y(t) == (1)

T ::;inf{t > 0,]z(t)] =Y, y(t) = 0}
-y

L AN N

Short cycle

Therefore
1

2v(0—,Y; 1)
This quantity is used in engineering methods for estimating
the variance of the plastic deformation.

The frequency of plastic phases =
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Part 3 : Long cycles for the
characterization of the growth rate related
to the deformation
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Long cycle behavior

@ Find a repeating pattern (independent) in the trajectory.
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Long cycle behavior

@ Find a repeating pattern (independent) in the trajectory.

@ Long cycle: path, solution of the SVI, starting and ending in
one of the two points of {(0, Y), (0, —Y)}, knowing that the
trajectory had a stop by the other point.
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Long cycle behavior

@ Find a repeating pattern (independent) in the trajectory.

@ Long cycle: path, solution of the SVI, starting and ending in
one of the two points of {(0, Y), (0, —Y)}, knowing that the
trajectory had a stop by the other point.

@ Long cycles help to characterize the plastic behavior.
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Definition and analysis of long cycles
@ Define

0 = sign(z(h)),

o =inf{t >0, y(t)=0,|z(t)| =Y},
{ So = inf{t > 1o, y(t) = O,Z(t) = —5Y}.

b
)\ /]

so = inf{t >1tg, y(t) = 0, 2(t) = —6Y}

ty = inf{t > 0,y(t) = 0, |2(t) = Y}

0 = sign(z(ty))
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Definition and analysis of long cycles

@ Define
i =inf{t > s, y(t)=0,z(t)=0Y},

e

so = inf{t >:tg,y(t) = 0, 2(t) = =Y}

ty = int{t > 0, y(t) = 0,]2(t)| = v}
§ = sign(z(ty)) Long cycle
ty =inf{t > 0,y(t) =0, 2(t) = Y}
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Long cycle behavior of the variance of the
deformation

Theorem (Long cycle behavior, A. Bensoussan, L.M.)
In this context, we have proven

(A1) _ E(A) - Alb))?
f—+00 t E(t1 — to)

Key idea: | We use a PDE framework to show E(t; — ty) is finite

@ Formulation of relevant quantity for the risk analysis of failure
of a simple mechanical structure which is
» Exact
» Simple
» and Easy to implement.

CRAS [Bensoussan, Mertz 2012] Behavior of the plastic
deformation of an elasto-perfectly-plastic oscillator with noise
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PDEs related to Long cycles (type one way)

where

v

)

y(0), 2(0

t))\

so = inf{t > f() y(t) =0,2(t) = =Y}

to =inf{t > 0,y(t) =0, |z(t)|= Y}
5 = sign(=(to)

Av=f, B.v=f B.v=fand (0" Y)=0

nonlocal problem : y — v(y,—Y) is continuous

So

(0, =Y) = "Eq-v ( f(Y(S)az(S))dS> )

f
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PDEs related to Long cycles (type return)

so = inf{t >itg, y(t) = 0, 2(t) = —0Y}

to=inf{t > 0,y(t) =0, [z()|=Y}
§ = sign(z(ty)) Long cycle

ty =inf{t > 0,y(t) =0, 2(t) = dY'}

Av=f B,w=f Bv=fandv(0,-Y)=0
where nonlocal problem : y — v(y, Y) is continuous

Iy

v(0,Y) = "E,v) < f(Y(S)az(S))dS> ’

So
34/44



Numerical results in support of our prediction

In this section, we provide computational results which confirm

our theoretical results.

co=1 k=1
y | 0 ¢ — 500 | BAL)2W)" gy, 1) | Relative error %
0.1/0.807°003T (83450069 | g g0t 3.2
0.2|0.649°00%6 () 6240047 g 74013 3.8
0.30.493°0020 (464003 | {0 455016 5.8
0.4|0.361001 (3550026 {2 {2018 17
0502660011 025720019 {3 got02! 3.3
0.6|0.195°0008 0 {9gt0014  {g 15026 15
0.7|0.13750005 () 149=00TT | {g g4=031 8
0.8|0.103°000% [0 11250008 | pp g=039 8
0.90.071000% | 0.08610006 | 26 79+047 15

Table: Monte-Carlo simulations t = 500 , 6t = 10~4 and MC = 10000. 95% of
confidence
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How can we apply the long cycles for the risk
of failure analysis?1/2

with Cyril Feau, CEA (French Atomic Commission)

Define
@ fip = E(;—_to) frequency of occurrence of long cycles, so that

[ict] = number of long cycles up to the time t,

@ 0. = VE[A A(1ty))?] the standard deviation of the
plastic deformatlon on a long cycle,

@ and define a surrogate variable for A(¢):

[f/ct]

app — U|(;Zﬁka

where {fx, k > 1} areii.d. and P(3 = —1) =P(3=1) = 1.
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How can we apply the long cycles for the risk
of failure analysis?2/2

The risk of failure :

b — P(maXxcjo. 77 |A(t)] > b)
b — P(maxtepo 1 [Aapp(t)| = b)

Simulation
Estimation []

0.9

0.8

0.7

0.6

0.5

0.4

P(max |A®)| 2 b), t 0 (0, 30)

0.3

0.2

0.1p

0 | | | | | | |
0 0.02 004 006 008 01 012 014 0.16 0.18 0.2
b

Figure: b — P(maX;cjo, 1) |Aapp(t)| > b) « there exists an explicit formula.
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Open problems
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Cycle properties for a SVI with a filtered noise

What are the right cycles when the dimension increases?

@ A more realistic case to take d¢,(t) for the noise where
dé.(t) = —a&,(t)dt +dw(t),a > 0,
then

dy(t) = —(coy(t) + kz(t))dt + d&, (1),
(dz(t) — y(t)dt)(¢ — z(t)) >0, Vip| <Y, |z()| <Y
(2)
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Cycle properties for a SVI with a filtered noise

What are the right cycles when the dimension increases?

@ A more realistic case to take d¢,(t) for the noise where
dé.(t) = —a&,(t)dt +dw(t),a > 0,
then

dy(f) = —(coy(t) + kz(t))dt + d&.(1),
(dz(t) — y(t)dt)(¢ — z(t)) > 0, V|o| <Y, |z(t)| <Y
(2)
@ We can consider an unbounded behavior for the restoring
force: therefore the SVI involves the total deformation in the

drift

dx(t) = y(t)dt

dy(t) = —(coy(t) + k(1 — a)z(t) + kax(t))dt + dw(t),
L(dz(t) —y(t)dt) (¢ — z(t)) >0, V]|o| <Y, |z(t)| Y. 3

39/44
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Fragility (optimal stopping problem) (1/2):

@ Let

» T > 0 be a maturity
» and b > 0 be certain threshold of plastic deformation.

@ Then, it could be relevant for engineering purposes to know

min {E(|A(7)| — b)*}, where 7y 7= set of stopping times.

€Ty, T
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Fragility (optimal stopping problem) (1/2):

@ Let

» T > 0 be a maturity
» and b > 0 be certain threshold of plastic deformation.

@ Then, it could be relevant for engineering purposes to know

min {E(|A(7)| — b)*}, where 7y 7= set of stopping times.

€Ty, T

@ » Forengineering purposes, we can provide a rigorous framework to
define a notion of fragility for a mechanical structure.

» Mathematically: new type of free boundary problem for an optimal
stopping problem.
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Fragility time (optimal stopping problem) (2/2):

@ Recall the elastic and plastic operators:

> Ap = =y, + (Coy + Kz)py, — %Spyy,
» Biyp = (coy £ kY)p, — %Swa
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Fragility time (optimal stopping problem) (2/2):

@ Recall the elastic and plastic operators:

> Ap = =y, + (Coy + Kz)py, — %Spyy,
» Bip = (coy £KY)oy — oy,

e then the problem of finding min..7, {E(A(7) — b)?}
corresponds to find V(A, y, z) such that

max (ﬂ + AV, —((|A] — b)? + V)) —0inD

ot
max <%+B+ —((|A] = b)? +V)> =0in D"
oV 5 .
max W—FB V.—((|A]| - b)*+ V)| =0,inD

with a non local boundary condition

(A,y) — V(A,y,+Y) is continuous.
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Critical stochastic excitation

@ We would like to calculate a function o(t) such that

y =—(coy + kz) + o(t)w,
(z—y)o—2)>0,V|g| <Y, |z(t)| < Y.

and E(A(T) — b)? is minimal.

@ » For engineering purposes, we can characterize the type of excitation
which leads to a certain level of plastic deformation.

» Mathematically: a new problem of stochastic optimisation.
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Our project in CEMRACS : MECALEA

With Mathieu Lauriere,
@ we study a penalized equation (y,(t), z,(t)) € R?,

dyn(t) = —(Coyn(t) + kzn(t))dt + dw(t),
dz,(t) = yn(t)dt—n(zn(t) — 7(z5(t)))dt

where 7(z) is the projection of zon [, Y]
Y y

\\\\\\\\\\\

\‘

o Y ' *

I |y > (): process shifts to the left| \
E \
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The end.

Thanks for your attention,

any questions?
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