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Introduction

The aim of Molecular Dynamics computations is to evaluate
macroscopic quantities from models at the microscopic scale.

(i) thermodynamics quantities: stress, heat capacity, free energy
(average of some observable wrt an equilibrium measure);

(ii) dynamical quantities: diffusion coefficients, viscosity, transition
rates (average over trajectories at equilibrium).

= Many applications in various fields: biology, physics, chemistry,
materials science, etc. But Molecular dynamics computations
consume today a lot of CPU time.
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Introduction

A molecular dynamics model < a potential V.

A configuration x = (x1, ..., X,) = an energy V(xi, ..., Xp).

Consider the over-damped Langevin (or gradient) dynamics

dXt = —VV(Xt) dt + \Y 2,8_1th,
where 8 =1/(kgT).

Equilibrium Boltzmann-Gibbs measure

dp = Z texp(—BV(x)) dx

where Z = / exp(—5V/(x)) dx is the partition function.
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Introduction

Difficulty: In practice, X; is a metastable process, so that the
convergence to equilibrium is very slow.

= A 2d schematic picture: X} is a slow variable of the system.
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Reactive Trajectories

Let A and B denote two metastable (recurrent) regions in R€.

e Reactive trajectory: piece of equilibrium trajectory that leaves
A and goes to B without going back to A in the meantime.

e Problem: one may wait a long time before the trajectory
eventually reaches B.
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Reaction Coordinate

e Reaction coordinate: Smooth one-dimensional function
¢:RY> R
with |V¢| # 0, and there exist {min < {max such that
AC {x e R £(x) < &min} and B C {x € R?,£(x) > &max}

o Examples: £(x) = ||x — xal| or &(x) = |x} — x}].
e Remark: Reaction coordinate in Molecular Dynamics <
Importance function in Rare Events literature.
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Reaction Coordinate

{&(x) = &max}

{ 5( oy (E0=9) 4

Example: &(x) = ||x — xa||, where x4 is a configuration in A.

The level sets {£(x) = ¢} are then Euclidean hyperspheres.

Importance Splitting [Kahn and Harris, 1951): Clone the trajectories
approaching B (wrt &), kill the other ones.

Question: what is the best choice for £7
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Committor Function

For the estimation of transition probabilities, it is well known that
the optimal reaction coordinate is the committor function

q(x) = P(7a(x) < Ta(x)) = P (X reaches B before A)
solution of the following PDE

~VV-Vq+4Aqg=0inR?\ (AUB),
g=0o0n0Aand g=1on 0B.
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2D Exa m ple [Metzner, Schiitte and Vanden-Eijnden (2006)]
2

V(X,y) = 3e_X2—(y—%)2 _ 3e—X2—(y—§)2 . 56_(X_1)2_y

1 4
_ 56_(X+1)2—y2 + 0,2X4 + 02 <y o 3> )

V(xy)

AbonN s oo
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2D EXa m ple [Metzner, Schiitte and Vanden-Eijnden (2006)]

e Level Sets of the Committor Function g for 8 = 1.67.
e Difficulty: in general, finding these level sets is too hard...

= Use another reaction coordinate, e.g. £(x) = ||x — xal|.
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Algorithm
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Algorithm




Algorithm

Algorithm

e Stopping Rule: iterate until step kmax when all the paths reach
{&€(x) = &max ), keep only those which reach B (proportion r).

e Estimation: The probability

is the “probability of observing a reactive trajectory”.

e Remark: The algorithm can be seen as a kind of adaptive
Forward Flux Sampling [allen, Valeriani, Ten Wolde, 2000]. It is also
related to the Interface Sampling Method [Belhuis, van Erp, Moroni 2003]
and the Milestoning Method [eiber, Faradjian 2004].
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2D Example

Vixy)

AdbonNnso o

2 Deep Minima: Hy = (£1,0) = A&B = B(H4,0.05).
1 Shallow Minimum: M = (0,1.5).
3 Saddle Points: Uy = (£0.6,1.1) and L = (0, —0.4).

2 Channels = 2 scenarii, depending on the temperature.
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A Few Reactive Trajectories

Reacive paths for beta =1.67 Reaciive paths for beta =6.67

Subsamplings of the generated trajectories.

Reaction coordinate: £(x) = ||x — xal|-

B = 1.67 (high temperature): shallow is shallow.

[ = 6.67 (low temperature): shallow becomes deep...
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Algorithm

Numerical Results

The Length of a Reactive Path

Flux of Reactive Trajectories

Flux of reactive path
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The color indicates the norm of the flux.

Reaction coordinate: £(x) = ||x — xal|-

B = 1.67: the lower channel is preferred (entropic effect).

Conclusion

[ = 6.67: the upper channel is preferred (lower energy barrier).
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Density of Reactive Paths: : &(x) = ||x — xa|

Densiy for beta = 1.67 Density for beta = 6.67
ity
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Density of Reactive Paths: : £(x) = |x! — x}

Density for beta =167 Density for beta = 6.67
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1D Example : V/(x) = x* — 2x°.

e Metastable States: A= (—1.1;—-0.9) and B = (0.9; 1.1).
e Reaction Coordinate: £(x) = x.

e Application: distribution of the duration of the reactive paths.
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probabilty

probabilty

Algorithm

1D Example

Distribution of the lengih of a reaciive path, beta=1

Numerical Results

The Length of a Reactive Path

Distrbution of the length of a reaciive path, beta=5.

algorithm, 1€5 paths ——
DN, 1€5 paths,

probabilty

algorithm, 1E5 patns
NS, 1€5 paths

o5 1 15 2 25 3 35 4
time

Distribution of the length of a reacive path, beta=10

Distibution of the length of a reactive path

T algdithm, 165 paths
NS, 1E4 pahs.

probabilty

Conclusion
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Framework

Recall:

dXt - —VI(Xt) dt + V 2kB Tth
Assumption: V is an even double well potential, V" (0) = —1.
Metastable States: A and B.
Question: knowing T, < T_,, what is the law of T_,_, 7
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An Asymptotic Expansion

Theorem
On the set { T, < T_,}, one has

T_asa ~ —log(kgT)+2loga—2H,(0)+ G
T—0

where G is a standard Gumbel random variable and

Ha(s) = / awc&.
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Sketch of the Proof (1)

Denote € = kg T, and decompose the reactive path in 3 parts

Teava=T o e+ T enyyet Tesa

on the event {T, < T_,}.
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Proof (2): Going Down Is Easy

Thanks to Gronwall's Lemma

T\/§—>a - t\/§—>a 3-5-5 0

e—0

with t z_,, the time for the unnoised process to reach a from /e:

a
1
tﬁ_)a:—/f\/,() s ~, log /& — log a + Ha(0)
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Proof (3): The Climbing Part

V(x)

—a —\/E +‘a
Freidlin-Wentzell's theory ensures that
T a.s.
—a——e t—ﬁ—)—a E) 0

and since V is even

Conclusion

A reactive path doesn’'t need more time to go up than to go down!
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Proof (4): The Middle Earth

—a Ve l+yE +a

Things happen “almost” like for a repulsive Ornstein-Uhlenbeck
dX; = X; dt + V2edW,
On the set {T z < T_ z}, one can prove that
T e Ny~ log(e) + G + o-(1).

where G is a standard Gumbel random variable.
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Recall: The Gumbel Distribution

oot

Distibution of the length of a reacive path
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probabilty
—

—X

e PDF: Vx € R, f(x) =e ¥ ¢
e Extreme Value Theory: if Xi,..., X, are i.i.d. £(1), then

max(Xi,...,X,) —logn 56
n—o0



Conclusion

Conclusion

A new adaptive multilevel splitting type algorithm with a random
number of levels. Other possible applications:

e Estimation of the transition times between metastable states.

e Exploration of the energy landscape without any a priori.
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