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1 Introduction, setting, and main results

This course relies on a work in preparation with A. Gloria [2], which is a con-
tinuum version of [1]. It slightly differs from [2] because the present analysis
does not rely on Green’s functions and treats the periodic case. For related
work on an emerging quantitative theory of stochastic homogenization, in-
cluding many references, we refer to three preprints, which are available on
my web page: [5] requires the least machinery, [3] gives an extensive intro-
duction next to a couple of quantitative results, and [4] uses both to give a
full error estimate.

We start by introducing the relevant deterministic notions: The corrector
¢(a;-) and the homogenized coefficient apomn(a) for an arbitrary coefficient
field @ on the torus of side length L, which we sometimes denote as [—Z, )4

2772
to single out the point 0.

Definition 1.
SPACE OF COEFFICIENT FIELDS. For a given side-length L let ) be the
space of all [—é, é)d-pem’odz’c fields of symmetric d X d matrices a that are

uniformly elliptic in the sense

L L
Vae[-3, §)d7 EeR? AP <E-a(z)€ < ¢
where A > 0 is a number fized throughout the course.

CORRECTOR. For given a € ), the corrector ¢(a;-) is an [—%, %)d-pem’odic
function defined through the elliptic equation

V- a(Vé(a) +6) =0 and /[ ) =0 (1)



where £ € R with || = 1 is a direction which is fived throughout the course.
For further reference we note that ¢ is “stationary” in the sense of

¢a(- + 2),2) = dla,x + 2) (2)

for all points © € R?, coefficient fields a € Q, and shift vectors z € R,

HOMOGENIZED COEFFICIENT. The homogenized coefficient in direction £ is
defined via

€ anom(a)é == L / (Vola ) +6)-a(Vo(a) +6). ()

[_%7é)d

We now introduce our example of an ensemble on the space of coefficient
fields on the torus.

Definition 2. By the “Poisson ensemble” we understand the following prob-
ability measure on €):

Let the configuration of points X := { X, }n=1.. v on the torus be distributed
according to the Poisson point process with density one. This means the
following

e For any two disjoint (Lebesque measurable) subsets D and D' of the
torus we have that the configuration of points in D and the configuration
of points in D" are independent. In other words, if ¢ is a function of
X that depends on X only through X|p and ' is a function of X that
depends on X only through X,pr we have

(€0 = (Qo(o, (4)
where (-)o denotes the expectation w. r. t. the Poisson point process.

e For any (Lebesque measurable) subset D of the torus, the number of
points in D 1s Poisson distributed; the expected number is given by the
Lebesgue measure of D.

Note that N is random, too.

With any realization X = {X,}n=1.. v of the Poisson point process, we
associate the coefficient field a € Q) via

o(2) :{ A if e, Bi(X,) }id. 5)

1 else



Here and throughout the course, balls like B1(X,,) refer to the distance func-
tion of the torus. This defines a probability measure on by “push-forward”
of (:)o. We denote the expectation w. r. t. this ensemble with (-).

For our result, we only need the following two properties of the Poisson
ensemble.

Lemma 1.

STATIONARITY. The Poisson ensemble is stationary which means that for
any shift vector z € Z2 the random field a and its shifted version a(-+2): x
a(x 4+ z) have the same distribution. In other words, for any (integrable)
function ¢: Q@ — R (which we think of as a random variable) we have that
a v C(a(-+ 2)) and ¢ have the same expectation:

{Cla(-+2))) = (O (6)

SPECTRAL GAP ESTIMATE. The Poisson ensemble satisfies a Spectral Gap
Estimate by which we understand the following: There exists a radius R only
depending on d such that for any function (: Q — R, we have

(=< D (osemp() (7)

zEZdﬂ[—%,%)d

Here, for a (Lebesgue measurable) subset D of the torus, the (essential) os-
cillation oscpC of ¢ with respect to D is a random variable defined through
(oscpC)(a) = sup{((a)|la € Q with a = a outside D}
—inf{((a)|a € Q with a = a outside D}. (8)

It measures how sensitively ((a) depends on ajp. Note that (oscp()(a) does
not depend on a|p.

The main result of the course is a Central Limit Theorem-type scaling of the
variance of the homogenized coefficient in terms of the system volume L¢.

Theorem 1. Suppose (-) is stationary and satisfies the Spectral Gap Esti-
mate. Then we have the following estimate on the variance of the homoge-
nized coefficient

<(£ * Ahom€ — <£ ) ahom£>>2> < C(d, >\)L_d.



In this course, we prove Theorem 1 only for d > 2. We shall derive it from
the following result of independent interest, which is only true for d > 2.

Proposition 1. Let d > 2 and suppose (-) is stationary and satisfies the
Spectral Gap Estimate. Then all moments of the corrector are bounded inde-
pendently of L, that is, for any 1 < p < oo we have

(@) < C(d. A\, p).

Here and in the entire text, we write ¢?P for (¢?)P, so that expressions like
above make sense also for a non-integer exponent p.

2 Auxiliary results

We need the following LP(§2)-version of the Spectral Gap Estimate.

Lemma 2. Let () satisfy the Spectral Gap Estimate. Then it salisfies an
LP(Q)-version of a Spectral Gap Estimate in the following sense: Let R be
the radius from (7). Then we have for any (2p-integrable) function : Q — R
and any 1 < p < o0

(C= (S DD (0seppe0))P). (9)
zez4n[—-£,L)d

Here < means up to a generic constant that only depends on p.

Together with the previous lemma, the following lemma gives an estimate of
¢ in terms of V¢ + &.

Lemma 3. Suppose d > 2 and that (-) is stationary. Then we have for any
d%‘l2<p<oo and any R <1

(D0 (oscmumo(0))) S ([ IVo+eP),  (10)
z€24n[-%,Lyd
where < means up to a generic constant only depending on d, A\, p, and R.

The last lemma in turn gives an estimate of V¢ + £ in terms of ¢.

Lemma 4. Suppose that (-) is stationary. Then we have for any 2 < p < 00

qéwv¢+a%%s<&@*»+L

where < means up to a generic constant only depending on d, A, and p.



3 Proofs

PROOF OF LEMMA 1.

Step 1. Generalization and reduction. The most natural form of the result
of the lemma is the following: For any measurable partition Dy,--- , Dy of
the torus we have

N

(¢ = (D)) < Q_(0s¢m0,)0)), (11)

n=1

where By (D) is the set of all points on the torus that have distance less than
one to D. In this step, we will derive this from the following similar estimate
on the Poisson point process itself:

N

((Go = {Go)o)*)o < (D (05¢0,0,60))o- (12)

n=1

Here (-)¢ denotes the expectation w. r. t. to the Poisson point process X :=
{Xn}n=1.. N, ¢ is a (square integrable) function of the point configuration
X, and the oscillation oscg p is defined in a similar way to (8):

(0sco.pCo)(X) = sup{¢y(X)| X = Xoutside of D}
—inf{¢y(X)| X = Xoutside of D}. (13)

Indeed, (11) is an immediate consequence of (12) because of the following
two facts.

e We recall that (5) defines a mapping X ~— a from point configura-
tions to coefficient fields. As such, it pulls back functions according to
Co(X) = ((a(X)) and pushes forward the ensemble according to

(O = <C0>0- (14)

In particular we have for the variance
(€ =40))*) = {(¢o = (o)) *)o-

e By definition (5), if the point configurations X and X coincide out-
side of D, then the corresponding coefficient fields a(X;-) and a(X;-)

5



coincide outside of Bi(D). Hence for a given configuration X, the set
{a(X)|X = X outside of D} is contained in the set {a|a = a(X) outside of By(D)}
so that

sup{¢(a(X))|X = X outside of D}
< sup{((a)|a = a(X) outside of By(D)},

and the opposite inequality if we replace the supremum by the infimum.
From the definitions (8) and (13) of the oscillation we thus see

(0sco,pCo)(X) < (OSCBl(D)O(a(X))-

By (14), this implies as desired

((0sco,p60)*)o < {(0scp,(p)C)?)-

Step 2. Conditional expectations and independence. From now on, we
prove statement (12) for the Poisson point process. For brevity, we drop the
subscript 0.

For a given (Lebesgue measurable) subset D of the torus, we denote by (-|D)
the expectation conditioned on the restriction X|p of the (random) point
configuration X on D. We note that for a function (: Q2 — R which is
square integrable, (¢|D) is the L?(2)-orthogonal projection of ¢ onto the
space of square integrable functions ¢: @ — R that only depend on X via
X\D-

With help of these conditional expectations the independence assumption
(4) can be rephrased as follows: For any two (Lebesgue measurable) subsets
D, D’ that are disjoint and any (square integrable) function (: 2 — R that
does not depend on X|p we have

CIDu D) = (¢|D"). (15)

Here comes the argument: By definition of conditional expectation, (15)
follows if for any pair of (bounded and measurable) test functions u and
which only depend on X|p and X|p/, respectively, we have

(Cua’) = ((¢ID")ur').



Indeed, on the one hand, since ¢ only depends on X|p. (where D denotes
the complement of D) and u’ does only depend on X (and thus a fortiori
only on X|pc) while u only depends on X|p, we have from (4):

(Cuu’) = (Cu'){u).

On the other hand, since (¢|D’)u only depends on X|p/ (and in particular
only on X|pc) while u only depends on X|p, we have from (4):

((CID"Yua'y = ((¢|D")u') (u) = ((Cu'| D)) (u) = (Cu')(w),
where the middle identity holds since u' only depends on X|p.

Step 3. Conditional expectation and oscillation. For any (Lebesgue mea-
surable) disjoint subsets D and D’ of the torus and any (square integrable)
function, we have

[(CIDU D) = (C|D")] < (oscp(| D). (16)
By exchanging ¢ with —(, we see that it is enough to show

(CIDUD') < {¢|D") + {oscnd| D), (17)
We note that sup, ¢ < ¢ + oscp(, where we've set for abbreviation

(s%p O)(X) = sup{¢(X)|X = X outside of D}.

Hence (17) follows from

ClpuD) < <s111)pg|D’>.

The latter inequality can be seen as follows

¢[DuD)
< (sup¢|DUD’) since ¢ <sup(
D D

2 (sup¢| D) since sup ¢ does not depend on Xjp.
D D

Step 4. Martingale decomposition. For conciseness, we only prove (12) for
N = 3. So let {Dy, Dy, D3} be a partition of the torus, we claim

(€= (18)
= {(¢ = {CID1U D)) + (({¢ID1 U Do) = (¢ D1))*) + {({C|D1) = ()%

7



Indeed, this follows from the fact that
(—({CID1UDy),  (C|D1UDy)—(¢|D1), (C|D1)—(¢) are L*(Q)—orthogonal.

The latter can be seen as follows: By definition of (-|D) as L?*(2)-orthogonal
projection, the two last functions (¢|D; U Do) — (¢|D1) and (|D;) — (¢) do
only depend on X|p,up,, so that they are orthogonal to the first function
¢ — (¢|D1 U Dy). It remains to argue that the two last functions ({|D; U
Dy) — (¢|D;) and (C|D;) — (¢) are orthogonal. To that purpose, we rewrite
the middle function as

(CID1U Dy) = (C|Dy) = ¢" = ({'|Dy)  where ¢’ := ({|Dy U Dy).

Since the last function only depends on X|p,, they are orthogonal.

Step 5. Conclusion, i. e. (11) for N = 3. By Step 4, it remains to estimate
the three r. h. s. terms of (18). For the first term, we use (16) with D =
Dy U Dy and D' = D3 and obtain because of ¢ = ({|D; U Dy U D3)

(C=ID1UDy))?) < ({oscpyC|Dy U Dy)?)
Jensen
< {{(0scpyC)?[D1 U Dy)) = ((0scpy()?)-
The other two terms follow the same way.

PROOF OF LEMMA 2.

W. L. 0. g. we may assume that ({) = 0.

Step 1. Application of the original Spectral Gap Estimate to (P. We claim
that this yields

CPY S+ DY (0sepy=0)?)P). (19)

z€24n[-L% Lyd

Indeed, (7) applied to (? at first gives

(=S D (osepa(C)?). (20)

zEZdﬂ[—%,%)d
Using the triangle inequality in L?(Q) on the 1. h. s. of (20) in form of
(P <4 = (D + )

8



we see that (19) follows from (20) by Young’s inequality provided we can
show

() (05em(CN))

z€29n[—% L)d
1 1
S AT DD (s {0 Y (oses¢)* 3L
z€2In[-§,%)d zezdn[—L Lyd
The latter can be seen as follows: From the elementary real-variable estimate
C" = ¢PI S ICPE = ¢l +1C = ¢,
we obtain by definition of osc that
0SCBH() (C¥) S |C|p_losCBR(z)C + (0scBg ()"
Using that the discrete (?P(Z?)-norm is estimated by the discrete ¢%(Z9)-

norm, this implies

Y (08 (¢h)

zGZdﬂ[—%,%)d
S U (osesaO)?H (D) (osepae0)?)
z€2n[-%,5)d zezdn[—L, Lyd
Holder’s inequality w. r. t. to (-) applied to the first r. h. s. term with expo-
nents (£, p) yields (21).

Step 2. Conclusion in case of p > 2 (the other case is easier and not needed
later). It remains to treat the first r. h. s. term of (19). By Holder’s inequality
w. r. t. (-) we have

() < () B (¢l w5, (22)
Using (¢) = 0 we obtain from the original Spectral Gap Estimate applied to
( itself

S D] (0seue0)?) Jeggen (Y (oseppe0)?)P)r. (23)

z€24n[—L,Lyd z€z4n[—%,L)d

Inserting (23) into (22) we obtain

(@2 SE S (0sepe)?))e.



Inserting this into (19) and using Young’s inequality yields the claim of the
lemma.

PROOF OF LEMMA 3.

Step 1. Regularity theory for a-harmonic functions. Without proof we
will use the following two ingredients from De Giorgi’s theory for uniformly
elliptic equations: For any a € ) and any a-harmonic function u in By we
have
suplul < ([ )t 24
By B>
Moreover, there exists a Holder exponent o > 0 only depending on d and A
such that

qup AT ZUE o [ g (25)
z1,22€B1 |£L’1 - x2| By

Here and in the sequel, we write Bg = Bg(0) for brevity. The crucial element
of these estimates is that the constants depend on the coefficient field a only
through the ellipticity ratio A (as indicated by the use of <).

Step 2. In this step, we derive an auxiliary a priori estimate involving dyadic
annuli. Let u be a function and g a vector field on the torus related by the
elliptic equation —V - aVu = V - g and normalized by f[_ Loyt = 0. We
claim that if g vanishes in B; we have Y

ol s i) gk (26)
n=1 Ban—Byn-1

We note that this sum is actually finite since for 2™ > L, the ball Ban—1

invades the entire torus so that the “annulus” Bon — Ban—1 is actually void.

Estimate (26) will be derived from (24) and an elementary scaling argument.

Indeed, for n € N, we introduce

] g on By — By
In =0 0 else ’

so that g = Zzozl gn- Let u, denote the solution of -V -aVu,, =V -g, on
the torus normalized by f[_é LyaUn = 0, so that w = > >° | u,. Hence by the
272

triangle inequality, for (26) it is enough to show

[ (0)] < (2)1%( /

%

a2 (27)

SISl

)

)

10



We now give the argument for (27). Testing —V - aVu,, = V - g, with u,,
using the uniform ellipticity, and Cauchy-Schwarz’ inequality, we obtain

o, vmpisf

1
L et
v3) [-3,5)?
Since d > 2, Sobolev’s embedding together with f[_ L LyalUn = 0 yields
272

ol

By Holder’s inequality on Byn-1 with exponents (d%‘lzv g) we obtain

We note that u, is a-harmonic on Ban—1 (since g, vanishes there). Hence by
(24), which we rescale from By to Ban-1, we have

1 (0)] < sup Jun] < (277 / )3
B27L,1

B2n72

The combination of the two last estimates yields (27).

Step 3. As a preliminary, we study the local dependence of V¢ + £ on a:
Let the two coefficient fields a and a agree outside of Bgr. Then we have

| 1vota) e s [ 19ota + 6 (28)
Br Br
Indeed, we note that the function ¢(a;-) — ¢(a;-) satisfies

=V -aV((a;-) — ¢(a;-)) = V- (a—a)(Ve(a;-) + ).

We test this equation with ¢(a;-) —¢(a; -) and obtain from uniform ellipticity
and Cauchy-Schwarz’ inequality

/

V() — dla; )P < / (@ — a)(Vo(a;) + O

L L
[_évf)d

ol

L
)¢

11



Since by assumption, a — a vanishes outside Bg, the above yields

/B V(@) — dla; )

< [, V6@ - s NP [ Vet el @9
[_%7%)d Br
This implies (28) by the triangle inequality in L?(Bg).

Step 4. In this step, we derive the central deterministic estimate

1
( > (05¢B(9(+0))%)
Zezdm[_évé)z_BRﬁ»l

oo

< St Y </ Vo + 2. (30)

n=1 2€24NBan | g Br(2)

Given a coefficient field a on the torus and a point on the integer lattice z €

Z4N[—%, £)4 we denote by a. an arbitrary coefficient field on the torus that

agrees with a outside of Bg(z). We note that the function ¢(a,;-) — ¢(a;-)
satisfies

=V - aV((az;-) = ¢a;-)) = V- (a: — a)(Ve(az; ) +£). (31)

Given a discrete field {(A}Z}Zezdm[_%7 Lya We consider the function v and the
vector field g on the torus defined through

u(z) = Z w(¢(az;x) — ¢(a; z)),

zEZdﬂ[—%,%)d
g(x) = Y wiau(z) —a(@)(dlaz;w) +€)

zEZdﬂ[—%,%)d

and note that (31) translates into —V - aVu = V - g. Provided w, = 0 for
z € Bpy1, we have g(x) = 0 for z € By. Under this assumption, we may
apply (26) from Step 2 and obtain

Y w(6(a::0) - é(a:0))



Since |a, — a| < 1 is supported in Br(z) and since { Bg(z)}.eze locally have
a finite overlap, this turns into

Y w(6(a:50) — 6(a;0))

zGZdﬂ[—%,é)d

A
NE

2n1_g 2 Vo(a,, - 2\1
CO Ty wz/BR(szzn\ blaz ) + )

=1 zezdn[—L L)
(28) 00 L 2 N
S eyt >y Wl IV(a,-) + )2
n=1 zezdn[— %, Lyd Br(z)NBan
Holder in 2 1

S (Y umE

_d a1

ST vee e,

n=1 2€Z9NByn | g Br(2)

where p and ¢ are dual exponents, that is, % + % = 1. Since {Wz}zezdm[—g,g)d

was arbitrary under the constraint that w, = 0 for z € B, this implies by
2q

the duality of £29(Z%) and (21 (Z%)

( > |6(az;0) — ¢(a;0)[21) 2

2€29n[-L Lyd_Bp 4

< >oemta > </ IVé(a,-) + E[2)P) .
n=1 2€Z4MBon g * PR

Since for any z € Z%, a, was an arbitrary coefficient field that agrees with a
outside of Bg(z), this implies by the definition of oscp(.)

( >, (05 (2)(+50)) 1) B0

zEZdﬂ[—%,%)d—BR+1

[e.e]

S Y et Y (f verepnE

n=1 2€29NBan | g Br(2)

On the L. h. s. we use that since 2;—31 < 2, the discrete EZE—El(Zd)-norm domi-

nates the discrete ¢2(Z%)-norm to obtain (30).

13



Step 5. Using stationarity, we upgrade Step 4 to the stochastic estimate

S

((

(]

(05 b(5 0))°)P) 5<</B Vo P, (32)

2€29n[-% Lyd_Bp

Indeed, we start from (30) in Step 4 and apply the triangle inequality to the
sum over n w. r. t. the norm L?P():

( 3 08C (=) ((+5 0))?)P)

zEZdﬂ[—%,%)d—BRJA

< St Y <</B ACOREN PEIE NG

n=1 ZeZdnB27l+R
We now note that the stationarity (2) of ¢ also yields
Vo(a;z +2) = V(a(- + 2);2)

and thus
/ Vo(a, o) + €2’ :/ Vola(- + 2), 2) + [dx.
Br(2) Br

By stationarity of (-), cf. (6) applied to ((a) = fBR(z) |V(a; z) + £|*dx, this
implies

( / IV ey = /B Vo) Py (31)

Inserting this into (33) yields (because of > 1< (2" + R)Y)

ZEZdﬂan +R

( 3 08¢ () (65 0)))7) 2

z€24n[-% Lyd—Bp

< Z<2">1—5<2"+R>%<</B Voa, )+ EPME. (35)

n=1

Since for p > <% the exponent 1—g+% < 0 is negative we have 22021(2”)1‘3 (2"+

R)% < 1. Hence (35) turns into the desired (32).

14



Step 6. It remains to treat z € Z? N By, in (10). By stationarity, it will
be enough to consider z = 0, cf. Step 7. In this step, we will derive from the
Hoélder continuity a priori estimate (25) the deterministic estimate

ose8(@i0) £ ([ [Volair) + )% (36)
Bar
Let a € € be given and a € {2 agree with a outside of Bg and otherwise be
arbitrary. On the one hand, since d > 2 and f[_£7£)d(¢(d; ) —¢(a;-)) 0 0,
we have by Sobolev’s embedding
(/ |6(a;-) — ¢(a;-)|72) 3 < (/ |6(a; ) — ¢(a;-)|#=2) =27
Br [-%.3)
S (), 1960 - o )R
-4
(29) -
S (Ve + e (37)
Br

On the other hand, we obtain from (25) applied to the a-harmonic function
u(x) = ¢(a;z) + & - x (rescaled from B; to Bg):

sup '¢<W1>‘¢(“%x2>+€'<xl—f2>l<</B Vo(a;r) + )5 (38)

x1,22€BR |£L’1 - x2|a ~

Replacing a by @ in the above and using (28) from Step 3 (with Bp replaced
by Bsr) we likewise have

sup |o(a; x1) — p(a; x2) + & - (21 — x2))|
x1,22€BR ‘xl - $2|a

< / Vola) +EPD). (39)

Combining (38) and (39), we obtain

|(9(a; 1) — pla; 1)) — (¢(a; x3) — p(a; 25))] < (/B Vo (as )€ ).

(40)
By the following elementary interpolation estimate, valid for an arbitrary
function w,

sup
r1,22€BR |I1 _I2|a

% ul(ry) —ulx
sup |u(x)|5(/ WY g @) u(@)]
Br x1,72€BR |£L’1 — 1’2|a

Y

15



we see that (37) and (40) combine to
0(@:0) = 6(a0)| S ([ Vo) + €)1
Bsr

Since a was arbitrary besides agreeing with a outside of Bg, we obtain (36)
by definition of osc.

Step 7. We upgrade Step 6 to the stochastic estimate

Y <oscBR<z>¢<-;o>>2>P>s<</ VoreRr). (1)

2€74NBRry1 Bspt1

Indeed, (36) from Step 6, with the origin replaced by z, implies after sum-
mation

S (05 d(10)7 S / 1V + P2

ZEZdﬁBR+1
Taking the p-th power and the expectation yields (41).

Step 8. From Steps 5 and 7 we learn that (10) is satisfied with B; replaced
by Bsgy1 on the r. h. s. . We appeal once more to stationarity to get for a
generic R <1

( / Vot P < ([ Vot ey, (42)

By

Indeed, there exist points z1, - - - , 2 on the torus such that Bp C ngl Bi(z,)
and we can arrange for N < 1 because of R < 1. Thus we have

N
2 2
/BR|V¢+£\ s;/&(zn)\wm.

Taking the p-th power gives

N
([ IvorerrsS[  vorepy
Br n=1 v Bi(zn)
taking the expectation yields

(f vorepr < max ([ vorery)

Bl(zn)
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By stationarity, cf. (34), this yields (42).

PROOF OF LEMMA 4
Step 1. We start by establishing the deterministic estimate

([ 1Vorepys / (6+ €220 V|V + €] (43)
B1 B>
which we will use in form of
([ 1vo+epy < / (607D 4 1)(|V[2 + 1), (44)
B Bs

Estimate (43) relies on the fact that u(x) := ¢(x) + £ - = is a-harmonic, that
is,

—V -aVu=0.

We test this equation with n?u, where 1 is a cut-off function for By in Bs.
By uniform ellipticity we obtain

A / (1] Vul)? < 2 / Vallu| 7| Val.

We now use Young’s inequality (and p > 2) on the r. h. s. integrand in form
of

2 1 p—1 2
$IVallulnlVal < 50l Vul)® +C(IVnlu)* ™ (n[Val)r,
which yields

SAIN]

Jarvay £ [0 Givu)?.

By the choice of 7, this implies

/|Vu\2§/ u2pT?1|Vu\%
B1 B2

It remains to apply Jensen’s inequality on the r. h. s. to obtain as desired
1
Vil S ([ e D (guys.
B By
Step 2. We continue with the deterministic estimate

/ SOV < /
- )¢ -

¢, (45)
)d

SISl

L
2

SISl

L
2
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which we will use in form of
[, @renvers [ @iy )
_L Ly ~ Ji_L Lya
[-5:3) [-53)

Indeed, we test —V - a(Veo + &) = 0 with the monotone-in-¢ expression
Tl_lgb|¢|2(p_1) over the entire torus. Because of Vﬁqﬂqﬁﬁ(p_l) = ¢*P-DV¢
and by uniform ellipticity, we obtain

A / FOD T2 < / F0D 7).
L By L By

Using Cauchy-Schwarz’ inequality on the r. h. s. of that inequality yields
(45).
Step 3. Conclusion using stationarity. We take the expectation of (44):
([ 1vorePr) S ([ @004 )(962 + 1),
Bl B2

By stationarity, we have

2(p—1) 2 _ —d 2(p—1) 2
(L@ 0T+ =B [ @D+ 16+ 1)

d

Sl
SISl
—

We now use the expectation of (46):

Bo|L /[

We use once more stationarity in form of

(0D 1 1)|VeP) < L / (207D 4 1)).
)4 - )4

SISl
NSl
ot
Nl

¢ 2(0=1) 4 1)) = (Hp2—1) 1.
(f,, @)= )

L L
3:5)%

PROOF OF PROPOSITION 1.
By Jensen’s inequality, it is enough to prove the statement for p > d%‘lz. We
apply Lemma 2 to ((a) = ¢(a;0). We note that by stationarity of ¢ and (-)

we have
1

() = (L /[ R
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Hence the statement of Lemma 2 assumes the form
@) SO D (05 8(50)))).
z€24n[—% Lyd
Estimating the r. h. s. by Lemmas 3 and 4, this turns into
(@™) < C((*"V) +1).

We conclude by using Jensen’s and Young’s inequalities in form of C{¢?®~) <

p—1 ~
Cl6™)'5 < Ho™) + C.

PrROOF OF THEOREM 1.
Step 1. Application of Lemma 1 to { = & - apom€ yields

(€ ahomé = (€ anom)) S D (0508E - homb)?).  (47)

z€29n[—%£ L)d
Step 2. Deterministic estimate of the oscillation. We claim
oscof - anm€ SL [ (Vo6 (48)

Br(z)

Indeed, consider two arbitrary coefficient fields ag, a; € €2 that agree outside
of Br(z). We write for abbreviation ¢;(z) = ¢(a;;x) and anom,i = ahom(@;)
for i = 0,1. By definition of osc it is enough to show

LY - Gpomn€ — € - dnomo€] < / Vo + ]2 (49)
Br(z)

Indeed, we have by definition of a,,, and of ¢
Ld(é- : ahom,lg - 5 : ahom,Og)
& /[ s L)d(v¢1+f)'@1(v¢1+f)—/ (Vo + &) - ao(Vo +§)

L L
[_Evf)d

V=60 (Vo +6)+ [

%) [-5.3)

n / (Vi +6) - (a1 — a0) (Vo + )
[_

L L
3:3)¢

) V(p1 — ¢o) - ao(Vo +§)

) /[_ (Vo1 + &) - (a1 — ag) (Vo + ),

L L
7.9
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so that we obtain
Ld|€ : ahom,lg - 6 ) ahom,0§|
< ([ Worer [ [wonrert
Br(z) Br(z)
Now (49) follows from this and Step 3 in the proof of Lemma 3 in form of

Step 3. Stochastic estimate based on Proposition 1. We claim
(oS, (50)
Br(#)

Indeed, by Step 8 from the proof of Lemma 3 (and stationarity to replace z
by 0) we have

( / w5 / (Vo e

An application of Lemma 4 with p = 2 and of Proposition 1 with p = 1 yields
(50).

Step 4. Conclusion:
<(£ : ahomg - <£ : ahom£>)2>

(47)

,S < Z (OSCBR(z)é- : ahom£)2>

zeZdﬂ[—é,%)d
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