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Presentation 1

Joint work with: T. Lelièvre and G. Stoltz (MicMac INRIA project team,
ENPC, Marne-la-Vallée, France). Talk mainly based on ideas out of:

11’ T. Lelièvre, MR and G. Stoltz: Langevin dynamics with
constraints and computation of free energy differences.

10’ T. Lelièvre, MR and G. Stoltz: Free energy computation: a
mathematical perspective.

In this talk, I will focus on:
Errors in equilibrium sampling and free energy computation of

molecular systems coupled to a thermostat (NVT = fixed number of
particles, volume and temperature).
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Presentation 1

Errors is a puzzling aspect of the field: everyone computes but no one
knows how far we are from ”reality”.

In this talk I will NOT focus on:

Extraction of dynamical quantities (exit times, Transition State
Theory, etc..)

Computation of non-equilibrium steady states.

Errors in computation of (effective) potentials quantum chemistry.
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Presentation 1

There are still open questions from the mathematical/theoretical side.

In particular some source of errors remained uncontrolled , e.g.:

Time-step errors.

Quantum corrections.

Model reduction.

Important in practice:

To track the origin of errors/aberrations in simulations.

To increase efficiency by focusing on the bottlenecks errors.
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OVERVIEW ON MOLECULAR SAMPLING AND FREE ENERGY
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Molecular dynamical simulation: A hierarchy of models

REALITY HAS AN EQUATION !!. N = number of atoms. Globally neutral.

Building block: Full Schrödinger operator (q position of nuclei, x position
of electrons, Zi= number of protons in nucleus i, Ni = number of neutrons
in nucleus i) in atomic units:







ε2 =
me

mp
∼ 10−3,

Hn = −
∑

i∈nuc

ε2

2(Zi +Ni)
∆qi

+
∑

i∈nuc,j∈nuc

ZiZj

|qj − qi|
,

He = −
1

2
∆x +

∑

i∈e,j∈e

1

|xj − xi|
,

Vc(x, q) = −
∑

i∈nuc,j∈e

Zi

|xj − qi|
,

Htot = Hp +He + Vc×,
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Molecular dynamical simulation: A hierarchy of models

You need to add spin variable to electrons and skew-symmetry
constraint.

Schrödinger equation: iε∂tψ = Htotψ.

Usual temperature, in atomic unit, is small: β ∼ 103 .
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Towards classical Molecular dynamics

Standard route: the Born-Oppenheimer approximation:

Electrons are fast (in fact stationary) and nuclei are slow .

So that you neglect coupling between eigenstates of the electrons
(adiabatic assumption).

You get the decoupled equations for k = 0 . . .∞:







iε∂tΨn = HnΨn +Ek
e (q) × Ψn,

(He + Vc(., q)Ψe,q = Ek
e (q)Ψe,q (k-th eigenvalue problem).
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Towards classical Molecular dynamics

Taking ε→ 0 (semi-classical limit), and k = 0 (groundstate), we get
ab-inito classical dynamics:







Ziq̈i = −∇qi
E0

e (q), i = 1 . . . N.

(He + Vc(., q))Ψe,q = E0
e (q)Ψe,q (eigenvalue/minimization problem).

It is the standard ab-initio model for MD.
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Effective potential and coarse-graining

In many cases effective potentials are used with 2,3,4- body effective
potentials.

Even if untrue in practice, we assume that we have a standard matching
procedure (MP) to compute effective potentials n-body potentials from
any N -body potential:

molecular system MP
−−→ (Vn(qi1 , . . . , qin

), i1 . . . in ∈ Cn
N , n = 2 . . .N)

In principle: independant of ε, β, ∆t. Computed from idealized
quantum calculation, not by fitting parameters to reality !!

This step requires a lot of quantum chemistery, and sometimes
kitchen/crystal ball science (CHARMM force field).

Other topic: Coarse-graining = model reduction in 6Ñ models (Ñ < N
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Molecular simulation: Multi-timescale problem

Short range interaction (covalent): Rapidly oscillating quantity (∼ 10−15 s).

Large range interaction (electrostatic): (∼ 10−12 s).

Reaction coordinates (slow macroscopic variables ∼ 10−9 s, limit of
computational range):

ξslow : R
3N → R

Example:

ENUMATH 2011 – p.11



Slow degrees of freedom: Meta-stability

Dynamical barriers = metastability = exponential slowdown of equilibrium
convergence:

Energetic (low temperature) or entropic (high temperature) barriers:
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Thermostatted models

Introduction of a coupling with a thermostat of temperature, β−1 = kbT .

Ergodic assumption:

Time average = Spatial average

1

T

∫ T

0

ϕ(q(t)) dt
T→∞
−−−−→ 〈ϕ〉

Typical configurations given by Boltzmann Law (NVT case):

〈ϕ〉 =

∫
ϕ(q)e−βV (q)dq
∫
e−βV (q)dq
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NVT computations

Statistical nature of quantities to be computed:

Boltzmann gives all equilibrium physical quantities. Ex: pressure
∝ Ec − 2〈q · ∇V (q)〉.

Non-ideal equation of state of Argon at 300 K:
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What is free energy F ?

Free energy is defined by the equilibrium (marginal) distribution of
ξslow ∈ R

d, a ”slow” variable, or reaction coordinates. For any observable
ϕ of ξslow

〈ϕ(ξslow(q))〉 =

∫

Rd

ϕ(z)e−βF (z)dz

Z

Define Mz = {q ∈ R
d|ξslow(q) = z} the sub-manifold associated with the

value z of the raction coordinate ξslow.

Define δξslow(q)=z(dq) the conditional surface measure on Mz verifying the
slice integration dq = δξslow(q)=z(dq)dz
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What is free energy F ?

We get, up to an additive constant:

F (z) = −β−1 ln
∫

Mz
e−βV (q)δξslow(q)=z(dq)

Goal: numerical computation of z 7→ F (z)
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Computing free energy F

In fact in the context of the present talk ( error analysis), free energy
computation is arguably reducible to the sampling problem.

We need to add non-equilibrium simulation of Jarzynski type. But, I
arguably the discussion on errors is strictly similar to the case of
sampling.

Two main class of methods:

Adaptive biasing methods.

Non-equilibrium simulation of Jarzynski type (Thermodynamic
Integration as a limit).
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Computation strategies

The ennemy is metastability.
Fixed constraint Switching constraint

Biasing (with or without adaptivity)
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Adaptive biasing

Compute adaptively a biasing potential of the form:

Fapprox(ξslow(q))

Perform sampling with the biasing potential Fapprox.

The bias is removable since Fapprox and the equlibrium distribution is
known.
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Jarzynski non-equilibrium dynamics.

Add a constraining force (switching) to a molecular system of the form
−∇qξslowλ(t), where λ(t) is a Lagrange multiplier with constraints
ξslow(qt) = z(t) .

Take care with the thermostat.

Starts at equilibrium .

Compute the energy variation of the system which is only due to the
switching (denoted WT = the work).

Use the identity: F (z(T ))−F (z(0)) = −β ln E(e−β(W0,T +CorrT −Corr0)) .

Requires several replicas to average E.
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ERRORS
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Errors in molcular simulations

Quantum errors:

Error in adiabatic decoupling. (”conical crossings”+ε, β,See later)

Non-classical behavior of nuclei. (ε, β, See later)

Model reduction errors:

1, 2, 3-body effective potentials. (Really a mess).

”Constraints” errors (due to ”freezing” fast degrees of freedom). (See
later).

Coarse-graining. (Really model dependent).

Errors in time-stepping

Time-step errors. (∆t, See later)

Bonus: efficiency of the sampling method. (See later)
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ERRORS FROM TIME-STEP
AND SAMPLING EFFICIENCY
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Classical + thermostat

Here: Newton equation with stochastic thermostat. V is assumed to be
a known classical potential. N -body system.

Equilibrium distribution: NVT ∝ e−βV (q)dq for positions.
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Context

Model: a stiff Hamiltonian system H : R
6N → R:

H(p, q) =
1

2
pTM−1p+ V (q)

M = diag(m1, ...,mN).

Assume: fastest degrees of freedom (fDOFs) are known







ξfast : R
3N → R

n,
{
q ∈ R

3N |ξfast(q) = 0
}

=′′ slow manifold′′.
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Model

Ex.: Large molecule + slow environment:

ξfast can be: bond lengths, bond angles, dihedral angles .
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Sampling with Langevin Dynamics

Coupling with a thermostat: Newton/Hamiltonian motion +
Ornstein-Uhlenbeck process.







dQt = M−1Ptdt

dPt = −∇V (Qt)
︸ ︷︷ ︸

Hamilton

− γM−1Ptdt
︸ ︷︷ ︸

Dissipation

+ σdWt
︸ ︷︷ ︸

Fluctuation

σσT = 2γ
β = 2γkbT

Equilibrium distribution: 1
Z e−βH(p,q).
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Symplecticity/Reversibility of Hamilton’s equations

Newton/Hamilton H(q, p) = 1
2p

TM−1p+ V (q) = kin. + pot. energy :







d
dt




qt

pt



 = J∇q,pH(qt, pt) (1)

J :=




0 Id

−Id 0





J = symplectic matrix:

Conservation of phase-space measure dqdp ( Liouville theorem =
int. by parts).

Conservation of energy H.

Reversibility t 7→ (qT−t,−pT−t) is still solution of (1).
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Equilibrium properties Of Ornstein-Uhlenbeck equations

Ornstein-Uhlenbeck process on momenta (stochastic thermostat):

dPt = −γM−1Pt + σ dWt, σσT = 2γ
β , (1)

Symmetry: t 7→ −Pt solution of (1).

Reversibility wrt to equilibrium distribution: If

Law(P0) =
1

Z
e−β 1

2
pT M−1p dp

then the probability distribution of paths is invariant under time reversal:

Law (t 7→ Pt, t ∈ [0, T ]) = Law (t 7→ ±PT−t, t ∈ [0, T ])

2-Free energy – p.29



Mixing properties Of Ornstein-Uhlenbeck equations

Ergodicity, whatever P0:

lim
T→+∞

1

T

∫ T

0

ϕ(Pt) dt =

∫

R3N

ϕ(p)
1

Zk
e−β 1

2
pT M−1p dp a.s.

Mixing, whatever P0:

lim
t→+∞

Law(Pt)
exp
→

1

Zk
e−β 1

2
pT M−1p dp.
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Equilibrium properties Of Langevin equations

Reversibility up to momenta reversal wrt to invariant distribution: If

Law(Q0, P0) =
1

Z
e−βH dq dp

then the probability distribution of paths is invariant under time reversal:

Law (t 7→ (Qt, Pt, t ∈ [0, T ]) = Law (t 7→ (QT−t,−PT−t), t ∈ [0, T ])

THIS IS DETAILED BALANCE

Ergodicity + mixing from the hypoellipticity of associated operator:

lim
T→+∞

1

T

∫ T

0

ϕ(Qt, Pt) dt =

∫

R6N

ϕ(q, p)
1

Z
e−βH(q,p) dq dp a.s.
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Numerical scheme 1

Hamiltonian dynamics: Verlet explicit integration.







pn+1/2 = pn−
∆t

2
∇V (qn),

qn+1 = qn + ∆t M−1pn+1/2,

pn+1 = pn+1/2−
∆t

2
∇V (qn+1)

Conserve qualitative properties of continuous Hamiltonian dynamics:

Time-reversible under p→ −p.

Conserve symplectic form (2d- area in all planes) and thus volume
dpdq.

Quasi-conservation of energy H∆t,n = H +O(∆t2 × log(∆t n))

Does not work if H is not separable H = T (p) + V (q).

2-Free energy – p.32



Numerical scheme 2

One can thus get detailed balance up to an energy drift, that is to say:

e−βH(qn,pn) δΦ(qn,pn)
︸ ︷︷ ︸

numerical flow

(dqn+1 dpn+1) dqn dpn =

e−β(H(qn,pn)−H(qn+1,pn+1))
︸ ︷︷ ︸

energy variation

×

e−β(H(qn+1,pn+1))δΦ(qn+1,pn+1)(dqn dpn) dqn+1 dpn+1,

Versions when adding a Orstein-Uhlenbeck thermostat process.
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A time-step correction method: Generalized Hybrid Monte-Carlo

GHMC = Metropolis for time-step errors of Langevin equations .

1. Evolve momenta according to the Ornstein-Uhlenbeck process
during ∆t compute the energy H(qn, pn+1/4).

2. Integrate the Hamiltonian equations of motion according to the Verlet
scheme. Get (q̃n+1, p̃n+1) and compute the energy H(q̃n+1, p̃n+1).

3. Accept the proposal with probability

min
(
1, exp(−β(H(q̃n+1, p̃n+1) −H(qn, pn+1/4)))

)

otherwise, reject and reverse momenta by setting
(qn+1, pn+1) = (qn,−pn+1/4);

Ergodic Markov chain reversible wrt exact stationary distribution
e−βH(q,p)dqdp up to p→ −p (detailed balance).
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Overdamped dynamics:

Replace step (1) by immediate equilibrium ( high friction limit).

Verlet yields Euler discretized overdamped stochastic differential
equation:

Qn+1 = Qn − ∆t2/2M−1 ∇V (Qn)
︸ ︷︷ ︸

drift

+∆t
√

β−1M−1 N (0, 1)
︸ ︷︷ ︸

diffusion

Yields Metropolis algorithm when add the rejection rule.

Yields a Markov chain reversible wrt e−βV (q)dq.
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Sampling efficiency

The average rejection rate in Metropolis/ Hybrid Monte Carlo (both
Langevin and overdamped) ONLY depend the time-step and NOT on the
friction. This enables to define a critical time step with rejection
prescribed at 1/50 valid independantly on the friction parameter.

However, if we denote the mixing time of Langevin dynamics Tmix, the
computational cost of discretized Langevin without Metropolis step is:

Nmix = Tmix/∆tcrit.

2-Free energy – p.36



Sampling efficiency

Now denote the mixing ”time” T 2
mix,ov of the overdamped dynamics:

dQs = −M−1∇qV ds+
√

2β−1M−1dWs.

T 2
mix,ov is homogenous to [T 2] but independent of ∆tcrit . Then

according to the effective time step of overdamped above:

Nmix,ov = 2T 2
mix,ov/∆t

2
crit.

Thus if ∆tcrit << Tmix,ov then:

Nmix

Nmix,ov
=

∆tcrit

Tmix,ov

Tmix

Tmix,ov
<< 1
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Correcting with Metropolis

Langevin is much better than overdamped ( OPEN: to precise)..

BUT Momenta flip in GHMC make sampling efficiency similar to
overdamped ( OPEN: to precise).

Another porblem:Rejections in Metropolis depends badly on
dimensionality of fast-degrees of freedom.

Open practical/theoretical question: how can we obtain a compromise
between time-step bias and sampling efficiency ??
If your favorite chemists gives you a code, can you construct a black box
algorithm which computes the ”good” time-step, computes weights and
rejections, in order to achieve this compromise ?
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Removing time-step in Jarzynski simulation

d evolving constraints associated with the reaction coordinate;
Hamiltonian: 





H(p, q) = 1
2p

TM−1p+ V (q)

ξslow(q) = z(t) (C)
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Verlet integrator with constraints

Verlet explicit integration + constraints solver with Newton/Gauss solver .







pn+1/2 = pn−
∆t

2
∇V (qn) −∇ξslow(qn)λn+1/2,

qn+1 = qn + ∆t M−1pn+1/2,

ξslow(qn+1) = z(tn+1) (Cq),

pn+1 = pn+1/2−
∆t

2
∇V (qn+1) −∇ξslow(qn+1)λn+1

∇ξslow(qn+1)TM−1pn+1 = z(tn+1)−z(tn)
∆t (Cp),

Time-reversible under p→ −p and z(tn+1) ↔ z(tn). Conservation of the
symplectic structure.
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Conservation of the symplectic structure

It may seem surprising to obtain symplecticity for a mapping between
two different phase-space.

In fact, the numerical flow is symplectic in the full phase-space R
6N , and

symplecticity is inherited on constraints manifolds.

One can thus get detailed balance up to an energy drift, that is to say:

e−βH(qn,pn) δΦzn,zn+1
(qn,pn)

︸ ︷︷ ︸

numerical flow at zn

(dqn+1 dpn+1) σzn
︸︷︷︸

phase-space measure

(dqn dpn) =

e−β(H(qn,pn)−H(qn+1,pn+1))
︸ ︷︷ ︸

work = energy variation

×

e−β(H(qn+1,pn+1))δΦzn+1,zn (qn+1,pn+1)(dqn dpn)σzn+1
(dqn+1 dpn+1),
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Exact discrete Jarzynski identity

Add carefully a thermostat.

Define the work as

W0,T =
∑

n

∆Hn
︸ ︷︷ ︸

energy variation of hamiltonian integr

This yields a discrete Jarzynski identity:

F (z(T )) − F (z(0)) = −β ln E(e−β(W0,T +CorrT −Corr0))
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Exact discrete Jarzynski identity

Thus time-reversibility + symplecticity yields:

(i) Detailed balance up to a factor.

(ii) Metropolis correction in dynamics with rejection.

(iii) Time-step correcting weights in non-equilibrium Jarzynski.

OPEN: Show theoretically following idea: there is an incompressible
source of error : bias from time-step in Langevin ∼ variance from mixing
slow-down in Metropolis ∼ variance in Jarzynski work exponential
weights. I DO NOT KNOW HOW TO DO BUT I SUSPECT IT IS TRUE IN
SOME REGIME .
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open problem

OPEN 2: IS THERE A WAY TO ACHIEVE A BIAS/VARIANCE
COMPROMISE REGIME ?

OPEN 3: CAN YOU PROVE THAT NOTHING MORE CLEVER CAN
BE DONE (no trick theorem) ?
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ERRORS FROM CONSTRAINTS
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Molecular constraints

Many MD codes enforce holonomic constraints on ξfast to enlarge
time-step.

This is called molecular constraints and introduce errors (assuming
you know that the free dynamics is true !!!).

Assuming that the free dynamics is true, I will show how to recover
exact sampling for free (IMMP, MR, P. Plechac 2010).
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Model

Ex.: Large molecule + slow environment:

ξfast can be: bond lengths, bond angles, dihedral angles .
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Verlet integrator with constraints

Verlet explicit integration + constraints solver with Newton/Gauss solver .







pn+1/2 = pn−
∆t

2
∇V (qn) −∇ξfast(q

n)λn+1/2,

qn+1 = qn + ∆t M−1pn+1/2,

ξfast(q
n+1) = 0 (Cq),

pn+1 = pn+1/2−
∆t

2
∇V (qn+1) −∇ξfast(q

n+1)λn+1

∇ξfast(qn+1)TM−1pn+1 = 0 (Cp),

Same properties as non-constrained case: Time-reversible under
p→ −p, conserve σT∗Σ(dpdq). Quasi-conserve energy
H∆t,n = H +O(∆t2 × log(∆tn)). Can be Metropolized to GHMC.
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Mass-matrix penalisation

Idea from Bennett 70’s. Penalize fDOFs with mass-matrix penalty:

M = Diag(m1, ..md) →Mν(q) = M + ν2∇qξfast(∇qξfast)
T

ν is the penalty parameter (ν = 0 gives back original dynamics).

The dependance q 7→Mν(q) needs to be corrected to conserve
equilibrium distribution:

V (q) → Veff,ν(q) = V (q) +
1

2β
ln det(Mν(q))

= V (q) +
1

2β
ln det(ν−2Id+ (∇qξfast)

TM−1∇qξfast)

Pb: Hamiltonian non longer separable and q 7→Mν(q) can be stiff.
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The Implicit Mass-Matrix Method

Extend state-space with n new DOFs with mass 1 (z, pz) associated with
each fDOFs; and n constraints. Extended Hamitonian:







HIMMP(p, pz, q, z) = 1
2p

TM−1p+
1

2
pT

z pz

︸ ︷︷ ︸

penalty

+Veff,ν(q)

ξfast(q) = z
ν (C)

Formulation equivalent to explicit mass-matrix penalisation Mν .

When ν → 0, exact Hamiltonian is recovered.

When ν → +∞, Hamiltonian system with constraints ξfast(q) = 0.
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Picture

Velocities are penalized away from the tangent slow bundle.

Boltzmann distribution in position is conserved.
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Equilibrium properties.

Since the model is Hamiltonian, you can recover all the
weighting/Metropolis tools and perform ( exact sampling ) in position:

∝ e−βV (q)dq.

The fastest degrees of freedom are slowed down as desired !!
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Numerical results: Alkane+sampling

ξfast = torsion angles, the rest is constrained. SIMU !!
l2 decorrelation time of the end-to-end alkane length in terms of Monte-Carlo
iteration steps. The ratio between the Verlet integration and the IMMP
integration is given. Note that the y-axis is in logarithmic scale, and an
exponential gain occurs.

4 6 8 10 12 14 16 18 20 22 24
0

10

1
10

2
10

L2 Decorrelation Time
Leapfrog/Verlet vs IMMP Ratio 

N = System Size

nu =0.12(N−3)      

2-Free energy – p.53



ERRORS FROM QUANTUM
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Errors from quantum

The subject IS NOT cleaned up at all.

(i) Errors from failure of semi-classical limit for nuclei.

(ii) Errors from failure of adiabatic decoupling .
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Errors from semi-classical

A simple computation shows that

~ω >> β−1

where ω is the frenquency of most bond oscillations !! (low temperature
case). This is in apparent contradiction with the classicality of the nuclei
dynamics.

(i) OPEN: study the commutation of the limit ε→ 0 and β → +∞ for a
given potential. It is not clear to me what is happening. A possible route:
starts directly from the Gibbs quantum state:

Tr(e−βHε ., )

Tr(e−βHε)
.
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Errors from semi-classical

(ii) OPEN: study the commutation between the (i) process and the
Matching Procedure to compute effective potential.

(iii) OPEN: Find a non-controversial effective potential for bonded
interactions.
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Errors from lost of adiabaticity

The cause is conical crossing (or ”diabolic points”), and is defined as
the submanifold where E0

e (q) = E1
e (q).

Many real life examples exhibit case where the chemistery DO USE
canonical crossing (coupling with light).

Here again, the dynamics is quite well-known ( surface hopping,
Landau-Zener formula ...), but :

(i) OPEN: expand the semi-classical limit of the quantum Gibbs
distribution.

(ii) OPEN: find all Langevin versions of surface hopping that samples
the expanded Gibbs distribution.

(ii) OPEN: find the most efficient one...
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Benchmarking

Even for simple cases there is a lack of benchmarking.

It would be useful to make a systematic study of ALL sources of errors
on simple molecular examples, and a review on the most reasonable
methods.
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