Mean field approximation of transfer operators and time-scale bridging in conformation dynamics

Gero Friesecke (TU Munich)

ENUMATH, Leicester, 9 September, 2011
M3: Numerical Methods for Molecular Dynamics
(Organisers: T.Lelièvre and R.Davidchack)

Reference: Multiscale Model. Simul. 8 (2009), 254-268
Joint work with Oliver Junge and Peter Koltai (TU Munich)
Molecular dynamics

Molecular dynamics = Hamiltonian dynamics applied to systems of atoms

Valid as a good approximation to quantum dynamics as long as there is no bond breaking/bond formation, due to small mass ratio $m_e / m_{\text{nuc}} \sim 10^{-4}$

Often, also add small amount of damping+noise (emulate environment e.g. solvent), of which more later

Typical phenomenon in simulations

▶ Irregular small oscillations around metastable states ("conformations") at short timescales 10^{-14} sec

▶ Transitions to different metastable states at much larger timescales 10^{-12} sec for small peptides; 10^{-6} to 10^2 sec for proteins
Molecular dynamics

Molecular dynamics = Hamiltonian dynamics applied to systems of atoms
Molecular dynamics

Molecular dynamics = Hamiltonian dynamics applied to systems of atoms

Valid as a good approximation to quantum dynamics as long as there is no bond breaking/ bond formation, due to small mass ratio $\frac{m_{el}}{m_{nuc}} \sim 10^{-4}$

Molecular dynamics

Molecular dynamics = Hamiltonian dynamics applied to systems of atoms

Valid as a good approximation to quantum dynamics as long as there is no bond breaking/bond formation, due to small mass ratio $\frac{m_{\text{el}}}{m_{\text{nuc}}} \sim 10^{-4}$

Often, also add small amount of damping+noise (emulate environment e.g. solvent), of which more later
Molecular dynamics

Molecular dynamics = Hamiltonian dynamics applied to systems of atoms

Valid as a good approximation to quantum dynamics as long as there is no bond breaking/bond formation, due to small mass ratio $\frac{m_{el}}{m_{nuc}} \sim 10^{-4}$

Often, also add small amount of damping+noise (emulate environment e.g. solvent), of which more later

Typical phenomenon in simulations

- Irregular small oscillations around metastable states ("conformations") at short timescales
 10^{-14} sec

- Transitions to different metastable states at much larger timescales
 10^{-12} sec for small peptides; 10^{-6} to 10^2 sec for proteins
Example: Molecular dynamics simulation of butane

Butane (cis and trans conformation)

Dynamics of C-C bondlengths, C-C-C bond angles, and C-C-C-C torsion angle (Friesecke/Junge/Koltai)
Hamiltonian of n-Butane

\[H = \sum_{i} |p_i|^2 + \frac{1}{2} k_{\text{bond}} (r_{ij} - r_0)^2
+ \frac{1}{2} k_{\text{ang}} \left(\cos \theta_{ijk} - \cos \theta_0 \right)^2
+ \frac{1}{2} k_{\text{tor}} \phi_{ijk\ell}^2 \]
Hamiltonian of n-Butane

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_2 \quad \text{CH}_2 \quad \text{CH}_2 \quad \cdots \quad \text{CH}_2 \quad \text{CH}_3 \\
\end{align*}
\]

\[
x_i \in \mathbb{R}^3 \text{ position of } i^{th} \text{ CH}_2 \text{ group, } p_i \in \mathbb{R}^3 \text{ momenta}
\]
Hamiltonian of n-Butane

\[H = \sum_i \frac{|p_i|^2}{2m} + V(x_1, .., x_n) \]

\[V = \sum_{i,j} V_{\text{bond}}(r_{ij}) + \sum_{i,j,k} V_{\text{ang}}(\theta_{ijk}) + \sum_{i,j,k,\ell} V_{\text{tor}}(\phi_{ijk\ell}) \]

\(x_i \in \mathbb{R}^3 \) position of \(i^{th} \) CH\(_2\) group, \(p_i \in \mathbb{R}^3 \) momenta
Hamiltonian of n-Butane

\[
\begin{align*}
CH_3 & \rightarrow CH_2 \rightarrow CH_2 \rightarrow CH_2 \cdots CH_2 \rightarrow CH_3
\end{align*}
\]

\[x_i \in \mathbb{R}^3 \text{ position of } i^{th} \text{ CH}_2 \text{ group}, \ p_i \in \mathbb{R}^3 \text{ momenta} \]

\[
H = \sum_i \frac{|p_i|^2}{2m} + V(x_1, \ldots, x_n)
\]

\[
V = \sum_{i,j} V_{\text{bond}}(r_{ij}) + \sum_{i,j,k} V_{\text{ang}}(\theta_{ijk}) + \sum_{i,j,k,\ell} V_{\text{tor}}(\phi_{ijk\ell})
\]

1st-neighbour bond potential depending on \(r_{ij} = |x_i - x_j| \)

2nd-neighbour angular potential dep. on \(\theta_{ijk} = \arccos \frac{x_i - x_j}{r_{ij}} \cdot \frac{x_k - x_j}{r_{kj}} \)

3rd-neighbour torsion potential dep. on torsion angle \(\phi_{ijk\ell} \)
Hamiltonian of n-Butane

\[H = \sum_i \frac{|p_i|^2}{2m} + V(x_1, \ldots, x_n) \]

\[V = \sum_{i,j} V_{\text{bond}}(r_{ij}) + \sum_{i,j,k} V_{\text{ang}}(\theta_{ijk}) + \sum_{i,j,k,\ell} V_{\text{tor}}(\phi_{ijk\ell}) \]

\(x_i \in \mathbb{R}^3 \) position of \(i^{th} \) CH\(_2\) group, \(p_i \in \mathbb{R}^3 \) momenta

1st-neighbour bond potential depending on \(r_{ij} = |x_i - x_j| \)

2nd-neighbour angular potential dep. on \(\theta_{ijk} = \arccos \frac{x_i - x_j}{r_{ij}} \cdot \frac{x_k - x_j}{r_{kj}} \)

3rd-neighbour torsion potential dep. on torsion angle \(\phi_{ijk\ell} \)

\[V_{\text{bond}} = \frac{1}{2} k_{\text{bond}} (r_{ij} - r_0)^2, \quad V_{\text{ang}} = k_{\text{ang}} (\cos \theta_{ijk} - \cos \theta_0)^2, \quad V_{\text{tor}} = \]
Connection of n-Butane Hamiltonian to other models

$\theta_0 = 180^\circ$ (preferred bond angle is straight)

\Rightarrow get Fermi-Pasta-Ulam as an invariant submanifold

all x_i and p_i collinear, i.e. purely longitudinal motion

$n = 4$ (standard Butane), $V_{\text{ang}} = V_{\text{tor}} = 0$, $k_{\text{bond}} \to \infty$

\Rightarrow get Thurston triple linkage

Connection of n-Butane Hamiltonian to other models

- $\theta_0 = 180^\circ$ (preferred bond angle is straight)
 \Rightarrow get Fermi-Pasta-Ulam as an invariant submanifold
 all x_i and p_i collinear, i.e. purely longitudinal motion
Connection of n-Butane Hamiltonian to other models

- $\theta_0 = 180^\circ$ (preferred bond angle is straight)
 \implies get Fermi-Pasta-Ulam as an invariant submanifold
 all x_i and p_i collinear, i.e. purely longitudinal motion

- $n = 4$ (standard Butane), $V_{\text{ang}} = V_{\text{tor}} = 0$, $k_{\text{bond}} \to \infty$
 \implies get Thurston triple linkage

Key questions from an applications point of view

→ biophysics, molecular biology, drug design, protein folding pb., ...

Mathematical definition of 'conformation'.
Heuristically, neighbourhood of a local energy min. But which nbhd should you take?

Computational methods which track conformation changes for large systems.
Occur at long timescales, way beyond reliable trajectory simulation.

Biological examples (more complex than butane): retinal cis-trans transition; DNA α-β transition; hemoglobin T-R transition
Key questions from an applications point of view

→ biophysics, molecular biology, drug design, protein folding pb., ...

Mathematical definition of ‘conformation’.

Heuristically, neighbourhood of a local energy min. But which nbhd should you take?
Key questions from an applications point of view

→ biophysics, molecular biology, drug design, protein folding pb., ...

► Mathematical definition of ‘conformation’.

Heuristically, neighbourhood of a local energy min. But which nbhd should you take?

► Computational methods which track conformation changes for large systems.

Occur at long timescales, way beyond reliable trajectory simulation.
Key questions from an applications point of view

→ biophysics, molecular biology, drug design, protein folding pb., ...

- Mathematical definition of ‘conformation’.
 Heuristically, neighbourhood of a local energy min. But which nbhd should you take?

- Computational methods which track conformation changes for large systems.
 Occur at long timescales, way beyond reliable trajectory simulation.

Biological examples (more complex than butane): retinal cis-trans transition; DNA α-β transition; hemoglobin T-R transition
Definition of conformations via transfer operators

Introduced into MD by Deuflhard, Dellnitz, Junge, Schütte 1999. Instead of individual trajectories, consider evolution of densities on phase space (‘ensembles’ of initial conditions).
Definition of conformations via transfer operators

Introduced into MD by Deuflhard, Dellnitz, Junge, Schütte 1999. Instead of individual trajectories, consider evolution of densities on phase space (‘ensembles’ of initial conditions).

\[
\text{transfer operator} = \text{map from density } | \ t=0 \ \text{to density } | \ t=T
\]

\[
\text{invariant measure} = \text{eigenfunction with } \lambda = 1
\]

\[
\text{conformations} = \text{joint nodal domains of first } k \ \text{eigenfunctions}
\]

\[
\text{lifetimes can be estimated via distance of eigenvalues from 1}
\]

Huisinga/Schmidt, 2005
Definition of conformations via transfer operators

Introduced into MD by Deuflhard, Dellnitz, Junge, Schütte 1999. Instead of individual trajectories, consider evolution of densities on phase space (‘ensembles’ of initial conditions).

- transfer operator = map from density\(_{t=0}\) to density\(_{t=T}\)
Definition of conformations via transfer operators

Introduced into MD by Deuflhard, Dellnitz, Junge, Schütte 1999. Instead of individual trajectories, consider evolution of densities on phase space (‘ensembles’ of initial conditions).

- transfer operator = map from density $|_{t=0}$ to density $|_{t=T}$
- invariant measure = eigenfunction with e-value 1
Definition of conformations via transfer operators

Introduced into MD by Deuflhard, Dellnitz, Junge, Schütte 1999. Instead of individual trajectories, consider evolution of densities on phase space (‘ensembles’ of initial conditions).

- transfer operator = map from density $|_{t=0}$ to density $|_{t=T}$
- invariant measure = eigenfunction with e-value 1
- conformations = joint nodal domains of first k eigenfctns
Definition of conformations via transfer operators

Introduced into MD by Deuflhard, Dellnitz, Junge, Schütte 1999. Instead of individual trajectories, consider evolution of densities on phase space (‘ensembles’ of initial conditions).

Transfer operator = map from density $|_{t=0}$ to density $|_{t=T}$

Invariant measure = eigenfunction with e-value 1

Conformations = joint nodal domains of first k eigenfctns

Lifetimes can be estimated via distance of eigenvalues from 1

Huisinga/Schmidt, 2005
Key advantage for small systems

Suffices to compute transfer operator for short time

Catch for large systems

No. of computational DOF's exponential in no. of atoms

Eigenfunctions are functions on phase space

For M atoms: functions on \mathbb{R}^{6M} implies \mathbb{R}^{10} gridpts implies $\mathbb{R}^{6M} \to 10^M$ gridpts

Our proposal: Keep transfer operators, but make mean field approximation (w.r.to small subsystems)

no. of computational DOF’s \sim linear in no. of subsystems

Partially inspired by Hartree-Fock approximation to many-electron Schroedinger eq.
Key advantage for small systems

Suffices to compute transfer operator for short time

Eigenfunctions are functions on phase space

For M atoms: functions on \mathbb{R}^{6M} imply $\mathbb{R}^{6M} \rightarrow 10^M$ gridpts

Our proposal: Keep transfer operators, but make mean field approximation (w.r.t. small subsystems) no. of computational DOF's \sim linear in no. of subsystems

Partially inspired by Hartree-Fock approximation to many-electron Schrödinger eq.
Key advantage for small systems

Suffices to compute transfer operator for short time

Catch for large systems

No. of computational DOF’s exponential in no. of atoms

Eigenfunctions are functions on phase space

For M atoms: functions on $\mathbb{R}^{6M} \rightarrow 10$ gridpts implies $\mathbb{R}^{6M} \rightarrow 10M$ gridpts

Our proposal: Keep transfer operators, but make mean field approximation (w.r.t. small subsystems)

no. of computational DOF’s \sim linear in no. of subsystems

Partially inspired by Hartree-Fock approximation to many-electron Schroedinger eq.
<table>
<thead>
<tr>
<th>Key advantage for small systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suffices to compute transfer operator for short time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Catch for large systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of computational DOF’s exponential in no. of atoms</td>
</tr>
<tr>
<td>Key advantage for small systems</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td>Suffices to compute transfer operator for short time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Catch for large systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of computational DOF’s exponential in no. of atoms</td>
</tr>
<tr>
<td>Eigenfunctions are functions on phase space</td>
</tr>
<tr>
<td>For M atoms: functions on \mathbb{R}^{6M}</td>
</tr>
<tr>
<td>$\mathbb{R} \rightarrow 10$ gridpts implies $\mathbb{R}^{6M} \rightarrow 10^M$ gridpts</td>
</tr>
</tbody>
</table>
Key advantage for small systems

Suffices to compute transfer operator for **short** time

Catch for large systems

- **No. of computational DOF’s** exponential in no. of atoms
- Eigenfunctions are functions on phase space
- For M atoms: functions on \mathbb{R}^{6M}
- $\mathbb{R} \rightarrow 10$ gridpts implies $\mathbb{R}^{6M} \rightarrow 10^M$ gridpts

Our proposal:
Key advantage for small systems

Suffices to compute transfer operator for short time

Catch for large systems

No. of computational DOF’s **exponential** in no. of atoms

Eigenfunctions are functions on phase space
For M atoms: functions on \mathbb{R}^{6M}
$\mathbb{R} \rightarrow 10$ gridpts implies $\mathbb{R}^{6M} \rightarrow 10^M$ gridpts

Our proposal:

Keep transfer operators, but make mean field approximation
(w.r.to small subsystems)
Key advantage for small systems
Suffices to compute transfer operator for short time

Catch for large systems
No. of computational DOF’s exponential in no. of atoms
Eigenfunctions are functions on phase space
For M atoms: functions on \mathbb{R}^{6M}
$\mathbb{R} \rightarrow 10$ gridpts implies $\mathbb{R}^{6M} \rightarrow 10^M$ gridpts

Our proposal:
Keep transfer operators, but make mean field approximation (w.r.to small subsystems)
no. of computational DOF’s \sim linear in no. of subsystems

Partially inspired by Hartree-Fock approximation to many-electron Schroedinger eq.
Exact transfer operator for Hamiltonian MD

\[\mathcal{P} = \text{push-forward of measure under Hamiltonian flow} \]

\[P_\mu(\Omega) = \mu(\Phi^{-1}(\Omega)) \]

where \(\Phi = \text{time-T map of Hamiltonian flow, i.e.} \)
\[\Phi(q_0, p_0) = (q(t), p(t)) \]
with
\[\dot{q} = M^{-1}p, \quad \dot{p} = -\nabla V(q) \]

\((p, q) = (p_1, q_1, \ldots, p_N, q_N) \in \mathbb{R}^{6N} \)
Exact transfer operator for Hamiltonian MD

\[P = \text{push-forward of measure under Hamiltonian flow} \]

\[P\mu(\Omega) = \mu(\Phi^{-1}(\Omega)) \]

where \(\Phi = \text{time-T map of Hamiltonian flow}, \) i.e.
\[\Phi(q_0, p_0) = (q(t), p(t)) \]

with
\[\dot{q} = M^{-1}p, \quad \dot{p} = -\nabla V(q) \]

\[(p, q) = (p_1, q_1, \ldots, p_N, q_N) \in \mathbb{R}^{6N} \]

For Langevin MD: \(P = \text{stochastic transition function} \)

\[P\mu(\Omega) = \int p(x, \Omega) \, d\mu(x) \]
Exact transfer operator for Hamiltonian MD

\(P = \text{push-forward of measure under Hamiltonian flow} \)

\[P_\mu(\Omega) = \mu(\Phi^{-1}(\Omega)) \]

where \(\Phi = \text{time-T map of Hamiltonian flow, i.e.} \)
\(\Phi(q_0, p_0) = (q(t), p(t)) \) with

\[\dot{q} = M^{-1}p, \quad \dot{p} = -\nabla V(q) \]

\((p, q) = (p_1, q_1, \ldots, p_N, q_N) \in \mathbb{R}^{6N} \)

For Langevin MD: \(P = \text{stochastic transition function} \)

\[P_\mu(\Omega) = \int p(x, \Omega) \, d\mu(x) \]

\(p(x, \Omega) = \text{stochastic transition fctn = prob. that a trajectory initially at } x \text{ ends up in set } A \text{ after time } T \)

\[\dot{q} = M^{-1}p, \quad \dot{p} = -\nabla V(q) - \gamma M^{-1}p + \sqrt{2\gamma/\beta} \dot{W} \]

Unique invariant measure, alias eigenstate with e-val. 1 i.e. \(P_\mu = \mu: \text{const } e^{-\beta H} \text{ Gibbs-Boltzmann} \)
Mean field approach
F./Junge/Koltai, Multiscale Model. Simul., 2009

Step 1 PDE formulation of transfer operator (Liouville eq.)
Step 2 Mean field approximation of Liouville eq. (w.r. to a partitioning into subsystems)
Step 3 Approximate variational principle for eigenstates of exact transfer operator by 'Hartree-Fock' like nonlinear variational principle
Step 4 Solve nonlinear problem by Roothaan type algorithm + sparse Ulam method, yielding approximate eigenstates
Mean field approach
F./Junge/Koltai, Multiscale Model. Simul., 2009

Step 1 PDE formulation of transfer operator (Liouville eq.)
Mean field approach
F./Junge/Koltai, Multiscale Model. Simul., 2009

Step 1 PDE formulation of transfer operator (Liouville eq.)
Step 2 Mean field approximation of Liouville eq. (w.r. to a partitioning into subsystems)
Mean field approach
F./Junge/Koltai, Multiscale Model. Simul., 2009

Step 1 PDE formulation of transfer operator (Liouville eq.)
Step 2 Mean field approximation of Liouville eq. (w.r. to a partitioning into subsystems)
Step 3 Approximate variational principle for eigenstates of exact transfer operator by ‘Hartree-Fock’ like nonlinear variational principle
Mean field approach
F./Junge/Koltai, Multiscale Model. Simul., 2009

Step 1 PDE formulation of transfer operator (Liouville eq.)
Step 2 Mean field approximation of Liouville eq. (w.r. to a partitioning into subsystems)
Step 3 Approximate variational principle for eigenstates of exact transfer operator by ‘Hartree-Fock’ like nonlinear variational principle
Step 4 Solve nonlinear problem by Roothaan type algorithm + sparse Ulam method, yielding approximate eigenstates
1. PDE formulation of transfer operator

MD: Evolution of trajectories

\[
\dot{z} = f(z), \quad z = \begin{pmatrix} q \\ p \end{pmatrix}, \quad f = \begin{pmatrix} \frac{\partial H}{\partial p} \\ -\frac{\partial H}{\partial q} \end{pmatrix}
\]

Hamiltonian: \(H(q, p) = \frac{1}{2} p \cdot M(q)^{-1} p + V(q) \)

Mass matrix \(M \) depends on \(q \) when inner coordinates (bondlengths, bond angles, torsion angles) are used

Liouville eq.: Evolution of densities on phase space

\[
\frac{\partial u}{\partial t} + \text{div}_z(f u) = 0, \quad u = u(z, t)
\]

Special case: ‘sharp’ trajectories \(u(z, t) = \delta(z - z(t)) \)

Preserves positivity of \(u \) and total mass \(\int u(z, t) \, dz \rightarrow \) evol. on prob.densities

Preserves (expected value of) energy, \(E(t) = \int H(z) \, u(z, t) \, dz \)

Langevin case: Fokker-Planck equation

Transfer operator via Liouville eq.

\[Pu(\cdot, 0) = u(\cdot, T) \]
Mean field approx. of Liouville eq.

Partition phase space coord’s $z = (q, p)$ into subsystem coord’s

$$z = (z_1, \ldots, z_N) \in \mathbb{R}^{2d}, \quad z_i = (q_i, p_i) \in \mathbb{R}^{2d_i}, \quad \sum_{i=1}^{N} d_i = d$$

Subsystem densities

$$u_i(z_i, t) := \int_{\mathbb{R}^{2(d-d_i)}} u(z, t) \, d\hat{z}_i$$

Exact evolution of subsystem densities

$$\partial_t u_i + \text{div}_{z_i}(u_i f_i^{\text{exact}}) = 0, \quad f_i^{\text{exact}} = \frac{\int u(z, t) f_i(z) \, d\hat{z}_i}{\int u(z, t) \, d\hat{z}_i} \quad (\star)$$

Not a closed system, f_i^{exact} depends on full density u and not just the u_j

Mean field approximation: Replace $u(z, t)$ in (\star) by $\prod_j u_j(z_j, t)$

$$f_i^{\text{mf}}(z_i, t) = \int_{\mathbb{R}^{2(d-d_i)}} \prod_{j \neq i} u_j(z_j, t) \, f_i(z) \, d\hat{z}_i$$

Closed system, $f_i^{\text{mf}} = f_i^{\text{mf}}[u_1, \ldots, u_N](z_i, t)$

Coupled system of N nonlinear partial integrodifferential eqns on subsystem phase spaces \mathbb{R}^{2d_i}

Physically: Each subsystem experiences force of ensemble of other subsystems at ‘typical’ states at time t
Mean field approx. of Liouville eq.

Partition phase space coord’s $z = (q, p)$ into subsystem coord’s

$$z = (z_1, \ldots, z_N) \in \mathbb{R}^{2d}, \quad z_i = (q_i, p_i) \in \mathbb{R}^{2d_i}, \quad \sum_{i=1}^{N} d_i = d$$

Subsystem densities

$$u_i(z_i, t) := \int_{\mathbb{R}^{2(d-d_i)}} u(z, t) d\hat{z}_i$$

Exact evolution of subsystem densities

$$\partial_t u_i + \text{div}_{z_i}(u_i f_i^{\text{exact}}) = 0, \quad f_i^{\text{exact}} = \frac{\int u(z, t) f_i(z) d\hat{z}_i}{\int u(z, t) d\hat{z}_i} \quad (\ast)$$

Not a closed system, f_i^{exact} depends on full density u and not just the u_j

Mean field approximation: Replace $u(z, t)$ in (\ast) by $\prod_j u_j(z_j, t)$

$$f_i^{\text{mf}}(z_i, t) = \int_{\mathbb{R}^{2(d-d_i)}} \prod_{j \neq i} u_j(z_j, t) f_i(z) d\hat{z}_i$$

Closed system, $f_i^{\text{mf}} = f_i^{\text{mf}}[u_1, \ldots, u_N](z_i, t)$

Coupled system of N nonlinear partial integrodifferential eqns on subsystem phase spaces \mathbb{R}^{2d_i}

Physically: Each subsystem experiences force of ensemble of other subsystems at ‘typical’ states at time t

Key point: high-D, linear equation \rightarrow low-D, nonlinear system
Summary: Mean field approx. of Liouville eq.

Recall \(u(z_1, \ldots, z_N) = u_1(z_1) \cdot \ldots \cdot u_N(z_N) , z_i = (q_i, p_i) \in \mathbb{R}^{2d_i} \)

Mean field eq.

\[
\frac{\partial u_i}{\partial t} + \text{div}(f_i^{\text{eff}} u_i) = 0,
\]

\[
f_i^{\text{eff}}(z_i, t) = \int_{\mathbb{R}^{2(d-d_i)}} f(z_1, \ldots, z_N) \prod_{j \neq i} u_j(z_j, t) \, d\tilde{z}i
\]
Summary: Mean field approx. of Liouville eq.

Recall $u(z_1, \ldots, z_N) = u_1(z_1) \cdot \ldots \cdot u_N(z_N)$, $z_i = (q_i, p_i) \in \mathbb{R}^{2d_i}$

Mean field eq.

\[
\frac{\partial u_i}{\partial t} + \text{div}(f_i^{\text{eff}} u_i) = 0,
\]

\[
f_i^{\text{eff}}(z_i, t) = \int_{\mathbb{R}^{2(d-d_i)}} f(z_1, \ldots, z_N) \prod_{j \neq i} u_j(z_j, t) \, d\tilde{z}_i
\]

N coupled nonlinear partial integro-differential equations on \mathbb{R}^{2d_i}

(Original Liouville equation is a linear PDE on \mathbb{R}^{2d}, $d = \sum_i d_i$)
Summary: Mean field approx. of Liouville eq.

Recall \(u(z_1, \ldots, z_N) = u_1(z_1) \cdot \ldots \cdot u_N(z_N), \ z_i = (q_i, p_i) \in \mathbb{R}^{2d_i} \)

Mean field eq.

\[
\frac{\partial u_i}{\partial t} + \text{div} \left(f_{i}^{\text{eff}} u_i \right) = 0, \\
f_{i}^{\text{eff}} (z_i, t) = \int_{\mathbb{R}^{2(d-d_i)}} f(z_1, \ldots, z_N) \prod_{j \neq i} u_j(z_j, t) \, d\hat{z}_i
\]

\(N \) coupled nonlinear partial integrodifferential equations on \(\mathbb{R}^{2d_i} \)

(Original Liouville equation is a linear PDE on \(\mathbb{R}^{2d}, \ d = \sum_i d_i \))

Mean field transfer operator

\[
P^{mf} \left(u_1 \big|_{t=0} \otimes \cdots \otimes u_N \big|_{t=0} \right) = u_1 \big|_{t=T} \otimes \cdots \otimes u_N \big|_{t=T}
\]
Mean field approximation of transfer operator eigenstates

Recall: transfer operator = time T map of Liouville eq.,
$Pu(\cdot, 0) = u(\cdot, T)$

Variational principle for eigenstates of P^{exact}:

$$\max_v \langle v, P^{exact} v \rangle \text{ subject to } \langle v, v \rangle = 1, \langle f, g \rangle = \int f g \, d\mu$$

‘Hartree-Fock’ like variational principle for eigenstates of P^{mf}:

$$\max_{v_1, \ldots, v_N} \left\langle v_1 \otimes \cdots \otimes v_N, P^{mf} v_1 \otimes \cdots \otimes v_N \right\rangle$$
Validation of mean field model, I: Theoretical properties

Theorem (F./Junge/Koltai)

▶ Total densities

\[\int_{\mathbb{R}^2} d\mathbf{u}_i(z_i, t) \] conserved

▶ Total energy

\[E = \int H(z) \prod_i u_i(z_i, t) \, dz \] conserved

▶ Model is exact for a non-interacting system, i.e. if

\[H = \sum_i H_i(z_i) \]

then

\[u_1(z_1) \cdot \ldots \cdot u_N(z_N) \] solves the original Liouville eq.

▶ For fixed \(u_j, j \neq i \), the eq. for \(u_i \) is the Liouville eq. for an underlying time-dependent Hamiltonian ODE,

\[\dot{q}_i = \frac{\partial H_{\text{eff}}^i}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H_{\text{eff}}^i}{\partial q_i}, \]

where

\[H_{\text{eff}}^i(z_i, t) = \int_{\mathbb{R}^2} (d - d_i) H(z_1, \ldots, z_N) \prod_{j \neq i} u_j(z_j, t) \, d\hat{z}_i \]

Importantly, \(H_{\text{eff}}^i \) does not depend on \(u_i \), only on the other \(u_j \). This facilitates iterative updating methods via sample trajectories.
Validation of mean field model, I: Theoretical properties

Theorem (F./Junge/Koltai)

Total densities
\[\int_{\mathbb{R}^2} du_i(z_i, t) \text{conserved} \]

Total energy
\[E = \int H(z_i) \prod_i u_i(z_i, t) \text{dz}_i \text{conserved} \]

Model is exact for a non-interacting system, i.e. if
\[H = \sum_i H_i(z_i) \]
then
\[u_1(z_1) \cdot ... \cdot u_N(z_N) \text{solves the original Liouville eq.} \]

For fixed \(u_j, j \neq i \), the eq. for \(u_i \) is the Liouville eq. for an underlying time-dependent Hamiltonian ODE,
\[\dot{q}_i = \frac{\partial H_{\text{eff}}}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H_{\text{eff}}}{\partial q_i}, \]
where
\[H_{\text{eff}}(z_i, t) = \int_{\mathbb{R}^2} d\hat{z}_i H(z_1, ..., z_N) \prod_{j \neq i} u_j(z_j, t) \]

Importantly, \(H_{\text{eff}} \) does not depend on \(u_i \), only on the other \(u_j \). This facilitates iterative updating methods via sample trajectories.
Validation of mean field model, I: Theoretical properties

Theorem (F./Junge/Koltai)

- Total densities \(\int_{\mathbb{R}^{2d}} u_i(z_i, t) \, dz_i \) conserved

\[E = \int H(z) \prod_{i} u_i(z_i, t) \, dz \]

Model is exact for a non-interacting system, i.e. if \(H = \sum_{i} H_i(z_i) \) then

\[u_1(z_1) \cdot \ldots \cdot u_N(z_N) \]

solves the original Liouville eq.

For fixed \(u_j, j \neq i \), the eq. for \(u_i \) is the Liouville eq. for an underlying time-dependent Hamiltonian ODE,

\[\dot{q}_i = \frac{\partial H_{\text{eff}}^i}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H_{\text{eff}}^i}{\partial q_i}, \]

where

\[H_{\text{eff}}^i(z_i, t) = \int \mathbb{R}^{2d} \left(d - di \right) H(z_1, \ldots, z_N) \prod_{j \neq i} u_j(z_j, t) \, d\hat{z}_i \]

Importantly, \(H_{\text{eff}}^i \) does not depend on \(u_i \), only on the other \(u_j \). This facilitates iterative updating methods via sample trajectories.
Validation of mean field model, I: Theoretical properties

Theorem (F./Junge/Koltai)

- Total densities \(\int_{\mathbb{R}^2} u_i(z_i, t) \, dz_i \) conserved
- Total energy \(E = \int H(z) \prod_i u_i(z_i, t) \, dz \) conserved
Validation of mean field model, I: Theoretical properties

Theorem (F./Junge/Koltai)

- Total densities $\int_{\mathbb{R}^{2d_i}} u_i(z_i, t) \, dz_i$ conserved
- Total energy $E = \int H(z) \prod_i u_i(z_i, t) \, dz$ conserved
- Model is exact for a non-interacting system, i.e. if $H = \sum_i H_i(z_i)$ then $u_1(z_1) \cdot \ldots \cdot u_N(z_N)$ solves the original Liouville eq.
Validation of mean field model, I: Theoretical properties

Theorem (F./Junge/Koltai)

- Total densities \(\int_{\mathbb{R}^{2d_i}} u_i(z_i, t) \, dz_i \) conserved
- Total energy \(E = \int H(z) \prod_i u_i(z_i, t) \, dz \) conserved
- Model is exact for a non-interacting system, i.e. if \(H = \sum_i H_i(z_i) \) then \(u_1(z_1) \cdot \ldots \cdot u_N(z_N) \) solves the original Liouville eq.
- For fixed \(u_j, j \neq i \), the eq. for \(u_i \) is the Liouville eq. for an underlying time-dependent Hamiltonian ODE,

\[
\dot{q}_i = \frac{\partial H_i^{\text{eff}}}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H_i^{\text{eff}}}{\partial q_i},
\]

where

\[
H_i^{\text{eff}}(z_i, t) = \int_{\mathbb{R}^{2(d-d_i)}} H(z_1, \ldots, z_N) \prod_{j \neq i} u_j(z_j, t) \, d\hat{Z}_i
\]
Validation of mean field model, I: Theoretical properties

Theorem (F./Junge/Koltai)

- Total densities \(\int_{\mathbb{R}^{2d_i}} u_i(z_i, t) \, dz_i \) conserved
- Total energy \(E = \int H(z) \prod_i u_i(z_i, t) \, dz \) conserved
- Model is exact for a non-interacting system, i.e. if \(H = \sum_i H_i(z_i) \) then \(u_1(z_1) \cdot \ldots \cdot u_N(z_N) \) solves the original Liouville eq.
- For fixed \(u_j, j \neq i \), the eq. for \(u_i \) is the Liouville eq. for an underlying time-dependent Hamiltonian ODE,

\[
\begin{align*}
\dot{q}_i &= \frac{\partial H_{\text{eff}}^i}{\partial p_i}, \\
\dot{p}_i &= -\frac{\partial H_{\text{eff}}^i}{\partial q_i},
\end{align*}
\]

where

\[
H_{\text{eff}}^i(z_i, t) = \int_{\mathbb{R}^{2(d-d_i)}} H(z_1, \ldots, z_N) \prod_{j \neq i} u_j(z, t) \, d\hat{z}_i
\]

Importantly, \(H_{\text{eff}}^i \) does not depend on \(u_i \), only on the other \(u_j \). This facilitates iterative updating methods via sample trajectories.
A surprising property of the mean field model

Theorem (F., Junge, Koltai)

Consider a Hamiltonian with weakly interacting subsystems,

\[H(z) = H_0(z) + \epsilon H_{\text{int}}(z), \quad H_0(z) = \sum_i H_i(z_i). \]

Then

\[\| u^{\text{exact}} - u^{\text{mf}} \|_{L^1} = O(\epsilon^2), \]

uniformly for \(0 \leq t \leq T \).

Naively, would expect the error to be of the order of the coupling constant, \(O(\epsilon) \). Result says that the mean field model resolves coupling between subsystems correctly to leading order!
How to partition into subsystems?

The previous theorem (leading order correctness for weakly coupled subsystems) helps to choose a good partitioning. In standard coordinates, the Hamiltonian \(H \) is strongly coupled in the particle positions, \(V = V(q_1, \ldots, q_N) \). But in inner coordinates (bondlengths, bond angles, torsion angles), the potential energy decouples completely (in chain molecules with first, second and third neighbour interactions, i.e. bond, angular and torsion potentials)! The only remaining complying is in the kinetic energy.
How to partition into subsystems?

The previous theorem (leading order correctness for weakly coupled subsystems) helps to choose a good partitioning.
How to partition into subsystems?

The previous theorem (leading order correctness for weakly coupled subsystems) helps to choose a good partitioning.

In standard coordinates, the Hamiltonian H is strongly coupled in the particle positions, $V = V(q_1, \ldots, q_N)$.
How to partition into subsystems?

The previous theorem (leading order correctness for weakly coupled subsystems) helps to choose a good partitioning.

In standard coordinates, the Hamiltonian H is strongly coupled in the particle positions, $V = V(q_1, ..., q_N)$.

But in inner coordinates (bondlengths, bond angles, torsion angles), the potential energy decouples completely (in chain molecules with first, second and third neighbour interactions, i.e. bond, angular and torsion potentials)! The only remaining complying is in the kinetic energy.
Validation of mean field model, II:
Numerical comparisons to exact model
Example: Two-oscillator toy system

\[H = \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + V(q_1, q_2) \]

\[V = (\frac{3}{2}q_1^4 + \frac{1}{4}q_1^3 - 3q_1^2 - \frac{3}{4}q_1 + 3)(2q_2^4 - 4q_2^2 + 3) = V_1(q_1)V_2(q_2) \]

Mean field approximation to Liouville eq. reads explicitly:

\[\partial_t u_i(z_i, t) = \left(-m_i^{-1}p_i \nabla_i V_i(q_i) \int V_j(q_j) u_j(z_j, t) dz_j \right) \cdot \nabla_i u_i(z_i, t), \quad i = 1, 2, \]

Mean field transfer operator = time T map of above nonl.system

Want to find leading eigenstates of this operator (\approx conformations)
Example: Two-oscillator toy system

Dominant eigenfunctions of (spatial) transfer op., exact (16384 elements)

Mean field approximation (128 elements)
Example: Butane

\[V_3(\phi) = K_\phi \left(1.116 - 1.462 \cos \phi - 1.578 \cos^2 \phi + 0.368 \cos^3 \phi + 3.156 \cos^4 \phi + 3.788 \cos^5 \phi \right), \quad K_\phi = 8.314 \frac{\text{kJ}}{\text{mol}} \]
Example: Butane

Dominant eigenvectors of full transfer operator

\[\lambda_2 = 0.985 \text{ (left), } \lambda_3 = 0.982 \text{ (right), slice at } q_1 = \theta_1 = \pi_2, 32 \times 32 \times 32 \text{ grid, } T = 0.5 \cdot 10^{-13} \text{s} \]

Mean field approximation to these eigenvectors

10 Roothaan iterations
Computational method for finding eigenstates

Need to solve:

\[
\max_{u_1, \ldots, u_N} \langle \hat{u}_N \otimes \cdots \otimes \hat{u}_N, \mathcal{P}_{mf} (\hat{u}_N \otimes \cdots \otimes \hat{u}_N) \rangle
\]

Algorithm

Set \(u(0) := u_N \otimes \cdots \otimes u_N \)

Solve \(\mathcal{P}_{mf}, i (\hat{u}_N^{(N+1)} i) \)

\(\lambda_i u_N^{(N+1)} i = \lambda_i u_N^{(N+1)} i \), cycling through \(i \)

Set \(u^{(N+1)} := u^{(N+1)}_1 \otimes \cdots \otimes u^{(N+1)}_N \)

Inspired by Roothaan algorithm for solving the Hartree-Fock equations in quantum chemistry. Inner step: sparse Ulam method

Nice math. structure (operator \(\mathcal{P} \) self-adjoint, cf. time-reversibility, and linear in \(u_i \) for fixed \(u_j, j \neq i \))

In original QChem context, algorithm proven to converge, cf. Roothaan 1952, Cances/Le Bris 2000
Computational method for finding eigenstates

Need to solve:

$$\max_{u_1, \ldots, u_N} \left\langle u_1 \otimes \cdots \otimes u_N, P_{mf} (u_1 \otimes \cdots \otimes u_N) \right\rangle$$
Computational method for finding eigenstates

Need to solve:

\[
\max_{u_1, \ldots, u_N} \left\langle u_1 \otimes \cdots \otimes u_N, P^{mf}(u_1 \otimes \cdots \otimes u_N) \right\rangle
\]

Algorithm

Set \(u^{(0)} := u_1^{(0)} \otimes \cdots \otimes u_d^{(0)} \)

Solve \(P_{mf, i}^{mf}(\hat{u}_i^{(N)})u_i^{(N+1)} = \lambda_i u_i^{(N+1)} \), cycling through \(i \)

Set \(u^{(N+1)} := u_1^{(N+1)} \otimes \cdots \otimes u_d^{(N+1)} \)
Computational method for finding eigenstates

Need to solve:

$$\max_{u_1, \ldots, u_N} \left \langle u_1 \otimes \cdots \otimes u_N, P^{mf}(u_1 \otimes \cdots \otimes u_N) \right \rangle$$

Algorithm

Set $u^{(0)} := u_1^{(0)} \otimes \cdots \otimes u_d^{(0)}$

Solve $P^{mf,i}(\hat{u}_i^{(N)})u_i^{(N+1)} = \lambda_i u_i^{(N+1)}$, cycling through i

Set $u^{(N+1)} := u_1^{(N+1)} \otimes \cdots \otimes u_d^{(N+1)}$

Inspired by Roothaan algorithm for solving the Hartree-Fock equations in quantum chemistry. Inner step: sparse Ulam method
Computational method for finding eigenstates

Need to solve:

$$\max_{u_1, \ldots, u_N} \left\langle u_1 \otimes \cdots \otimes u_N, P^{mf}(u_1 \otimes \cdots \otimes u_N) \right\rangle$$

Algorithm

Set $u^{(0)} := u_1^{(0)} \otimes \cdots \otimes u_d^{(0)}$

Solve $P^{mf,i}(\hat{u}_i^{(N)}) u_i^{(N+1)} = \lambda_i u_i^{(N+1)}$, cycling through i

Set $u^{(N+1)} := u_1^{(N+1)} \otimes \cdots \otimes u_d^{(N+1)}$

Inspired by Roothaan algorithm for solving the Hartree-Fock equations in quantum chemistry. Inner step: sparse Ulam method

Nice math. structure (operator P^T self-adjoint, cf. time-reversibility, and linear in u_i for fixed u_j, $j \neq i$)
Computational method for finding eigenstates

Need to solve:

$$\max_{u_1, \ldots, u_N} \left\langle u_1 \otimes \cdots \otimes u_N, P_{mf} (u_1 \otimes \cdots \otimes u_N) \right\rangle$$

Algorithm

Set $u^{(0)} := u^{(0)}_1 \otimes \cdots \otimes u^{(0)}_d$

Solve $P_{mf,i} (u^{(N)}_i) u^{(N+1)}_i = \lambda_i u^{(N+1)}_i$, cycling through i

Set $u^{(N+1)} := u^{(N+1)}_1 \otimes \cdots \otimes u^{(N+1)}_d$

Inspired by Roothaan algorithm for solving the Hartree-Fock equations in quantum chemistry. Inner step: sparse Ulam method

Nice math. structure (operator P^T self-adjoint, cf. time-reversibility, and linear in u_i for fixed $u_j, j \neq i$)

In original QChem context, algorithm proven to converge, cf. Roothaan 1952, Cances/Le Bris 2000
Hamilton versus Langevin

Test system: butane

United atom model
Inner coordinates: \(r_1, r_2, r_3, \theta_1, \theta_2, \phi \)
Hamilton versus Langevin, I: orbits look similar

Bond angle and torsion angle evolution, MD

Bond angle and torsion angle evolution, Langevin
Hamilton versus Langevin, II: orbits look similar

Bond angle and torsion angle evolution, MD

Bond angle and torsion angle evolution, Langevin

Gero Friesecke (TU Munich) Transfer operators and time scale bridging 75
Hamilton versus Langevin, III: position-momentum correlations are completely different

Distribution of torsion angle momentum $\dot{\phi}$, conditioned on $|\phi - \phi_1| < 0.03$. Blue=MD, Red=Langevin

Distribution of torsion angle momentum $\dot{\phi}$, conditioned on $|\phi - \phi_0| < 0.03$. Blue=MD, Red=Langevin
Summary and future

▶ Have derived a mean field approximation to transfer operators which offers hope towards systematic application to large molecules.

Key point: linear PDE on $\mathbb{R}^6 \rightarrow \text{system of nonl. PDE'S in low dim's}$

▶ Theoretical properties of mean field system and performance tests on small systems very promising

▶ Currently under way: larger scale examples

▶ Future: mathematical framework which includes coupling with electronic structure and photons (Example: Retinal)

THANKS FOR ATTENTION

http://www-m7.ma.tum.de
Summary and future

- Have derived a mean field approximation to transfer operators which offers hope towards systematic application to large molecules.

Key point: linear PDE on $\mathbb{R}^{6N} \rightarrow$ system of nonl. PDE'S in low dim’s
Summary and future

- Have derived a mean field approximation to transfer operators which offers hope towards systematic application to large molecules.
 Key point: linear PDE on $\mathbb{R}^{6N} \rightarrow$ system of nonl. PDE'S in low dim’s

- Theoretical properties of mean field system and performance tests on small systems very promising
Summary and future

- Have derived a mean field approximation to transfer operators which offers hope towards systematic application to large molecules.
 Key point: linear PDE on \mathbb{R}^{6N} \rightarrow system of nonl. PDE'S in low dim’s

- Theoretical properties of mean field system and performance tests on small systems very promising

- Currently under way: larger scale examples
Summary and future

- Have derived a mean field approximation to transfer operators which offers hope towards systematic application to large molecules.

 Key point: linear PDE on $\mathbb{R}^{6N} \rightarrow \text{system of nonl. PDE'S in low dim's}$

- Theoretical properties of mean field system and performance tests on small systems very promising

- Currently under way: larger scale examples

- Future: mathematical framework which includes coupling with electronic structure and photons (Example: Retinal)
Summary and future

▶ Have derived a mean field approximation to transfer operators which offers hope towards systematic application to large molecules.

Key point: linear PDE on $\mathbb{R}^{6N} \longrightarrow$ system of nonl. PDE'S in low dim’s

▶ Theoretical properties of mean field system and performance tests on small systems very promising

▶ Currently under way: larger scale examples

▶ Future: mathematical framework which includes coupling with electronic structure and photons (Example: Retinal)

THANKS FOR ATTENTION
http://www-m7.ma.tum.de