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Basic questions

1. What is a nonequilibrium steady state?

2. How to define entropy production?

3. Fluctuations properties of the entropy production:

— @Gallavotti-Cohen fluctuation theorem

— Kubo formula, Onsager relations

Main goals of the lectures: Expose the general theory (this is
the soft part) plus provide realistic examples 4+ proofs (some
hard problems in ergodic theory/probability



Two complementary point of view
e Dynamical system theory (review paper by JPR, Ruelle, Gallavotti,
Cohen, etc..)
— Popular among people who like Gaussian thermostats or other

— Models are easy to simulate and hard to analyze

e Markovian dynamics (Maes, Spohn-Lebowitz,...)

— Traditional approach in physics to nonequilibrium using Markov
process (Onsager, Lebowitz, etc...)

— Models are harder to simulate and easier to analyze

The two approaches are deeply linked at the mathematical levels
via Markov partition (probabilistic representation of dynamical
systems...) and "dilation” of Markov processes but also by the
use of same tools (spectral analysis, Perron-Frobenius, etc...).
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2 basic examples from molecular dynamics (more later)

e Hamiltonian H(p,q) = p® + V(q) with a confining potential V.
e External non-Hamiltonian force F(q).
e A thermostat or heat bath

Ex 1 (Langevin equation): stochastic and canonical heat bath

dg = pdt
dp = (=VV(q)+ F(q)—Ap)dt+ V2A\TdB
T—= reservoir temperature, A=coupling, B=Brownian motion.

Ex 2 (Gaussian thermostat): deterministic and micocanonical
heat bath (by construction the energy E is conserved)

dg

a P

dp F-p
— = —VV(g)+F(qg)——p
dt p-p



Part I: Entropy production in Markov chain

—— Schnakenberg, Qian & Qian, Kurchan, Spohn-Lebowitz,
Maes et al., etc..

Goal of the section: Explain the ideas and concepts for the
simplest possible example. Rich in concepts but no technical
difficulties.

Assume: Irreducible Markov chain X,, with finite state space S,
transition matrix P(x,y) and stationary distribution =« (x).

Main ideas:

Non-equilibrium = lack of detailed balance (or time-reversibility)

Entropy production = measure of the irreversibility
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Detailed balance

Detailed balance means 7 (z)P(z,y) = n(y)P(y,x) for all z,y

This implies stationarity

Y w@P@y) =) =Y )Py )

x x

and is equivalent to the time-reversibility of the stationary Markov
chain X,.

P.(Xo=opn, - Xn =x0) _ 7w(xn)P(xn, 1) - P(r1,20) 1
P.(Xo =0, - Xn = p) m(xo)P(xo0,21) - - P(zn—1,2n)
or

P,.=P,00, WX -,Xn)=WX-,X0).
Any path and the time reversed path have the same probability.
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Entropy production

If no detailed balance we assume the weak reversibility assump-
tion

P(z,y) >0< P(y,x) > 0.

We interpret
p(z) P(z,y)

as the probability current from state x to state y if X, is in state
w and define

m(z) P(z,y)

(= entropy production observable)
m(y) P(y, x)

F(xz,y) = log

and F = 0 iff detailed balance holds.



Path space interpretation

By construction we have

PW(XO = Tn, - Xy = CUO)
Pr(Xo = xo0, -+ Xn = n)

n—1
= exp | — ZF(%,CBIH-D
k=0

Let us define the ergodic average

n—1
Su(F) = Su(F)(Xo,--, Xa) = > F(Xi, Xiy1)
k=0

\ >4
"

= Total entropy production along a path

In other words the Radon-Nikodym derivative

dP o ®
dP '[0,n]

= exp(—5Sn(F)).



Relation with relative entropy I

By the law of large numbers for the Markov chain Z,, = (X,,, X,,41)
with stationary distribution 7 (2)P(x,y) and obtain that with
probability 1

m(x)P(z,y)
— m(y)P(y, x)

= EP(m, P) (Steady state entropy production)

n—oo T

n—1
im 23 P X)) =Y w(@)P(ay) log
k=0

Let H(u|v) denote the relative entropy of u with respect to v.
Then

EP(m,P) = H(Z,| Z,0©) for Z, stationary

In particular we have EP(xw, P) > 0 (relative entropy is nonneg-
ative) and

EP(w, P) > 0 iff no detailed balance
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Relation with relative entropy II

e For Markov chains the relative entropy H(u|7) is always mono-
tone decreasing under the evolution:

H(pP|m) < H(plm) .

e This is NOT useful (to my knowledge) in nonequilibrium since
in general « is unknown.

e For an arbitrary state p of the MC X,, consider

B N . pu(x)P(x,y)
EP(u, P) = ;:u( )P, y)log S E

Fact: If detailed balance holds then
EP(u, P) = H(uP|r) — H(ulr)
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Dependence on initial states

e For non-equilibrium steady states w(x) is in general not explic-
itly known.

P(x,y)
P(y,x)

e ["(x,y) and f(x,y) have the same ergodic averages

e Pick instead F(:z;,y) = log which does not involve .
Sn(F) = Sn(F) + log 7(Xo) — log w(X)

e For any initial distribution p with pu(xz) > 0 we have

PM(XO == in,"‘Xn =/L.O)
Pu.(Xo =g, Xn = in)

= exp (—Su(F) + R(in) — R(i0))

The boundary terms R(x) involving p and « are negligible for
large n.
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Helmholtz decomposition of a Markov chain
We write
P
(2, y) — HW-H@)+AEY)  \with Az, y) = —A(y, x)
P(y,x)
There is a unique such decomposition if we think of it as an

Helmoltz decomposition

Associate a graph G = (V, E) to the Markov chain in the usual
way:

V=S5 E={(z,y) € SxS;P(x,y) >0}

A flow on the graph G is a function F': E — R such that
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Theorem: There exists a unigue decomposition

F(z,y) = Fp(z,y) + Fe(z,y)

where

(a) F,(z,y) is a potential difference, i.e., there exists a function
H :V — R such that

Fy(z,y) = H(y) — H(x)

which we can write as I, = VH.

(b) F.(x,y) is a circulation, i.e., for any z € V we have

Z F(x,y) =0

y:(z,y)eV

which we write as divF- = 0.
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Physical Interpretation

Revisit once more EP(u, P).

Use the decomposition log ng ) — 3 [H(x) — H(y) + A(z,y)]

Use now the entropy H(u) = — pr(a:) log p(x)

Find

EP(u, P) =

> u@)P(z,y) [H(@) = H@y) + A+ [r) 1)

z,y
N

/ (. J/
-~ '

Physical entropy production Increase in
= [Bx dissipated heat configurational entropy
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Large deviations : reminder
Theorem (Gartner-Ellis Theorem)

e {I,} sequence of random variables taking values in R4,
e For all v € R the logarithmic moment generating function

e(y) = lim llogE[exp(—7~ )]

n—oco 1

exists and is smooth (at least C!).

Then e satisfy a large deviation principle with rate function

n

I(z) =—inf(z-v+e(y)) Legendre transform.
vy
i.e. we have
o1 [
lim lim —IogP{— € Be(z)} = —1(2).
e—~»0n—oo M n
: [
Symbolically P, (— ~ z) = exp [—nl(z)]
n
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Large deviations for the entropy production

For an irreducible Markov chain Y, with initial state u(x) and
transition matrix Q(z,y) and an observable f(xz) the moment
generating function can be written as

E, [exp(—aSn(f))] = (1, Qal)
with Qa(z,v) = Q(z,y)e @ and 1(z) = 1.
Therefore the logarithmic moment generating function for the
Sn(F)

e(a) = lim lIog E, [exp(—aSn(f))]

n—oo M
exists and is smooth by Perron-Frobenius theorem and analytic

perturbation theory for eigenvalues.

So we have

Py (S”(f) A z) = exp [—nI(2)]

n
and the rate function I(z) is nonnegative, (strictly convex), with
a minimum at zg = E,[P].
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Gallavotti-Cohen fluctuation theorem 1

Apply to the entropy production (use the Markov chain Z, =
(XTth—l—l))

Theorem: e(a) =e(l — ).

Proof.
E, [e_O‘SN(F)]

[(7(x0) P(xo,x1) - P(xn—_1,28)] "
[W(CUN)P(ZEN,CIJN_l) S P(xbe)]a

Lo, TN

[(W(xN)P(CIZ‘N, mN—l) ce P(xl, xo)]l—a
[7(x0) P(x0,z1) - - - P(xn_1, xN)]a

T, TN
- E 77(370>P($0a331)"‘P(xn—lawn) X
Zo, TN

— m(20) P(z0, 1)\ " m(zy_1)P(zn_1,zy5)\ T
- (W(:M)P(m,azo)) ( m(zNn)P(zN, TN_1) )
=E, [e—(l—a)SN(F)]
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Gallavotti-Cohen fluctuation theorem II

Consequence 1: Since €(0) = —EP(m, P) the symmetry implies
that
EP(m, P) >0 Positivity of entropy production

Consequence 2: The symmetry implies the Gallavotti-Cohen
fluctuation theorem

I(z) -1(-2) = -z

i.e., the odd part of I is linear with slope —1/2.
Or
Py (2 ~ 42)
Py (—S”(F) R~ —z)

n

nz
e

The probability to observe a value of the entropy production and
its negative value has a universal ratio.

e It is universal, no free parameters, etc...
e experimentally observable....
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Green-Kubo formula and Onsager relations

Pr,y) _

HW—H@)+A@Y) then assume that
P(y,x)

If

Az, y) = Y adi(z,y) =a-J

o = thermodynamic forces: external forces, temperature differ-
ences

Ji(x,y) = thermodynamic fluxes of energy, momenta, etc...

The transition probabilities P(xz,y) = P (z,y) and the steady
state m = 7(®) depends on the parameters a.

For ¢ = 0, mg corresponds thermodynamical equilibrium (de-
tailed balance) with

mo(x) < exp(—H(x))
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Logarithmic joint moment generating function for the fluxes
*]l($7y)

e(a,7) = lim llogEQa) [exp (— - J(z, y))]

n—oo 1

By the same argument we now have the symmetry
e(a,7) = e(a,a —7)

We have
a_l("‘ 0) = ~E) 7]
and thus
52e o _(a
8C¥ka’Yl(O 0) = _T%E%)[Jl”ﬁo = —Lwu

i.e., Ly = are the linear response coefficients

Er [l = ) Luox + 0(a?)
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Since e is a moment generating function, we have using station-
arity
82

0,0) = > E,, [Ji(Xo, X1)J;(Xs, X
8ak8ag( ) Z o [Tk (Xo, X1) 1( Xk, Xi+1)]

k=0

Integrated flux-flux correlation matrix

The symmetry e(a,v) = e(a,a—) implies upon differentiation,
that

D% 1 0%

0) = ——
00 (0,0) = 2 00 0a

(0,0)

and thus

0
—E . (F))|la=0 = Ly = E Er [Jx(Xo, X1) Ji( Xk, Xit1)]
Oy,

k=—o00

Kubo formula and Onsager relations Ly = L.
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Further ideas

e Nice (older) results from Schnakenberg and newer from Gas-
pard on the representation of EP(w, P) using cycles. This leads
to a slightly different version of

— Kubo formula

— Fluctuation theorem

e Study the structure of the of the Donsker-Varadhan large de-
viation functional for the empirical measure.

— Maes and Netockny, Bodineau and Lefevere. See the diffusion
case in next chapter..

— Explicit computations for the GC functional, Derrida et al.

e Go macroscopic (Jona-Lasino & al. )
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Part II: Stochastic differential equation of molecular
dynamics

Extending the previous theory to more general Markov processes
iS possible but this requires to prove strong ergodic properties.

In general for models of physical interests,
e Existence and to a less extent uniqueness of steady states
e Ergodicity and large deviations

are hard problems.

—— Consider concrete physically relevant problems
References:

e P. Cattiaux lecture here.

e M. Hairer: Various lectures notes (www.hairer.org)

e Rey-Bellet: Grenoble Summer School. Quantum Open Sys-
tems II. Springer LNM 1881 pp. 1-39. and pp. 41-78.
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Notations

Stochastic differential equation: = € R? (or a manifold)

dJ?t - b(l’t)dt —|— O’(:I?t)dBt

where

b : R? = R is the drift

o : R — L£(RF,R?) is the diffusion matrix
B; is a k-dimensional Brownian motion

We shall always assume that b and o are sufficiently smooth, say
C.

However singular vector field, think Lenard-Jones or Coulomb,
are interesting: many open problemst!!
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Generators and semigroup

If z; is a solution of the SDE with initial condition g = x is and
f:R? = R is a (nice) function then

Tif(x) = Eg [f(x4)]

is a semigroup (Markov property) with generator

L= Z b ()0, + Z o(w) (o)), O

k=1

The adjoint (on L?(R%)) of L is denoted by LT (Fokker-Planck
operator)

Z Oz bi(x) + Z &ckﬁml O’(CIZ)O’(CIZ) )

k=1
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Analytical tool I : Hypoellipticity

In many physically relevant examples, noise does not act on all
variables: the noise is degenerate.

rankool (z) < d,
Write L = Xo + ZX?Xi
=1

Theorem (HOrmander Hypoelliptcity): If the Lie algebra gener-
ated by

Ao = {Xi}izl AL = {[Xiv Y]}izo,Yer oy A = {[Xz‘: Y]}z‘ZOYeAk,l )y

has full rank at every z € R? then
T'f(z) = / pi(z,y) f(y) dy, pi(z,y) is C in (t,z,y)
Rd

In particular the semigroup is strong-Feller: (i.e. smoothing)
If f € B(RY) then Ty € C,(R?)
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Analytical tool II : Irreducibility and controllability

If 7} is strong-Feller we say that the Markov process z; is irre-
ducible if for any = € R? and any open set A there exists t such
that

P(x,A) >0

e In general hypoellipticity (= local) does not imply irreducibility
(= global)

Example: Xo = sin(z)d,, X1 = cos(x)0,

e Hypoellipticity + irreducibility implies at most one invariant
measure © which has then a smooth density.
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Associated ODE control system

dxt

% == b(a?t) + J(wt)ut

where u; is a (piecewise) smooth control (smoother than %!).

We say that y is accessible from x in time ¢t if there exists a
control us 0 < s <t such that z,(0) =z and z,(t) = v.

Denote

A, = {y € R% y accessible from z in time t}

Theorem (Stroock-Varadhan) We have

suppPi(x,:) = Agy
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Simple example

Take a generic smooth F(p,q) and consider
dq = pdt, dp = F(q,p)dt+dB

e Strong-Feller since
Xo = F(p, Q)ap +paQa X1 = a/) ) [XO7 Xl] == 8q + (%F(p, Q)ap

e Irreducible: Given initial po, go and final p1, g1 pick an (arbitrary)
time t and any smooth function ¢(¢) such that

dq dq
0) = , t) = , — 0) = , — t) =
q(0) = qo0, ¢(t) = @1 dt( ) =p1 dt() p1
and set

ut) = 51w - F (a0, 5 0)

= For any ¢t > 0, supp P(z,-) = R"™ and some extra work shows
that in fact pi(z,y) > 0O
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Analytical tool III : Lyapunov function

A Lyapunov function is a function V : R — R such that
e VV is smooth
eV >1 YV is bounded below.

o limp o V(z) = o0 i.e. {V < a} is compact for any a.

Inequalities involving LV translate into ergodic properties for x;

Standing assumptions: T} is strong-Feller and irreducible

Notation: a, b are positive constants

K denote a compact subset of R?,
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e (1) Existence of the dynamics

If there exists V such that

LV < aV +b

then the SDE has (pathwise) solutions for all ¢ > 0 almost surely.

e (2) Existence of invariant measure and convergence

If there exists V such that
LV < —a—+blg

then the process z; has a unique invariant measure = and Pi(x, )
converge to = in total variation for any initial x.
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e (3) Exponential convergence to equilibrium
If there exists V such that
LV < —aV 4+ blg

then there exists constants ¢ > 0 and ~ > O such that

th(x)—/fdﬂ'

or equivalently the semigroup T; has a spectral gap (i.e., quasi-
compact) on the Banach space

< CV(x)e

By (R = {f:Rd—HR{; |f|VESUD§|<OO}

rER4

Remark: Proof via coupling argument (Meyn-Tweedie or much
simpler Hairer-Mattingly).

Proof via spectral argument (R-B., Grenoble lecture notes) via
Nussbaum formula for the essential spectral radius (= e~)
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e (4) Large deviations (cf Donsker-Varadhan, Wu, Kontayannis-

Meyn)

Idea: For large deviations one needs some "super-exponentia

convergence. (or hyper contractivity...)

If there exists V = exp(v) and an,, b,, K, with

LV < —anV + bolg,

|H

My, 00 @n, = 00O

then the semigroup 1; is compact on the Banach space By .

= Large deviation principle for the ergodic average

t
1
;/O f(xs) ds

for nice function f.
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We say that f is dominated by v at infinity, write f < v

f<<ov if lim supm =
R—>oo|x‘23 v

0.

"Proof of LDP":

e Use Feynmann-Kac to write the moment generating function

exp (—a/ f(xs) ds)
0

e Use compactness 4+ assumption on f to show that Tt(o‘) is
compact too!

E, = T\ 1(x)

e Use perturbation theory and Perron-Frobenius and Gartner-
Ellis

e Use the Lyapunov bound to integrate z wrt to = (Ex — E;)
Remark: In applications one need unbounded f!
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A simple example: Overdamped Langevin equation

U is a smooth potential with compact level sets

de = (=VU(z) + F(z))dt + V2TdB

If F = 0 then e 7Udz is a stationary distribution. Liapunov
function, try first U:

LU =TAU — |VU|? + FVU

Exponential convergence if

AU < |VU|? and F < |VU|

for example if k> 2 and U ~ ¢*, VU ~ q|q|*~2, etc...
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Better try the Liapunov function exp(0U)

Le™ = 0’ [TAU + (10 — 1)|VU|* + FVU]

So for 0 < % we have a super exponential Lyapunov function

and thus a large deviation principle for any f < U as long as
|F| < VU| and AU < |[VUJ?.

For more examples with stretched exponential, polynomial con-
vergence etc...

e Bakry, Cattiaux, Guillin, and collaborators.
e Many cute examples in M. Hairer "How hot can a heat bath

get?”
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Entropy production for molecular dynamics
e Identify the entropy production: compute the Radon-Nikodym
derivative of the Markov processes with respect to the time
reversed process.

— Use Feynmann-Kac & Girsanov formulas

— Compare to a "nearby” reversible process, i.e. thermal equi-
librium.

This is the "easy” part.
e Prove the fluctuation theorem
—— Prove a large deviation principle.

—— Technical difficulty: the flux and entropy production are
unbounded and so are the boundary terms.

This is the hard part: construct a Liapunov function

38



Time reversal

e Markov process xz; with generator L and stationary distribution
m, (i.e. we have L7 = 0)

e T he time-reversed process is the process with generator
L'=na'LTx

i.e. L* is the adjoint of L on L?(x)

Time-reversibility <~ L*=1L

e For system with velocities generalize: consider an involution
J:R — R% that is, J is invertible and J2 =1

In all our examples J(p,q) = (—p,q).
= JL*J =L

Time-reversibility
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Langevin equation and non-Hamiltonian forcing

e Hamiltonian system with (p,q) € R? x RY and Hamiltonian
H(p,q) = %2 + V' (g) with a smooth confining V(q)

e Heat reservoir at temperature T' via a Langevin equation

e External force F(qg) which is not a gradient force

dq pdt
dp = (—=VU(q)+ I'(q) —Ap)dt +V2TdB

Generator Lp = (TA, —pVy) + V-V, U(q@)V,) + F(q)V,

Fokker — Planck Lg = (TAp+ Vpp)—(pVe — (VU() V) —F () V)
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Entropy production for the Langevin equation

o If ' = 0 then mo(z)dr = Z te 7H®Ddy is a stationary distri-
bution and we have detailed balance

JL:J = Lo

where Jf(p,q) = f(—p,q).

e If F' £ 0, a simple computation shows that
JrngtLimod = Lp —o (%)

with
F(q)-p power exerted by F
- —

T Temperature

o is the physical entropy production.
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e [ ime-reversal on path
OQrs=Jr;—s 0<s<t.

e Using Feynmann-Kac formula we obtain the path space inter-
pretation

dP‘[OJ] Oe o t 1

(Note here P = P,, otherwise an extra boundary term...)

e Gallavotti-Cohen symmetry. From (%) it follows immediately
that since JoJ = —0o

It (Lp — ao) m9J = Lr — (1 — a)o

This implies (formally) e(a) = e(1 — o) via a Perron Frobenius
argument.
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Entropy balance equation

Let H(p) = —fplog pdpdq denote the entropy of the measure
dpu = pdpdq.

If 1 is the distribution of (p¢,q:) then we have

d [ 1 d
/a(p,q)dut——/?H(w)dut-l-(H”H(uf) = ()

dt
Physical entropy production Increase in
= [Bx dissipated heat entropy

where

() = /\/;% [(%Vv-i-v) ptr dpdg > 0
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From this we get

Theorem: If a stationary measure np exists then fadﬂ'p > 0 and

/0d7r>0iﬂ’F7EVW

Proof:. e If us = m we obtain
/adﬂ' =3(w)>0

e If X () =0 thenn = exp(—%%)G(q). Use then Fokker-Planck.

Remark: The entropy balance equation is old...

Remark: In older literature what we call entropy production is
the entropy flow. The entropy production is >(u).....
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Entropy balance and Donsker-Varadhan

Very nice recent work from Maes &Netockny and Bodineau &
Lefevere

Large deviations for the empirical measure: if x; is a Markov

process let
t
1
Vg = —/ 5& ds
tJo

Note that [ f(z)dv = L [ f(z.)ds and limi ew = 7 almost
surely by ergodicity

By a slight improvement of Donsker-VVaradhan one has a LDP
(work in the natural topology induced by the Banach space By!)

Pr{ve =~ p} < exp(—tI(w))
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e Fact: one has from Donsker-Varadhan I(u) = sup,-; (—f%)

e Relation: Jwal (Lp —ao) ' ngJ = L — (1 —a)o

Theorem(Bodineau and Lefevere) The rate function I(u) has
the form

1 1
I = - > K —— d
(n) 1 (n) + (u) 2/0 p
pirétggt’)i}(/)n activity N——

Entropy
flow

e T he first two terms are even under J while the entropy flow is
odd under J

e The rate function for the large deviations for o is given by the
contraction principle I(z) = inf{I(u); [odp = z}.

Consequence: The symmetry under time-reversal for I(u) im-
plies the symmetry of I(z2): I(z) — I(—z) = —=.



Ergodic properties of the Langevin equation

See papers by Mattingly& Stuart, L. Wu and R.B.-Thomas and
P. Carmona. See also the book by Kashminskii

e Assumption on U: U is smooth C'° and for large q

U(q) ~lql*,VU(q) ~qlg/*2, with k>2
e Assumption on F(q): |F(q)| < |VU| and |F| < U/?
— Note the two assumptions are only for large q

Theorem: Pick a time 7> 0 and 6 < % then W = ¢ is a super
exponential Liapunov function:

Ty’ < ape’ + Bpliy<m

and limg_o ag = 0.

Remark: We do not use L but e7L...
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Some ideas of one possible proof
e Uniqueness and smoothness of the measure: already donel

e Try first the energy as a Lyapunov function:
LH=T-p>+p-F(q)
. This does not have a sign but not as bad as it looks....

e Main idea: prove that if the system starts at energy H(p(0),q(0)) =

E then
1
/ p2(s)ds > cE
0

uniformly in £ > Eg (with very high probability).

e If we such bound then we have H(z) = E > Eq
Ti1H(x) — H(z) <cE

since the term p- F(q)is negligible compared to p® ~ E.
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e To close the deal use that Lef = gefH [T — (1 —-0T7)p? + F(q)p]

and the same estimate plus exponential martingale + Holder in-
equality to construct the Lyapunov function.

We "morally” have LH < —aH + b
which we lift to Le?? < —aHe™ 4+ b

e Rescaling argument: Natural time scale at energy E if U ~ ¢F
is £EY/k=1/2 This is the time for " one period”.

Rescale p(t) = E-Y2q(EY/+1/2t) q(t) = E-Vkg(E1/k-1/2)
which gives
dq dp

~ ~ ~1k—2 -
— = — = + O(E
— =0 =i (B

— Control errors 4+ noise...
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Another (harder) example : Anharmonic chains

Hamiltonian system p = (p1,--- ,p~n), 9= (q1, - ,qN)

n

> n N-1
Hp,) = > 24+ V) +Y Ula—a-1):
=1 =1

=1

Assume V(q) ~ ¢ U(q) ~¢™> and ko >k

dgin = pidt
dpr = (—VgqH(q)—Ap1)dt+ X\\/271dBy,
dgj = p;dt
dg, = ppdt
dpn = (—Vg¢H(q) — Apn)dt + X/ 2TrdBpR
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Entropy production for heat conduction

Choose a good reference measure (there are several options
because you can measure energy flows in several ways!).

Define the energy of the particle ¢ by

H = % 4 V(@) + 201 — ) + UG - )
i — > qi > qi—1 qi > qi qi+1

so that

HzZHi

Writing a balance equation 4H; = ®;_; — ®; we have

_ pitDpit1

PD;
2

VV(¢i — qi+1) heat flow from i —1 to ¢
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We pick the reference state ng ~ e %% where

R, = 5%::5::1%'+'§%;:E::31

k<i k>i

and after computing we find

J7TO_1LT7T0 = L — o0

where

and again

Jﬂ'al(L —ao)lmo =L —(1—a)o;
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Ergodic properties

e Assume the coupling U is nice in the sense that U does not
have a "flat piece” nor there are infinitely degenerate critical
points for VU. This means the oscillators are really coupled.

— Hypoellipticity and controllability: "by induction over the
chain” .....

e Dissipation

LH = (T, —p?) + (Tr — p},)
— Lyapunov function W = &7 if 6 < min{;, 7-}.

T < ape®™ + Bplig<p
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e Existence and uniqueness of the steady state.

e Spectral gap and compactness of the semigroup on B(W).

e Gallavotti-Cohen fluctuation Theorem

" Technical” issue o is not relatively bounded by H!

— Write 0, = 0"+ LR; where o* < CH and R; < CH

— Show the existence of e(a) only in a neighborhood of [0, 1]

— Control the boundary terms and show a LDP restricted to a
neighborhood of the origin.
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More examples

e More general heat conduction networks

e Molecular motors...

e Models of heat conduction by Lefevere (cf. Bodineau & Lefe-
vere, Carmona)

e Models of heat conduction by Olla, Stolz & al. (microcanon-
ical thermostats).

e Shear flows (Joubaud & Stolz)

e Other thermostats.....
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Loose ends

e Villani (Hypocercivity) and Helffer-Nier have better estimates
on the dynamics but (?) it works only at equilibrium. Does it?

e Hairer and Mattingly construct Lyapunov functions via " aver-
aging” .

e Bodineau and Lefevere (and Maes and Netockny) have a varia-
tional principle for the steady state based on Donsker-VVardahan
large deviation functional.

e Large systems, Hydrodynamic limits and fluctuations, Jona-
Lasino & al. (Macroscopic theory)
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PART III: Deterministic dynamics

Basic questions

e What is nonequilibrium in this context?

— Time reversibility symmetry breaking again but with a slightly
different twist.

e A deterministic dynamics almost always has very many invari-
ant measures. Which one to pick?

— Pick a reference measure (encode the physics) and define a
NESS as an SRB-measure

e Relations between stochastic and deterministic systems?

— Extract stochastic process out of a deterministic one via
Markov partition.

— Stochastic process as reduced description of a (large deter-
ministic) system.
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Abstract definition of a NESS
Dynamical system with reference measure

e State space M (maybe a Polish space)

e Dynamics: a (invertible) map F : M — M (discrete-time) or a
flow ®; : M — M (continuous time).

e Reference measure up. In general not invariant under the
dynamics.

In applications uo will encode thermodynamical parameters (En-
ergy, temperature, ...).
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NESS = SRB measures

Definition: A SRB measure py is an invariant measure for the
dynamics, i.e. ug(F~1A) = us(A) such that for f € C,(R?)

n—1
1
1. pg is ergodic: = E foF*(z) = py(f), | e almost surely |.
mn
k=0

n—1
1
2. SRB measure: — g foF*(x) = ur(f), | ro almost surely |.
n
k=0

Think of nontrivial nonequilibrium occurs when g4 L puo.

The SRB measure p4 is also called the physical measure: it
describe the statistics of ug almost every point and is selected
among all the (typically very many) invariant measures.
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In addition we will often require that the dynamics is time-
reversal invariant

Time reversal: Involution of phase space J: M — M so that

J2=J

Typical: x = (q,p) € M then i(x) = (¢, —p), i.e., i change signs
of the velocities.

The dynamics is time-reversal invariant if

JoF=F1loJ or Jod, =d_,0J

It is convenient to assume that the reference measure is time
reversal invariant (but not really necessary...)

59



Example 1 : ” Micro-canonical” NESS: Gaussian
thermostats

e Hamiltonian: H(q,p) = %2 + V(g)

e External force: F(q) non Hamiltonian external force (driving
the system out of equilibrium).

e Reference measure: puo = por Lebesgue (microcanonical)
measure on the energy surface {H = E}

e Gaussian thermostat: a(p, q) thermostatting force (non-holonomic
constraint) which constrains the system to stay on the energy
surface {H = E}

e Time-reversal: J(p,q) = (—p,q), HoJ = H, and pgo J = puo.

q = p
p = =VV(g)+ F(q) —alp,q)
__ F(g)'p
a(p,q) = ——p
p-p

Dynamics is dissipative, yet energy conserving, and time-reversible.
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Example 2 : ” Canonical” NESS: Heat reservoirs
e Small system: (finitely many degrees of freedom) Hamiltonian
Hs(q,p) =% +V(q)

e K heat reservoirs: Hamiltonian systems, extended systems, oo
many degrees of freedom. For example for k=1,--- | K

1
Hiy(pp,m) = = Vil? + |m|?de (Linear wave equation)
Rd

with Gibbs measure

dvg (pr, ™) = 27  exp(=BiHi(pp,m) | | dewdmi(a)

xcR4

This is a Wiener measure (¢g) times a white noise measure ()
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e Total Hamiltonian: Coupling V,, between the small system and
reservoir k. Total Hamiltonian

K
H = Hs(p,q) + ZHk(Wk,wk) + Z Vi(p, ¢, Ty P1)

k=1 k=1

e Reference measure: Choose inverse temperatures 51, -- 8k and
(arbitrary) measure vg on small system

Mo = Vs X pg; X == X g,

e Time-reversal: J(p,q,m,¢) = (=p,q,—m,p) and Ho J = H and
po o J = po.

Hamiltonian flow on infinite dimensional phase space

62



Definition of entropy production
Reference measure evolved under the dynamics u; = poo P

d
Radon-Nikodym derivative (Jacobian) J; = d—“t
Ko

Chain rule Jiys = JiJso P_; implies that
t
Jr = exp [/ aod>sd3] ,
0
_dJ

o = %h:o = Entropy production observable

where
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Examples

Example 1: Assume M is a compact manifold and puo = is
Lebesgue measure on M. Then

o = phase space contraction rate

If the dynamics is © = G(z) then o(2) = div(G)(x)

Example 2: Small system coupled to heat reservoirs. Then a
computation shows that

K
o= Zﬁkjk = " Physical entropy production”
k=1

where

Ji. = Energy flow from small system into reservoir k
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Relative entropy and positivity of entropy production

Relative entropy: H(ulv) = [ log (fl—’;) dp. Then

H (p1t|po) =/us(0)d8
0

Since H(u|lv) > 0 and if ¢! fotus — p (by the SRB-property)
then

t
1 1
0 < lim —H (ut|po) = lim —/ ps(o)ds = p4(o)
t—oo t t—oo T 0

The entropy production in the steady state is non-negative
Under mild conditions one can prove

py(o) >0 0ff py L opo

i.e. the entropy production is positive iff the NESS p4 is singular
with respect to the reference measure uop.
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Time reversal, Evans-Searle, Gallavotti-Cohen

Assume now

e We have coJ = —o (i.e. the entropy production is odd under
time-reversal).

e Time reversal on paths

© 1 {Pu(z) fo<s<t = {Pr—s 0 () o<s<t
e Path space measure: The reference measure ug on M induces

a probability distribution P,, on the path space M4,
We have

t
dP,, o ©
WS 0] = €XPp —/ oo ®ds(x)ds| (%)
dPHO 0

(Looks familiar?)
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Evans-Searle Symmetry

Moment generating function

gi(a) = puo (exp [—a/ oo D, ds])
0

Then (%) is equivalent that ¢:(a) = (1 — ).

Let Q.+ denote the probability distribution of %fga(xs) ds with

initial distribution pg and let 7(z) = —=z.
We obtain
d
M(z) = exp(—tz). Evans — Searle
dQMo,t

— True for all times ¢t but it depends crucially on picking the
reference measure ug.

— True even without any good ergodic properties!
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From Evans-Searle to Gallavotti-Cohen

Assume that

1 1 '
e(a) = lim —loggi(a) = lim —logpuo | exp | —« oo ®dgds
t—oo T t—oo 0

exists and is C! then e(a) = e(1 — o) and we obtain a large
deviation principle

t
1
140 (—/ ocod,ds ~ z) ~ e (2)
t
0
where

I(z) — I(—z2) = —z Gallavotti — Cohen symmetry

Remark: The large deviations is with respect to the initial mea-
sure po not the NESS py4 which is singular to po. Large devia-
tions with respect to u4 is extra work (highly nontrivial exchange
of limit!).
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Gibbsian approach to non equilibrium

Another road to the fluctuation theorem (advocated by Maes)
use the thermodynamic formalism of Ruelle.

It works best for a compact metric space M, and a continuous
map F: M — M.

Variational principle: For ¢ : M — R

P(p) = sup {h,,(F)—I—/godV} :
v invarariant

where h,(F) is the Kolmogorov-Sinai entropy and P(y) is the
topological pressure.

If the dynamical system is " sufficiently chaotic” and ¢ is HOlder
continuous then we the supremum is attained and is attained at
a unique v = v, which is called the equilbrium measure for the
potential ¢
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Large deviations for ergodic averages S, (1)

Large deviations: (Kiefer) If v = v; and ¢ : M — R is Holder
continuous then we have for " sufficiently chaotic map”

ep(a) = lim llog v = P(o + ar))

n—oco 1

and e(a) is smooth.

Examples: Anosov maps, Markov subshifts, one-dimensional
Gibbs measure (space=time).

70



Assume now that there is time reversal J : M — M and assume
that the potential ¢ is not time reversal invariant

c=o0,=¢p—pol

Canonical example and connection with SRB: M smooth mani-
fold, F' smooth uniformly hyperbolic map.

¢ = —log JDF", o= —logDF
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Theorem: We have e(a) = e(1 — )

Proof:

P(p — aoy)

sup {h,,(F) + / [¢ — aoy] du}

Sup{h,,oJ(F)—I—/[(1—a)90—ozgooJ]dVoJ}

sup {h,,(Fl) + / [(1—a)p—acoJ]dvo J}

Sup{h,,(F)—I—/[(l—a)cpoJ—aa]dl/}
Plp— (1 - a)oy)
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Examples
Two examples:
1) Anharmonic chain coupled to two heat reservoirs
Joint work with J.-P. Eckmann, C.-A. Pillet and L.E. Thomas.

2) Hyperbolic billiard under external electric field and Gaussian
thermostat:

Joint work with L.-S. Young.
Based on results of
e Sinai, Bunimovich, and Chernov 1980’s
e Chernov, Eyink, Lebowitz, and Sinai 1995
Chernov 2002
e L.-S. Young 1995
WojtkowsKi

New results: Large deviation principle for billards!
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Example 1 : Anharmonic chains
Small system p = (p1,--- ,pn), ¢ = (q1, -+ ,qN)
n p2 n N-1
_ Py _
Hs(p,q) = Z 5 +ZV(qz) +ZU(qz q-1) -

Assume V(q) ~ ¢  U(q) ~q¢* and kx> k;

Two reservoirs: Linear wave equations at inverse temperature
Br and pBgr. Initial configurations of the reservoir distributed
according to Gibbs measures ug, and pug,.

Coupling: q1- [ ¢rprdr+qn - [ ¢rprdx

Special couplings: |p;(k)|? ~ P=polynomial

1
Pi(k?)
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Extract a stochastic process

Integrate the (linear) equation for the bath yields generalized
Langevin equation

d? t

qu = —vquuo,q)—/ D(t — s)p(s) ds + &(t)
0

d2

T Y ()

where £(t) is a Gaussian random process with covariance T'C(t)
and D(t) = 4C(¢t) (fluctuation-dissipation Thm).

If |pi(k)|? ~ =~ then one finds a SDE

k2442
d*q1
2 —VaH(p,q) +7
(1) dr = —yr—+ Ap+ V2T )\dB

and we are in business again.
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Example 2: Hyperbolic billiards

Single particle moving freely and colliding elastically on a peri-
odic array of strictly convex smooth obstacles in R2. Periodicity
reduces to a system on with phase space (T?\ u;I';) x R2.

Assume: Finite horizon: every trajectory meets an obstacle.

Equations of motions: equilibrium

g = p
p = 0 4 elastic reflections

Energy is conserved — the phase space reduces to (T2?\u;I';) x St

The Lebesgue measure pg on each energy surface is invariant,
ergodic, and mixing (Sinai, Bunimovich, Chernov).
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Equations of motions: non-equilibrium.

We add an External electric field E and Gaussian thermostat

g = p
E -

p = E——pp + elastic reflections
p-p

The system is time reversible, i(p,q) = (—p, q).

If E is small enough there exists a SRB measure Mf) on each

energy surface which is invariant, ergodic, and mixing (Chernov,
Evink, Lebowitz, Sinai; Chernov; Wojtkowski).

Linear response is treated in Chernov, Eyink, Lebowitz, Sinai;
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We analyze the system in terms of the collision map:
Frg: (0,z) — (0,2)

where (0,z) is the position of a collision on the boundary of
the obstacles and 6 is the angle of the incoming velocity with
respect to the normal.

Discrete-dynamical system on the 2-dimensional phase space

M = U;0l; x (—z, E)
2 2
If £ = 0 (equilibrium) Fy preserves the measure

o = const cos(0) do dr

If £ #= 0 (non-equilibrium) Fgr has an SRB measure (up=reference
measure)

,ug_E) with ,uf)J_,uo
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Large deviations for billiards

Suppose g is Holder continuous on M (or piecewise Holder con-
tinuous; singularities). For convenience assume uf)(g) = 0.

Ergodic sum S,(g) = Zz;ég o F(E)

Autocorrelation function

n—oo T

o2(g) = 1im —Var(s,(9)?) = u{P(e») +2 Y u{P(g(g0 F))
n=1

Fact:
0<o’<oo, 0%(9)=0iffg=C+hoFr—h
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Theorem (L.-S. Young, L. R.-B. ) Assume o2(g) > 0.

e Large deviations: There exists an interval (z_, z4+) which con-
tains p4(g) = 0 such that for a € (2, 24) we have

i {2 2 0b e (i),

1
Moreover I(z) strictly convex and real-analytic with 1"(0) = —
(o2

e Moderate deviations: Let 1/2 <8< 1. Then
Sn(g) 25-1 @°
174 { n/a’ ~ CL} ~ exXp [—TL ﬁ .

e Central Limit Theorem: Already known: Sinai & al, Liverani,
Young...
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Young towers

Our theorem is proved using Young towers introduced by Lai-
Sang Young in 1995. The towers are a symbolic representation
of non-uniformly hyperbolic dynamical systems.

Special type of Markov partition with countably many states,
based on ideas of renewal theory: choose a set A C M and
construct a partition of A = U;/\; where A, is a stable subset
which "returns” (= full intersection) after time R;. This gives a
Markov extension. Finally quotient out the stable manifolds.

Consequence: our large deviation results apply to
e Billiards

e Quadratic maps

e Piecewise hyperbolic maps

e Hénon-type maps

e Rank-one chaos (Qiudong Wang and L.S. Young) Some peri-
odically kicked limit cycles and certain periodically forced non-
linear oscillators with friction.
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Tower Ingredients
e Measure space (Ag,m) andamap f : Ao — Ao (noninvertible)

e Return time R : Ag :— N.
Assume exponential tail: m{R > n} < De "
Assume aperiodicity: g.c.d{R(z)} =1

e Tower = suspension of f under the return time R

A= {x € Ao; R(z) > 1+ 1]; and A = Lol (disjoint union)

I-th floor tower
: , . (z,14+1) R(x)>1+4+1
Dynamics F' : A — A F(z,l) = { (f(z),0) R(z)=1+1

82



e Markov partition A, = A1 U--- Ay, with 5 < oo.
F maps A;; onto a collection of A;41's plus possibly Ag.

The Markov partition is generating (i.e. each point has a
unique coding).

e Dynamical distance:
s(z,y) = inf{n, Fi(x) and F'(y) belongtothesame A,;;,0 <i < n}
For 8 <1 let ds(z,y) = p>=v)

e Distortion estimates: Let JF the Jacobian of F with respect
to m.

‘JF(ZB)

Remark: If JF' = const on each A, then we have a Markov
chain on a countable state space

83



Transfer operators and large deviations

Think of m as the (image of) Lebesgue measure on unstable
manifolds. The (image of the) SRB measure has then the form

v=nhdm, heLY(m).

The transfer operator Lo is the adjoint of Uy =y o F

/4p¢ode = /[,o(go)wdm

Lop(@) = D Fresew)

y:F(y)==

v = hdm F-invariant iff Loh = h
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Moment generating function and large deviations

Consider the moment generating function

p+ (exp [05n(9)])
for the random variable S,(¢) =g+ goF +---+go F* 1,

If

e(6) = lim 1 log 4 (exp [0S,.(9)])

n—oo M

exists and is smooth (at least C') then we have large deviations
with

I(z) = sup(fz —e(h)), Legendre Transform.
0

(Gartner-Ellis Theorem)
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Moment generating functions and transfer operators

To study the large deviations for S, (g) consider the generalized
transfer operator

e9)
Lip@) = D Srose)

y: F(y)=z

Then we have

p4 (exp [0Sn(9)])

m (exp [an(g)] h)
m (Lo [exp [0Sn(g)] h]))

m ([’gg(h))

= Large deviations follow from spectral properties of Ly,
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Spectral properties of transfer operators

Suppose Ly, is quasi-compact on some Banach space X > h, i.e.
the essential spectral radius strictly smaller than the spectral
radius.

By a Perron-Frobenius argument Ly, a maximal eigenvalue exp[e(0)]
and a spectral gap (aperiodicity) and thus

e(8) = lim ~log v (exp [05.(9)])

n—oco 1

By analytic perturbation theory e(6) is real-analytic and then
standard probabilistic techniques implies

Sn
M+ {:L’; (9) %z} ~ e ()

n

I(z) = Legendre transform of e(6)

as well as moderate deviations, central limit theorem, and so
on...
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Choice of Banach space
Recall m{R > n} < De 7. Choose 71 < 7 and set

v(z) = el xe YAV,
Banach space

X ={p : X =>C; [lell = ¢l

vsup T+ [[@llv,Lip < 00}

with

pusup = SUP sSUP [p(z)|e™
l,g IL'GA[J

x JE—
Potiy = SUD SUD [o(@) = P

Banach space of weigthed Lipschitz functions
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Spectral analysis

Lasota York estimate: For g bounded Lipschitz

15 e < 1£5(D)]o,sup (B¢l + Cllpllv,sup)

Pressure

P(g) = lim Zlog |I£2(1)

n—oo T

v,sup -

Pressure at infinity: Control on the high floors of the towers!
.1 .
P.(g) = lim =log |l inf £2(1)"*|lssup -
n—oo 1 k>0

( p?F = for x € A, with [ > k& and 0 otherwise)
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Theorem:
The spectral radius of £, is (9,
The essential spectral radius of £, is max{e™(), gel @)}

= L, is quasicompact if P.(g) < P(g).
Theorem: P.(g) < P(g) if (maxg —ming) < ~.

Theorem: If P.(g) < P(g) then exp(P(g)) is a (simple) eigen-
value and no other eigenvalue on the circle {|z| = exp(P(g))}.

Conclusion: The moment generating function

e(8) = lim ~1og v (exp [85x(9)])

n—oo M

exists and is analytic if |6] <~/(maxg — ming).
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Fluctuation theorem
Combine
e Time-reversal i, i(p,q) = (—p, q)

e Entropy production =phase space contraction

> =—logJF®—logJF"

e The SRB measure is "the equilibrium state” for the potential
—log JF* (use the Markov extension).

e T he large deviation principle.
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