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Introduction

Complexity in haemodynamics

@ The main obstacle to make mathematical models

extensively useful and reliable in the clinical

context is that they have to be personalized

@ Many quantities required by the numerical
simulations cannot be always obtained through
direct measurements and thus need to be

estimated using the available clinical

measurements

@ The ultimate goal would be to optimize the
therapeutic intervention depending on the patient

attributes
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Complexity in haemodynamics
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Inverse Problems

o Parametrized Optimization Problems




Introduction

Models and problems

@ surface reconstruction of blood flow profiles

@ inverse problems: reconstruction of boundary

conditions by experimental measures/observations

o flow control: vorticity reduction by
suction/injection of fluid through the
boundary

Steady state system: advection-diffusion, Stokes or Navier-Stokes equations
Control variables: distributed in the domain or along the boundary

Parameters: they can be physical /geometrical quantities describing the state system

or related to observation measurements in the cost functional



Optimal control problems [Lions, 1971]

In general, an optimal control problem (OCP) consists of:

@ a control function u, which can be
seen as an input for the system,

@ a controlled system, i.e. an
input-output process: £(y,u) =0,
being y the state variable

@ an objective functional to be
minimized: J(y, u)
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Optimal control problems [Lions, 1971]
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find the optimal control u™ and the state y(u™) such that the cost functional

(OcP)

J(y, u) is minimized subject to E(y,u) =0




Introduction

Optimal control problems [Lions, 1971]

In general, an optimal control problem (OCP) consists of:

@ a control function u, which can be
seen as an input for the system,

@ a controlled system, i.e. an
input-output process: £(y,u) =0,
being y the state variable

@ an objective functional to be
minimized: J(y, u)

find the optimal control u™ and the state y(u™) such that the cost functional

(OcP)

J(y, u) is minimized subject to E(y,u) =0

We restrict attention to:

@ quadratic cost functionals, e.g. J(y,u) = %Hy —ydll? + %Hu”2



Introduction

Parametrized optimal control problems

A parametrized optimal control problem (OCP,) consists of:

@ a control function u(p), which can K

“8) OutD Ty, u )

@ a controlled system, i.e. an

input-output process:
E(y(p), u(p);p) =0,

@ an objective functional to be
minimized: J(y(p),u(p);p) 0 0o — oo /

be seen as an input for the system, (TN
|
}
}
|
|
|
|
|
|

given p € D, find the optimal control u™(p) and the state y*(u) such that the

OocP
cost functional J(y(p), u(p); i) is minimized subject to E(y(p), u(p); w) =0 )

where p € D C RP denotes a p-vector whose components can represent:

@ coefficients in boundary conditions @ physical parametrization

@ geometrical configurations @ data (observation)



Introduction

Reduction strategies for Parametrized Optimal Control Problems

va(p) (data)

PROBLEM: given u € D C RP,

min 7 (y, u; p)
y,u

st. E(y,u;pu)=0

The computational effort may be unacceptably high and, often, unaffordable when
@ performing the optimization process for many different parameter values

(many-query context)

o for a given new configuration, we want to compute the solution in a rapid way
(real-time context)

Goal: to achieve the accuracy and reliability of a high fidelity approximation
but at greatly reduced cost of a low order model J




Introduction

Main ingredients: linear state equation case

We build the Reduced Basis (RB) approximation directly on the optimality (KKT) system:

@ we firstly recast the problem in the framework of saddle-point problem [Gunzburger &
Bochev, 2004]

@ we then apply the well-known Brezzi-Babuska theory [Brezzi & Fortin, 1991]

This way we can exploit the analogies with the already developed theory of RB method for
Stokes-type problems [Rozza & Veroy, 2007] [Rozza et al., n.d.] [Gerner & Veroy, 2012]

The usual ingredients of the RB methodology are provided:

@ Galerkin projection onto a low-dimensional space of
basis functions properly selected by a greedy algorithm
for optimal parameters sampling;

@ affine parametric dependence — Offline-Online
computational procedure [EIM];

° - . - Lo
an efficient .and rlg-orous a posteriori error estimation MY Z (UN () € XN e D)
on the solution variables as well as on the cost Y = span{UN (), i = 1,..., N}
functional.



Introduction

Main ingredients: nonlinear state equation (Navier-Stokes) case

Again, we work directly on the optimality system, in this case a nonlinear system of PDEs

@ Newton-SQP method: sequence of saddle-point problems featuring the same
structure of the optimality system in the linear case [Ito & Kunisch, 2008]

@ we then apply the Brezzi-Rappaz-Raviart theory [Brezzi, Rappaz, Raviart, 1980]

This way we can exploit the analogies with the already developed theory of RB method for
nonlinear equations (in particular Navier-Stokes) [Patera, Veroy, R., Deparis, Manzoni]

The usual ingredients of the RB methodology are provided:

@ Galerkin projection onto a low-dimensional space of
basis functions properly selected by a greedy algorithm
for optimal parameters sampling;

@ affine parametric dependence — Offline-Online
computational procedure [EIM];

@ an efficient and rigorous a posteriori error estimation
g p MY = (UM () € &N pe D)

on the solution variables as well as on the cost ;
AN = span{UN (p'),i=1,...,N}

functional [in progress].



Introduction

Optimality system
Let x = (y, u) be the optimization variable (state and control variables),

given € D C RP, mel)r} J(x; @) st. E(x;p)=0in Q J
X

Lagrangian functional: L(x, p; ) = T(x, ) + (E(x, 1), p),

By requiring the first derivatives to Optimality system

vanish we obtain the optimality T p) +E(p)*p =0
(KKT) system {S(X' 1) —0
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Optimality system
Let x = (y, u) be the optimization variable (state and control variables),

given € D C RP, mel)r} J(x; @) st. E(x;p)=0in Q J
X

Lagrangian functional: L(x, p; ) = T(x, ) + (E(x, 1), p),

By requiring the first derivatives to Optimality system

vanish we obtain the optimality T p) +E(p)*p =0
(KKT) system {S(X' 1) —0

Linear state equation: £(-; u): X — Q' is linear,
let E(x;p) = B(u)x —g(w) = Ex(x; u)* = B*(p) independent of x

J(x;pm) = %(A(u)xvd —{f(p),x) = Tx(x; p) = A(p)x — f(p)

ebraic formulation: A(k) BT(M) x(u)\ _ (F(w)
Algeb fi lation: <B(IL) 0 > (p(u)) _ <G(u)>



Introduction

Optimality system
Let x = (y, u) be the optimization variable (state and control variables),

given € D C RP, mel)r} J(x; @) st. E(x;p)=0in Q J
X

Lagrangian functional: L(x, p; ) = T(x, ) + (E(x, 1), p),

By requiring the first derivatives to Optimality system

vanish we obtain the optimality T p) +E(p)*p =0
(KKT) system {S(X' 1) —0

Nonlinear state equation: E(-; p): X — Q' is nonlinear. Newton's method on the
optimality system: for k =1,2,...

K ok L (X, s ) s+ Ex(XFi )" sk = —Lx(xK, p¥5 1)
solve for (s;,s,) k k g
5)<(X ;IJ') Sx - _S(X 7“)
update XM = Xk 4 sk, Pt =pk + S’,’(



Introduction

Optimality system
Let x = (y, u) be the optimization variable (state and control variables),

given € D C RP, mel)r} J(x; @) st. E(x;p)=0in Q J
X

Lagrangian functional: L(x, p; ) = T(x, ) + (E(x, 1), p),

By requiring the first derivatives to Optimality system

vanish we obtain the optimality T p) +E(p)*p =0
(KKT) system {S(X' 1) —0

Nonlinear state equation: E(-; p): X — Q' is nonlinear. Newton's method on the
optimality system: for k =1,2,...

K k()T k k
solve for (s§,sx) <gk8‘3 g (:) ) <ZEEZ;) - <2k((z))>

update xh = xk 4 sff, kar1 = pk + s:



Linear Control Problems

The abstract optimization problem

Notation: v,z € Y state space u,v € U control space
p,q € Q (= Y) adjoint space Z observation space s.t. Y C Z

Parametrized optimal control problem: given p € D

. 1 «
minimize J(y, u; p) = 5m(y = ya(p), y = ya(p)i p) + 5 n(u, u; p)

st. aly,qp) =c(u,q;p) +(G(r),q) Vg€ Q.




Linear Control Problems

The abstract optimization problem: saddle-point formulation
Notation: v,z € Y state space u,v € U control space
p,q € Q (= Y) adjoint space Z observation space s.t. Y C Z

Parametrized optimal control problem: given p € D

. 1 «
minimize J(y, u; p) = 5m(y = ya(p), y = ya(p)i p) + 5 n(u, u; p)

st. aly,qp) =c(u,q;p) +(G(r),q) Vg€ Q.

Let X =Y x U be the state and control space, the constrained optimization

problem can be recast in the form:

Saddle-point formulation: given p € D notation:
min J(x; 1) = SA(xx ) — (F(),x), st x= () ex
2 w=(z,v) € X
B(x,q;pn) = (G(n),q)  VgeQ.
where
A(x, wip) = m(y, z; p) + an(u, v; p), (F(p),w) = m(ya(p), z: )

B(W7 q; IJ‘) = 3(27 q; I"') - C(V7 q;/J‘)



Saddle-point formulation: applying Brezzi theory

@ the optimal control problem
mEiQ J(x;pn) subjectto  B(x,q;p)=(G(n),q) Vge Q.
has a unique solution x = (y, u) € X for any p € D

@ that solution can be determined by solving the optimality system

A(x(p), wi ) + B(w, p(n)i p) = (F(p), w) Yw € X,
B(x(w), g p) = (G(n); q) Vg e Q,
Compact form X=XxQ, U=(x,p), W=(w,q)
given p € D, find U(p) € X s.t: B(U,W; p) = A(x, w; p) + B(w, p; ) + B(x, q; 1)
B(U(k), Wi ) = F(W;u) VW e X. F(W; 1) = (F(p), w) + (G(n), )

@ at this point we may apply the Galerkin-FE approximation



Linear Control Problems

Optimize - then - discretize

pn-OCP, optimality system

Pb(u; U(w)) Up) € X: B(U(u),W;u)=FW) VYWeX

Truth approximation (FEM)

Pb (1 UV (1)) UN () € XN 0 BUN (i), Wi ) = F(W) YW e &



Linear Control Problems

Optimize - then - discretize - then - reduce approach

Pb(p; U(pe))

Pbar(p; UV ()

Sampling (Greedy)
Space Construction

(Hierarchical Lagrange basis)

OFFLINE

Pbn (e Un(p))
Galerkin projection

ONLINE

pn-OCP, optimality system

U(p) € X B(U(p),W; ) = F(W) YW e X

Truth approximation (FEM)

UN() e XV o BUN(w),W; n) = F(W) YW e &V

Sv={p, i=1,...,N}
Xy =span{UN (), i=1,... N}
dim(Xy) = N < N = dim(x*)

Reduced Basis (RB) approximation

Un(p) € v B(Un(p),W; n) = F(W) VYW e Xy

[Patera, Rozza 2006] [Rozza et al., 2008] (review)



Linear Control Problems

Reduced Basis Method: approximation stability

Reduced Basis (RB) approximation: given p € D, find (xy(pt), pn(1)) € Xy X Qp:

{A(XN(MLW;u)+l’>’(w,p/v(u);u) — (F(n),w)  VweXy

B(xn(p), q; 1) =(G(), q) Vg € Qu ®)

How to define the reduced basis spaces?



Linear Control Problems

Reduced Basis Method: approximation stability

Reduced Basis (RB) approximation: given p € D, find (xy(pt), pn(1)) € Xy X Qp:

{A(xN(uLw;u)+6<w,pN(u);u) = (Fw)  wexu

B(xn(p), q; 1) =(G(), q) Vg € Qu

How to define the reduced basis spaces? we have to provide a spaces pair {Xy, Qu} that
guarantee the fulfillment of an equivalent parametrized Brezzi inf-sup condition [Negri et al.,

2012]
Bu(p) = inf Blw.aim) g yuen.
a€Qn wexy lwllxlldlle

For the state and adjoint variables: aggregated spaces

Wy = span{u™ (u")}Y

For the control variable:
N
Y = Qu = span{y™ (u"), pN (")}, J J

Let Xy = Yy X Wy, we can prove that
o Bn(p) > oV (1) > 0 being oV () the coercivity constant associated to the FE
approximation of the PDE operator

@ Brezzi theorem = for any u € D, the RB approximation () has a unique solution

depending continuously on the data



Linear Control Problems

RB method: Offline/Online decomposition

. . An(p)  By(w)) [xn(w) Fn(p)
Algebraic formulation: =
8 (BNm) o ) \ew(w)) ~ \Gu(n)
—_—
Kn(w) Upn(w) Fn(w)
Qp Qf
affine decomposition: Kn(p) = Z CHIDL¢/ Fn(p) = Z CHINI
q=1 qg=1
Qp Qr
> OUm)KF Un(p) = 0% (u)Fy
q=1 q=1

@ Offline pre-processing: compute and store the basis functions {¢;, 1 < i < 5N},
store the matrices K} and the vectors Fy

Operation count: depends on N, Qp, Qf and N/
@ Online: evaluate coefficients ©J (), assemble the matrix Ky(ut) and the vector Fy ()
and solve the reduced system of dimension 5N x 5N

Operation count: O((5N)3 + QyN? + Q¢N) independent of N, N < N



Linear Control Problems

RB Method: a posteriori error estimation

Goal: provide rigorous, sharp and inexpensive estimators for the error on the solution J

variables and for the error on the cost functional

A posteriori error estimation on the solution variables

UV (1) = Un() e <8R )
B ()

0 0< Bia(p) < BN (1) is a constructible lower bound of the Babugka inf-sup constant
5 . B(U7 W; l"‘) A
B(p) = inf sup —————— >[5 Vu €D
wex yex [[Uflx[[WIlx '
given by the successive constraint method (SCM) (or by an interpolant surrogate);
Offline/Online strategy
@ residual of the optimality system: r(W; u) = F(W; ) — B(Up, W; t); we can provide
the standard Offline/Online stratagem for the efficient computation of [|r(:; )|l x7:

A posteriori error estimation on the cost functional

(- )%,
N (1) = T ()] <1 )l 1O (1) = Unea)llze < S IG8Mr  n gy
2 2 Bie(p)




Linear Control Problems

RB Method: the “complete game”

offine .
[ \
1 FE kernel successive constraint |
: affine decomposition method (SCM) 1
1 assembly K., Fj\/’ Bie(w) :
1
' I
! 1
1 N - P
| basis selection a posteriori :
1 by greedy algorithm error estimation
1
i assembly K;\’l, F% Apn(p) :
i I ____ b
online
P P e SV ~
1

! bl lution of the RB-OCP eceten :
assem y solution o e | ® .
€D )—l—)( (S solution Upn(pe), Ay () |1
( ) Kn(), Fu(ke) Kn()Un(ss) = Fy(ma) .
1

functional Jy (ke), A (k)

@ Offline stage involves precomputation of FE structures required for the RB space
construction and the certified error estimates.

@ Online stage has complexity only depending on N and allows resolution of the Optimal
Control Problem for any p € D with a certified error bound.

Implementation in MATLAB using MLife and rbMIT libraries.



Linear Control Problems

Computational reduction

}<—6TN—>| FE marginal cost

U/ (1) FE solution

input e
put H { J¥(u) FE output

u-PDE

67Ny —>| l«— RB marginal cost

R o AT

VY

OFFLINE ONLINE

U, RB solution ~ U”
input 4 —> w(k) (®)
u-PDE

Ju(1) RB output I ()

Q

http://augustine.mit.edu



Geometrical reduction

Geometrical Parametrization

v RB framework requires a geometrical map T(-; p) : Q — Qo(pt) in order to combine
discretized solutions for the space construction

v' This procedure enables to avoid shape deformation and remeshing (that, e.g. normally
occur at each step of an iterative optimization procedure)

v Reduction in the complexity of parametrization: versatility, low-dimensionality,
automatic generation of maps, capability to represent realistic configurations, ...

TVt

Left: Different carotid bifurcation specimens obtained by autopsy (adults aged 30-75);
picture taken from Z. Ding et al., Journal of Biomechanics 34 (2001),1555-1562.
Right: Different carotid bifurcation obtained through radial basis functions techniques.



Geometrical reduction

Shape Parametrization Techniques

Cartesian geometries:

o Affine/nonaffine mapping “by hands”

Complex realistic geometries:

e Automatic affine transformation (DD) rbMIT o

@ Free-shape nonaffine transformations based on
control points (e.g. Free-Form Deformation
[Sederberg & Parry], Radial Basis Functions
[Bookstein, Buhmann])

o Transfinite Mappings [Gordon, Hall]




Geometrical reduction

Free-Form Deformation (FFD) Techniques

D

T(,p)
Do(p)

Py, = Pim+

Construction:

L M
@ Parametric map: T(x,p) = Z Z b,L’,Q/’(\II(X))(PLm + py,m) Where
/=0 m=0
LM LicypM LyM L—ee M—m m
b (s.8) = b)) = () ()@ -9 st @ - oM me
are tensor products of Bernstein basis polynomials
@ FFD mapping defined as Qo(p) = W10 T o W(Q; ) =: T(Q; )

@ Parameters p1, ..., up are displacements of selected control points



LO - Boundary control for a Graetz convection-diffusion problem

(01 T3 (11 re_ (1+p2,1)
L observation function: yy(p) = 13Xg,
D Q Q(p) M parameter domain:
=1[6,20] x [1,3] x [0.5,3]
Q,
(00) g (LO) re T+ 112,0)

We consider the following optimal control problem:

S 1 «a
minimize J(yo(ps), to(p); 1) = Sllyo(k) = a2 q,, + Elluo(u)llé(rg)

b .
- —Ayo(u) + x02(1 — Xo2) y"(*l‘) 0 in Qo ()
O
yo(p,) =1 on Iy
s.t. 1 o
aVyo(u) n=uo(p) on Iz ()
1
EVyo(u) ‘n=0 on I'§ (1),

» the problem is mapped to a reference domain Q = Qo (faref) With pres = (-, 1, -)

» we obtain an affine decomposition with Qg =6, QF =5



Results

Boundary control for a Graetz convection-diffusion problem

Number of FE dof N/ 8915
Representative solution for p = (12,2, 2.5) Number of parameters P 3
b ng Number of RB functions N 39
| § | B4 Dimension of RB linear system 39 -5
0.7 0.
state adjoint Affine operator components Q 6
! Linear system dimension reduction ~ 50:1
” FE evaluation tgg (s) 14.5
n‘ s : B s RB evaluation tggine (s) 0.1
optimal control uy on ¢ : uid
P RB evaluation t32"™ (s) 3970
10° T T T T T 10° T T T T T T T
—o— average error
10° A average ||
. i mNax error ) S —e— a\jerage error
10 comen oA, max H 10 4y average
10° ®

Error estimation (e) and true error (e) for the solution (left) and the cost functional (right)



Results

Towards reduced data reconstruction /assimilation

21111

*0d

Sectional axial flow profile (top) and vorticity (bottom) and salient locations along a bend.
Picture taken from D. Doorly and S. Sherwin, Geometry and flow,
In Cardiovascular Mathematics, L. Formaggia, A. Quarteroni and A. Veneziani (Eds.)



L1 - Reduced data reconstruction/assimilation

@ goal: to reconstruct, from areal data provided by
eco-dopplers measurements, the blood velocity field in
a section of a carotid artery

@ surface estimation starting from scattered data: the

reconstruction should take into account the shape of

Duplex US image of a carotid artery bifurcation

the domain and preserve the nO‘S“P condition Intravascular US image of a coronary artery (cross-section)

Surface estimation problem [Azzimonti et al., 2011]

m "
a (e
min i) =32 [ lylu) — 2 P2+ 3 (e
’ i=1

obs, i

— Ay(p) = u(p) in Q(pg) :
observation
y(p) =0 on 9Q(pg) domains Qobs,i

@ Geometrical parametrization: Free Form Deformation

P = 4 displacements of the control points e e,
pe € (—0.15,0.15)% [Manzoni, Phd thesis]

@ Parametrized observation values: ,ui)bs =z,1<i<m=5




Results

L1 - Reduced data reconstruction/assimilation [Rozza et al., 2012, ECCOMAS]

Number of FE dof A/ 3.3.10% To fulfill the affine parametric dependence
Regularization parameter o 104 assumption we rely on the Empirical
Number of parameters P 4+5 Interpolation Method [Barrault et al, 2004]
Number of RB functions N 42

Affine components Qg 53

Linear system dimension red. 160:1

RB solution tg’gi"e(s) 0.013

RB certification t3"(s) 0.98

Example of reconstructed profiles given different sets of (virtual) observation values:




Stokes constraint: how to extend the method

1
minimize J(v,m, u; p) = gm(v —vg(p),v—vg(p); ) + %n(u, u; ) subject to

{ a(v,& p) + b(&,mp) = (F(p), &) +c(u,& p) VEEV,
b(v, T; p) (G(p), 7) VT e M,

Functional setting: V= [HY(Q)]? M = L?(Q) velocity and pressure spaces

Y = V X M state space, Q = Y adjoint space, U control space

@ two nested saddle-point
e outer: optimal control e inner: Stokes constraint

@ reduced basis functions computed by solving N times the FE approximation (with
stable spaces pair for velocity and pressure variables)

@ stability of the RB approximation of the Stokes constraint fulfilled by introducing
suitable supremizer operators [Rozza & Veroy, 2007; Rozza et al., n.d.]

@ stability of the RB approximation of the whole optimal control problem fulfilled by
defining suitable aggregated spaces for the state and adjoint variables [Negri et al.,
2013]



Stokes constraint: how to extend the method

1
minimize J(v,m, u; p) = Em(v —vg(p),v—vg(p); p) + %n(u, u; ) subject to

{a(v,s;u) + b(€, m; p) (F(u), &) + c(u,& p) VEEeV,
b(v, T; ) =(G(p), ) Y1 e M,

Functional setting: V= [HY(Q)]? M = L?(Q) velocity and pressure spaces

Y = V X M state space, Q = Y adjoint space, U control space

Reminder: enrichment by supremizers operators for the Stokes equations
_ N, n _
My = span{n™¥ (u"), n=1,...,N}, pressure

Vi = span{vN(y."), T“(ﬁN(y."))7 n=1,...,N}, velocity

being T# : M — V the supremizer operator s.t.
(THq,w)y =b(q,w;p) VwevV,

so that {V}/, My} fulfill an equivalent RB Brezzi inf-sup stability condition [R., Veroy, et al.]



L2 - Vorticity minimization on the downstream portion of a bluff body

Ty
Q, 2
= GOAL: minimize the vorticity in the
(o]
< wake of the body through
in[ Q Ty ! Ty Qobs Cout . N .
g Hy suction/injection of fluid on the
T,
¢ control boundary I'¢
Q2
Ty

The state velocity and pressure variables {v, 7} satisfy the Stokes equations in Q(t1) with

the following boundary conditions:

v=0 on p(p1),
vi=0 on g,
v=g(p2)  onT,
Vo =u on ¢,
—7rn+l/an:0 on rout(/—’/l)7

where g(12) is a parabolic inflow profile with peak velocity equal to p».
The cost functional is given by:

T(v(p), u(p); p) = :

"
3 |19 <P a2+ e,

2

obs



L2 - Vorticity minimization on the downstream portion of a bluff body

10 T T T T T T T T T

o average emor p1 €10.1,03] p2 €[05,2] pyte[L,200]
10° _g—Ayaverage |
——maxeror Number of FE dof A/ 3.6-10%

Number of parameters P 3
Number of RB functions N 19
Dimension of RB linear system 1913
Affine operator components Q 14

2 4 6 8 10 12 14 16 18

ool H H H H

N
Average computed error and bound between the

truth FE solution and the RB approximation. Sotability factor: Babuska inf-sup w.r.t. to yi

N . — P
el ll O
N N N 0018 sy N
Linear system dim reduction  150:1 e 1o - -Pre®)
FE evaluation tgg (s) ~ 15 oord
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L3 - An (idealized) application in haemodynamics: a data assimilation problem
@ we consider an inverse boundary problem in hemodynamics, inspired by the work [D’Elia
et. al, 2011]
@ parametrized geometrical model of an arterial bifurcation (with FFD)

@ we suppose to have a measured velocity profile on the red section, but not the Neumann
flux on ¢ that will be our control variable

@ starting from the velocity measures we want to find the control variable in order to
retrieve the velocity and pressure fields in the whole domain.

g(kin) Vi (fobs) Fc(mg) = =
ONLINE L
Cin o
o
given new geometrical configuration (pg) I
and parametrized measurements fops find the unknown Neumann boundary
on the red section condition on ¢ and retrieve the

whole velocity and pressure fields




Results

An (idealized) application in haemodynamics: a data assimilation problem

o o -] o o o o o
Free Form Deformation ° ° ° ° ° °
° ° o o o ° 8
the geometrical ° ° B ° o ° ° 8
parameter pig is

related to the angle of ° ° ° ° o o o °
rotation of the lower ° ° o ° Q §
o ° 0} 8 o ° g @

branch .
o o ) °D o (-] P -]

o

The state velocity and pressure variables {v, 7} satisfy the following Stokes problem in Q(g):

—vAv +Vr =0 in Q(peg), v =2g(pin) on T,
divv =0 in Q(pg), v
—mn+vrv— =u onl R
v=0 on MNp(pg), 7 on c(ie)

where g(pin) is a parabolic inflow profile.

Then we consider the following parametrized cost functional to be minimized

1
T, muip) = 5/ [v — vg(teops)|> dT + regularization(u)

obs



L3 - An (idealized) application in haemodynamics: a data assimilation problem

/\/\\ s Number of FE dof A/ 4.10%
| T~ max rror Number of parameters P 3
N_ Number of RB functions N 17
- \_*—\ Dimension of RB linear system 17 -13
\\‘\*\.\\’\‘ N Affine operator components Q 20
s
0y ; s O = o e FE evaluation trg (s) =~ 20
Average computed error and bound between the truth RB evaluation t}%’éﬁne (s) 0.15
FE solution and the RB approximation.
\/e‘ltocify

12

0.80

— —<|

o
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Nonlinear Control Problems

Boundary control of Navier-Stokes flow

Find (v, 7, ) such that the cost functional

T (v, m,u;pn) = F(v, m p) + G(u; )

is minimized subject to the steady Navier-Stokes equations:

—vAvV+ (v-V)v+Vr=Ff in Q(p)
dive =0 in Q(p)

v=u on Me(p)

v=0 on Ip(p)

—m+vVv-n=0 on My(w).

Possible choices for F, viscous energy dissipation or velocity tracking type functionals:

1
F(v,m p) = v / |Vv|?dQ, F(v,mp) == / v —vg()? d
2 Jau) 2 S Qs
Regularization contribute: G(u; ) = g/ (IVul?+|u?)dr
2 Jre(w)

[Gunzburger et al., 1991], [Hou & Ravindran, 1999], [Biros & Ghattas, 1999, 2005]



Nonlinear Control Problems

Boundary control of Navier-Stokes flow

Find (v, 7, ) such that the cost functional

T, 7 u; p) = F(v,m p) + G(u; p)

is minimized subject to the steady Navier-Stokes equations:

—vAvV+ (v-V)v+Vr=Ff in Q(p)
dive =0 in Q(p)

v=u on Me(p)

v=0 on Ip(p)

—m+vVv-n=0 on My(w).

Possible choices for F, viscous energy dissipation or velocity tracking type functionals:

1
Fumw =5 [ wpde, Femm=g [ v-vu)Pde
2 Ja(u) 2 JQgs(m)
Regularization contribute: G(u; ) = g/ (IVul?+|u?)dr
2 Jre(w)

[Gunzburger et al., 1991], [Hou & Ravindran, 1999], [Biros & Ghattas, 1999, 2005]



Nonlinear Control Problems

Boundary control of Navier-Stokes flow: optimality system quadratic nonlinearity
State equation Adjoint equation
—VvAV+ (v-V)v+Vr=f

—VvAX+ (V)X = (v- V)X + Vi = vAv
divv =0 divi =0

v=u on ¢ + other BCs A=0 on I'c + other BCs
Optimality equation

—a(Arcu+u)=nn —v(VA+Vv) - n on ¢ J




Nonlinear Control Problems

Boundary control of Navier-Stokes flow: optimality system quadratic nonlinearity

State equation Adjoint equation
—VvAV+ (v-V)v+Vr=f —VvAX+ (V)X = (v- V)X + Vi = vAv
divv =0 divA =0
v=u on ¢ + other BCs A=0 on I'c + other BCs
Optimality equation
—a(Arcu+u)=nn —v(VA+Vv) - n on ¢ J

e Variational formulation: find U = (v, m;u; A\, n) € X s.t.
G(U,W;p)=0 VYW e X,
o Newton method: for k =1,2,...
dG[UM(UF™  Wip) = —G(UK, W;n) YW eX

where dG[U](V, W; i) denotes the Fréchet derivative of G(-,-; )



Nonlinear Control Problems

RB approximation and BRR error bound

As in the Stokes case:

@ reduced basis functions computed by solving N times the FE approximation

@ stability of the RB approximation: supremizer operators + aggregated spaces for the
state and adjoint variables

Nonlinear ingredients:
o Galerkin projection on Xy + Newton method: for k = 1,2, ... until convergence

dGIURJ(UKT, W ) = —G(UN, Wi n)  YWh € Xy

@ Brezzi-Rappaz-Raviart error bound:

£ ) — 4200(0)

<1 where en(p) = [G(Un, - 1)y
B2 (1) N

then

N _Bw) ([, -
0¥ = Untale < At = 22 (1 VT= 7))



NL1 - Vorticity minimization on the downstream portion of a bluff body

lHt:l
Q 2
2 GOAL: minimize the vorticity in the wake
e of the body through suction/injection of
Fin Q1 1-( E Qobs rout fluid on the control boundary I ¢
e
- pyt€[5,80]  p2 € [10,60]
2
1—‘d

The geometry is fixed. The parameters are the regularization constant w3 in the functional

(tuning the size of the control) and the Reynolds number p.

1
minimize J(v,u; p) = 7/ |V x v‘z dQ + %”U”iﬂ(rc)

2

obs

1
——Av+ (v-V)v+Vr =0 in Q

2
dive =0 in Q

v=u on ¢

+ other boundary conditions




NL1 - Vorticity minimization on the downstream portion of a bluff body

Error bound for low Reynolds.
10 T T T T

—e— true error

o A BRR

—.—TN

A, Linear

Results: no greedy algorithm (due to 10

computational limitations), computation
of reduced basis in randomly chosen
parameter points.

—e— true error

o— A BRR
——T
Ay Linear

N 10 U, (Reynolds) 10’



Results

NL1 - Vorticity minimization on the downstream portion of a bluff body

FE evaluation tgg (s) ~ 60
RB evaluation t2ine (s) 0.9

Number of RB functions N 35

Uncontrolled solution

07 g - 09

60
u, (Reynolds) : : 08
40
1/,.1‘ (regularization constant
20 50 60 70 80

10 20 30 40

w = [1/10,45] w = [1/55,30] w = [1/80,45]




Results

NL2 - Arterial bypass design: minimize restenosis risk

o Arterial bypass grafts tend to fail after some years due to the development of

intimal thickening (restenosis).

o Restenosis formation is usually characterized by abnormally high or low values of

shear stress, high values of its gradient, recirculation regions and graft deformation.

@ The WSS, its gradient (WSSG) and the vorticity downstream the anastomosis are
indicators of the restenosis risk.

Craft

N [from Owida et al., 2012]

Heel Toe

Anastomosis angle
20°-70°

e Bed —» Host

Proximal Distal Outflov

Velocity (cm/s)
1.3184

1.2
fos

Foa
0




NL2 - Arterial bypass design: minimize restenosis risk

o Arterial bypass grafts tend to fail after some years due to the development of

intimal thickening (restenosis).

o Restenosis formation is usually characterized by abnormally high or low values of

shear stress, high values of its gradient, recirculation regions and graft deformation.

@ The WSS, its gradient (WSSG) and the vorticity downstream the anastomosis are

indicators of the restenosis risk.
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N
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NL2 - Arterial bypass design via boundary optimal control

Find (v, 7, u) such that the cost functional

1
T (v, m,u; p) = 5/ |V x v|? dQ—i—%/ |Vul*dr
Qops (1) Fe(w)

is minimized subject to the steady Navier-Stokes equations:

1 .
—@Av-i-(v-V)v—i-Vﬂ:O in Q(p) v=0 on T (k)
dive =0 in Q(p) v=g.(pr) onlp
—7m+éVv-n:0 on Iy vEL on Fe(p).

FC’
S——

'y Iy

r

w

[Lassila, Manzoni, Quarteroni, Rozza]  [Gunzburger et al., 91; Hou & Ravindran, 99; Biros & Ghattas, 99, 05]



NL2 - Arterial bypass design via boundary optimal control — parameters
We consider the following parameters:
@ pu; € [40,100] : Reynolds number
@ p» € [0,40] : percentage of residual flow g, (¢2) = p2/25 y(1 —y)
@ p3 €[0.05,10] : penalization parameter « in the cost functional

@ pg4 €[0.5,1.2] : length of the control boundary (graft diameter)

Total conservation of fluxes — additional constraint on the control variable:

/ u-ndl = Qc(p2) ( = QroT — / 8res(112) dF)
rc Mo




Results

NL2 - Bypass design: sensitivity to the residual flow

ity Magnitude

0.8 12
o

1.4927809

Res. Flow
12.5%

1.3231361
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Optimal Control u x
2 u, Res. Flow 0%
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—, Res Flow 37.5%

—u, Res Flow 25%

velocity [cm/s]

—, Res Flow 25%

u, Res. Flow 12.5%
4 36, 38 4 42
x coordinate on I', u, Res. Flow 12.5%

A link between boundary control velocity and
shape of the bypass anastomosis:

0(x) = arctan (— ﬂ)

Ux
Craft [from Owida et al., 2012]
Anastomosis angle
20°-70° Heel Toe
o Bed — Host
Proximal Distal Outflow




NL2 - Bypass design: sensitivity to the residual flow

Res. Flow
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Results
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NL2 - Bypass design: sensitivity to the parameters

Control boundary length = 0.6 Control boundary length = 0.8 Control boundary length = 1
75 5 60
—e—Reynolds =85 Y —e— Reynolds = 85 —e— Reynolds = 85|
Y —&— Reynolds =70 —&— Reynolds = 70 A —&— Reynolds = 70
70 —w— Reynolds = 40 608 —w— Reynolds = 40| 55 —v— Reynolds = 40|
50
65 55
2 < <
=) 2 245
< < <
3 60 8 50 3
© © ©
5] Y © & 40
> > >
< < <
55 1 45
35
50 40 30
45 35 25
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Residual flow % Residual flow % Residual flow %
Number of FE dof A/ 80000 DOFs reduction 300:1
Number of parameters P 4 Number of RB functions N 20
FE evaluation tee (s) 60 — 250 Dimension of RB linear system 20-13
. H online
Affine terms Q 27 RB evaluation tg5" (s) 1




NL2 - Bypass design: sensitivity to the parameters

Diameter '35 s Diameter ‘o8 e " Diameter
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Number of FE dof A/ 80000 DOFs reduction 300:1
Number of parameters P 4 Number of RB functions N 20
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Results

Conclusions and perspectives

Data reconstruction/assimilation Shape reconstruction
(e.g. boundary data for blood flow from patient-dependent
simulations) configurations
S — e

—> Many-query context
Reduced FSI problems

Real-time context «——
Output evaluation

I <
Shape optimization/design
of cardiovascular devices
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