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Presentation 1

o Joint work with: T. Lelievre and G. Stoltz (MicMac INRIA project team,

ENPC, Marne-la-Vallée, France). Talk mainly based on ideas out of:

s 11'T. Lelievre, MR and G. Stoltz: Langevin dynamics with
constraints and computation of free energy differences.

s 10'T. Lelievre, MR and G. Stoltz: Free energy computation: a
mathematical perspective.

o Inthis talk, I will focus on:
Errors in equilibrium sampling and free energy computation of
molecular systems coupled to a thermostat (NVT = fixed number of
particles, volume and temperature).
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Presentation 1

o Errorsis a puzzling aspect of the field: everyone computes but no one
knows how far we are from ’reality”.
o Inthistalk I will NOT focus on:

s Extraction of dynamical quantities (exit times, Transition State
Theory, etc..)

s Computation of non-equilibrium steady states.
s Errors in computation of (effective) potentials quantum chemistry.
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Presentation 1

o There are still open questions from the mathematical/theoretical side.

# In particular some source of errors remained uncontrolled , e.g.:
s Time-step errors.
s Quantum corrections.
s Model reduction.

# Important in practice:
s To track the origin of errors/aberrations in simulations.
s Toincrease efficiency by focusing on the bottlenecks errors.
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OVERVIEW ON MOLECULAR SAMPLING AND FREE ENERGY
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Molecular dynamical simulation: A hierarchy of models

REALITY HAS AN EQUATION !I. N = number of atoms. Globally neutral.

# Building block: Full Schrédinger operator (¢ position of nuclei, x position
of electrons, Z;= number of protons in nucleus 7, N; = number of neutrons
INn nucleus 7) in atomic units:
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Molecular dynamical simulation: A hierarchy of models

# You need to add spin variable to electrons and skew-symmetry
constraint.

o Schrodinger equation: 0y = Hyo1).

# Usual temperature, in atomic unit, is small: 3 ~ 103 .
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Towards classical Molecular dynamics

o Standard route: the Born-Oppenheimer approximation:

Electrons are fast (in fact stationary) and nuclei are slow .

So that you neglect coupling between eigenstates of the electrons
(adiabatic assumption).
s You get the decoupled equations for £k = 0. .. oco:

o

o

iU, = H, ¥, + E¥(q) x ¥,
(He + Ve(.,q)¥ey = E¥(q)¥V., (k-th eigenvalue problem).
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Towards classical Molecular dynamics

o Taking ¢ — 0 (semi-classical limit), and k£ = 0 (groundstate), we get
ab-inito classical dynamics:

ZiGi = —V4,E%q), i=1...N.
(He + Ve(.,9))¥e,q = E2(q)¥., (eigenvalue/minimization problem).

® |tis the standard ab-initio model for MD.

ENUMATH 2011 - p.9




Effective potential and coarse-graining

# In many cases effective potentials are used with 2,3,4- body effective
potentials.

o Even if untrue in practice, we assume that we have a standard matching
procedure (MP) to compute effective potentials n-body potentials from
any N-body potential:

molecular system M7 (Va(Giys---5Gi, )01 .-t € Cyy,m=2...N)

# Inprinciple: independant of ¢, 3, At. Computed from idealized
guantum calculation, not by fitting parameters to reality !!

# This step requires a lot of quantum chemistery, and sometimes
kitchen/crystal ball science (CHARMM force field).

o Other topic: Coarse-graining = model reduction in 6N models (N < N
meta-atoms). ENUMATH 2011 —p.10




Molecular simulation: Multi-timescale problem

# Short range interaction (covalent): Rapidly oscillating quantity (~ 10~1° s).
# Large range interaction (electrostatic): (~ 10712 s).

# Reaction coordinates (slow macroscopic variables ~ 109 s, limit of
computational range):

Example:

- iy
‘‘‘‘‘‘‘‘
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Slow degrees of freedom: Meta-stability

Dynamical barriers = metastability = exponential slowdown of equilibrium
convergence:

o Energetic (low temperature) or entropic (high temperature) barriers:
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Thermostatted models

# Introduction of a coupling with a thermostat of temperature, 5~! = k7.

# Ergodic assumption:

Time average = Spatial average

1

5[ oelatyae == (g

# Typical configurations given by Boltzmann Law (NVT case):

_ Jplg)e V9 dg
) = [eBV(adg
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NVT computations

# Statistical nature of quantities to be computed:

# Boltzmann gives all equilibrium physical quantities. Ex: pressure
x E.—2(q-VV(q)).

# Non-ideal equation of state of Argon at 300 K:
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What is free energy F' ?

# Free energy is defined by the equilibrium (marginal) distribution of
faow € R?, @ "slow” variable, or reaction coordinates. For any observable

2 of Sslow

/ gp(z)e_ﬁF(z)dz
<§0(€SIOW(Q))> — = 7

» Define M, = {q € R%¢&,0w(q) = 2} the sub-manifold associated with the
value z of the raction coordinate &0y -

» Define i, ()=-(dq) the conditional surface measure on M verifying the
slice integration dq = d¢,_,_ . (q)=-(dq)dz
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What is free energy F' ?

o We get, up to an additive constant:

F(Z) — _6_1 ln sz e_ﬁV(q)(Sgslow(Q):Z(dq)

o Goal: numerical computation of z — F'(z)

2-Free energy -p.1s



Computing free energy F

# [n factin the context of the present talk ( error analysis), free energy
computation is arguably reducible to the sampling problem.

#» We need to add non-equilibrium simulation of Jarzynski type. But, |
arguably the discussion on errors is strictly similar to the case of
sampling.

# Two main class of methods:

s Adaptive biasing methods.

s Non-equilibrium simulation of Jarzynski type (Thermodynamic
Integration as a limit).
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Computation strategies

The ennemy is metastabillity.

Fixed constraint

)

Biasing (with or without_adaptivity)

Switching constraint
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Adaptive biasing

o Compute adaptively a biasing potential of the form:

Fapprox (gslow (Q))

o Perform sampling with the biasing potential £} ,prox-

o The bias is removable since F,,, ., and the equlibrium distribution is
known.
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Jarzynski non-equilibrium dynamics.

# Add a constraining force (switching) to a molecular system of the form
—V,&s1owA(t), Where A(2) is a Lagrange multiplier with constraints

gslow(Qt) — Z(t) .

o Take care with the thermostat.
o Starts at equilibrium .

o Compute the energy variation of the system which is only due to the
switching (denoted Wy = the work).

® Use theidentity: F(z(T)) — F(2(0)) = —fInE(e #Wor+Corrr=Corro)y

#» Requires several replicas to average E.
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ERRORS
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Errors in molcular simulations

o Quantum errors:
s Error in adiabatic decoupling. ("conical crossings’+e, 3,See later)
s Non-classical behavior of nuclel. (e, 3, See later)

# Model reduction errors:
s 1,2, 3-body effective potentials. (Really a mess).

s "Constraints” errors (due to "freezing” fast degrees of freedom). (See
later).

s Coarse-graining. (Really model dependent).

o Errorsin time-stepping
s Time-step errors. (At, See later)
s Bonus: efficiency of the sampling method. (See later)
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ERRORS FROM TIME-STEP
AND SAMPLING EFFICIENCY
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Classical + thermostat

o Here: Newton equation with stochastic thermostat. V' is assumed to be
a known classical potential. N-body system.

» Equilibrium distribution: NVT o e~ #V (9 dq for positions.
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Context

# Model: a stiff Hamiltonian system H : R — R:

1
H(p,q) = QPTM_lp +V(q)

o M =diag(my,...,mn).

#» Assume: fastest degrees of freedom (fDOFs) are known

. 3N
'ffast : R — Rna

{q € R3N|¢past(q) = 0} =" slow manifold”.
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Model

# Ex.: Large molecule + slow environment:

3
B BPEEE DD I DD

s
O

® &t €can be: bond lengths, bond angles, dihedral angles .

N - = s S 9®
® Torsion S
S Dihedral b
@
Q
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Sampling with Langevin Dynamics

o Coupling with a thermostat: Newton/Hamiltonian motion +
Ornstein-Uhlenbeck process.

p
th — M_lptdt

2
AP, = —=VV(Q) —yM 'Pdt+ gdw, 00 =75 =27kT

\ Hamilton Dissipation Fluctuation

_/\

» Equilibrium distribution: e~/ .4,
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Symplecticity/Reversibility of Hamilton’s equations

K

K

X

Newton/Hamilton H(q,p) =

— qu,pH(Qtapt)

0 Id
—Id 0

(1)

J = symplectic matrix:

p"M~'p+ V(q) = kin. + pot. energy :

s Conservation of phase-space measure dgdp ( Liouville theorem =

Int. by parts).

s Conservation of energy H.

Reversibility ¢ — (¢7_¢, —pr_¢) is still solution of (1).
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Equilibrium properties Of Ornstein-Uhlenbeck equations

# Ornstein-Uhlenbeck process on momenta (stochastic thermostat):

dP;, = —yM~'P, + odW,, ool = %7, (1)

® Symmetry: t — — P, solution of (1).

» Reversibility wrt to equilibrium distribution: If

1 1 —1
Law(Py) = Ee_ﬁipTM P dp

then the probability distribution of paths is invariant under time reversal:

Law (t — P, t € [0,T]) = Law (t — +Pr_;, t € [0,T))
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Mixing properties Of Ornstein-Uhlenbeck equations

# Ergodicity, whatever Fjy:

1 [t 1 | T
lim — P, dt = — e Pap M p g ..
TirfmT/() p(Fr) /Rw w(p)Zke P as
#» Mixing, whatever F,:
ex 1 1, T —1
lim Law(P,) = —e Pap M pgp,
t—gl—noo aw( t) - Zke b

2-Free energy -p.30



Equilibrium properties Of Langevin equations

# Reversibility up to momenta reversal wrt to invariant distribution: If

I
Law(Qo, Po) = 7€ FH dq dp

then the probability distribution of paths is invariant under time reversal:
Law (t — (Qq¢, P, t € [0,T]) = Law (t — (Qr—_¢, —Pr_¢), t € [0,T1])

THIS IS DETAILED BALANCE

o Ergodicity + mixing from the hypoellipticity of associated operator:

1 1

T
Tlirfoof/() o(Qr, Py) dt = /RSN o(g.p);e P dgdp .
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Numerical scheme 1

# Hamiltonian dynamics: Verlet explicit integration.

0 At
pnt/2 = P VV(g").

4 qn—l—l _ qn + At ]\4—1pn—|—1/27

| P =pt TRV

#» Conserve gqualitative properties of continuous Hamiltonian dynamics:
» Time-reversible under p — —p.
s Conserve symplectic form (2d- area in all planes) and thus volume
dpdq.
s Quasi-conservation of energy Ha;, = H + O(At? x log(Atn))
s Does notwork if H is not separable H = T'(p) + V(q).
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Numerical scheme 2

# One canthus get detailed balance up to an energy drift, that is to say:

e_BH(Qnapn) 5(1)(qn ,pn)(dQn—l—l dpn+1) dqn dpn =
N’

numerical flow
e_B(H(Qn 7pn)_H(Qn+1 7pn—|—1)) X

N

~

energy variation

e_B(H(qn+1,pn+1))5<I>(qn+1,pn_|_1)(dQn dpn) dgni1 dpria,

# Versions when adding a Orstein-Uhlenbeck thermostat process.
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A time-step correction method: Generalized Hybrid Monte-Carlo

#» GHMC = Metropolis for time-step errors of Langevin equations .

1. Evolve momenta according to the Ornstein-Uhlenbeck process
during At compute the energy H(q", p"t1/4).

2. Integrate the Hamiltonian equations of motion according to the Verlet
scheme. Get (¢"!, p" 1) and compute the energy H (", p"*t1).

3. Accept the proposal with probability
min (1, exp(—B(H(¢", 5" ") — H(q",p""/*))))

otherwise, reject and reverse momenta by setting
(qn+17pn+1) _ (qn’ _pn—|—1/4)

# Ergodic Markov chain reversible wrt exact stationary distribution
e~ BH(@:P) dgdp up to p — —p (detailed balance).
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Overdamped dynamics:

#» Replace step (1) by immediate equilibrium ( high friction limit).

o \Verletyields Euler discretized overdamped stochastic differential
equation:

Q" = Q" — AP /2M T VV(Q") +AtY/FTIM Y N(0,1)
d;irft dr f fuston

# Yields Metropolis algorithm when add the rejection rule.

# Yields a Markov chain reversible wrt e=?V (9 dq.

2-Free energy -p.3s




Sampling efficiency

#® The average rejection rate in Metropolis/ Hybrid Monte Carlo (both
Langevin and overdamped) ONLY depend the time-step and NOT on the
friction. This enables to define a critical time step with rejection
prescribed at 1/50 valid independantly on the friction parameter.

o However, if we denote the mixing time of Langevin dynamics 7,,;., the
computational cost of discretized Langevin without Metropolis step is:

Nmix — mix/Atcrit-
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Sampling efficiency

# Now denote the mixing "time” T

mix,ov

of the overdamped dynamics:

dQs = —M~'V,Vds+ /28~ M-1dW;.

T7 iz 00 IS homogenous to [T7] but independent of At,,.;; . Then

according to the effective time step of overdamped above:

Nmi:c,ov — 2T2

mix,ov

/AL

crit:

® Thusif Ateryr << Thiz.on then:

Nmia: _ Atcrit Tmzw << 1

Nmix,ov Tmix,ov Tmix,ov
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Correcting with Metropolis

# Langevin is much better than overdamped ( OPEN: to precise)..

# BUT Momenta flip in GHMC make sampling efficiency similar to
overdamped ( OPEN: to precise).

o Another porblem:Rejections in Metropolis depends badly on
dimensionality of fast-degrees of freedom.

o Open practical/theoretical guestion: how can we obtain a compromise
between time-step bias and sampling efficiency ??
If your favorite chemists gives you a code, can you construct a black box
algorithm which computes the "good” time-step, computes weights and
rejections, in order to achieve this compromise ?
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Removing time-step in Jarzynski simulation

# d evolving constraints associated with the reaction coordinate;
Hamiltonian:

H(p,q) = sp" M~ 'p+V(q)
'fslow (Q) — Z(t) (C)
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Verlet integrator with constraints

o \Verlet explicit integration + constraints solver with Newton/Gauss solver .

_/\

At

,
”+1/2=p”——w< ") — Vesiow (M)A T2,

p
qn—l—l _ qn + At M~ 1pn—|—1/2’
fslow( n—l—l) — (tn—l—l) (CQ)a

At
pn—l—l pn—l—l/Q > vv(qn—l—l) L vgslow(qn—l—l))\n—l—l

\ vgslow( n+1)TM 1 n—|—1 2(tn41)—2(tn) (Cp)7

At

# Time-reversible under p — —p and z(t¢,,.1) < z(t,). Conservation of the
symplectic structure.
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Conservation of the symplectic structure

# It may seem surprising to obtain symplecticity for a mapping between
two different phase-space.

» In fact, the numerical flow is symplectic in the full phase-space R®", and
symplecticity is inherited on constraints manifolds.

# One can thus get detailed balance up to an energy drift, that is to say:

e_ﬁH(Qnapn) §¢zn,zn+1 (qn ,pn)J(dQn—l—l dpn—l—l) Ozp, (dqn dpn) —

numerical flow at z, phase-space measure

e_ﬁ(H(Qn apn)_H(Qn—l-l 7pn+1)1 X

\ .

work = energy variation

e_ﬁ(H(q”+1’p”+1))5<I>zn+1,zn (gn+1:Pn+1) (dgn dpr) Ozn+1 (dgn41 dpn1),
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Exact discrete Jarzynski identity

o Add carefully a thermostat.

® Define the work as

Wor =) AH,
" energy variation of hamiltonian int

# This yields a discrete Jarzynski identity:

F(2(T)) — F(2(0)) = —3 InE(e=#OWr+Corrn=Corno)y
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Exact discrete Jarzynski identity

X

K

Thus time-reversibility + symplecticity yields:

s (i) Detailed balance up to a factor.

s (ii) Metropolis correction in dynamics with rejection.

s (i) Time-step correcting weights in non-equilibrium Jarzynski.
OPEN: Show theoretically following idea: there is an incompressible
source of error : bias from time-step in Langevin ~ variance from mixing

slow-down in Metropolis ~ variance in Jarzynski work exponential
weights. | DO NOT KNOW HOW TO DO BUT | SUSPECT IT IS TRUE IN

SOME REGIME .
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open problem

o OPEN 2: IS THERE A WAY TO ACHIEVE A BIAS/VARIANCE
COMPROMISE REGIME ?

#» OPEN 3: CAN YOU PROVE THAT NOTHING MORE CLEVER CAN
BE DONE (no trick theorem) ?
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ERRORS FROM CONSTRAINTS
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Molecular constraints

# Many MD codes enforce holonomic constraints on &g, to enlarge
time-step.

# This is called molecular constraints and introduce errors (assuming
you know that the free dynamics is true !I!).

# Assuming that the free dynamics is true, | will show how to recover
exact sampling for free (IMMP, MR, P. Plechac 2010).
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Model

# Ex.: Large molecule + slow environment:

3
B BPEEE DD I DD

s
O

® &t €can be: bond lengths, bond angles, dihedral angles .

N - = s S 9®
® Torsion S
S Dihedral b
@
Q
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Verlet integrator with constraints

o \Verlet explicit integration + constraints solver with Newton/Gauss solver .

( At
p”“/sz”——VV( ") — Vetast (q¢")A" T2

q _ q —|—At M~ 1 n—|—1/2
€fast (qn—l—l) =0 (Cq)a
At
pn—l—l _ pn—|—1/2 VV( n—l—l) o vgfast(qn—l_l))\n—i_l
\ vgfast( n—l—l)TM 1 n—i—l — 0 (Cp),

L/

# Same properties as non-constrained case: Time-reversible under
p — —p, conserve orsx(dpdq). Quasi-conserve energy
Haim = H + O(At? x log(Atn)). Can be Metropolized to GHMC.
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Mass-matrix penalisation

o Idea from Bennett 70’s. Penalize fDOFs with mass-matrix penalty:

M = Diag(mq,..mgq) — M,(q) = M + v*V,&ast (Vi tast) T

# v isthe penalty parameter (v = 0 gives back original dynamics).

# The dependance q — M, (q) needs to be corrected to conserve
equilibrium distribution:

Vig) = Vego(q) = V(Q)+%lndet(Mu(Q))
_ V()+%lndet( T2Id + (Vyétast) MMV, € ast)

# Pb: Hamiltonian non longer separable and ¢ — M, (q) can be stiff.
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The Implicit Mass-Matrix Method

» Extend state-space with n new DOFs with mass 1 (z, p,) associated with

each fDOFs: and n constraints. Extended Hamitonian:

/

\ gfast (Q) —

z

v

Huumr (p, 21 ¢, 2) = 5p" M~ p +

(C)

2
——

penalty

1
—pIp. +Veg 1 (q)

o Formulation equivalent to explicit mass-matrix penalisation M,,.

® When v — 0, exact Hamiltonian i1s recovered.

o When v — +oo, Hamiltonian system with constraints &;.s:(q) = 0.
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Picture

# \Velocities are penalized away from the tangent slow bundle.

# Boltzmann distribution in position is conserved.

V=0

//\3(1): O

vV Z£Q

39) =0
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Equilibrium properties.

# Since the model is Hamiltonian, you can recover all the
weighting/Metropolis tools and perform ( exact sampling ) in position:

~x e~ BV (@) dq.

# The fastest degrees of freedom are slowed down as desired !!
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Numerical results: Alkane+sampling

Erast = torsion angles, the rest is constrained. SIMU !
[ decorrelation time of the end-to-end alkane length in terms of Monte-Carlo
iteration steps. The ratio between the Verlet integration and the IMMP

integration is given. Note that the y-axis is in logarithmic scale, and an
exponential gain occurs.

L2 Decorrelation Time
Leapfrog/Verlet vs IMMP Ratio

10

10 7

X nu=0.12(N-3)
10 4 | 6 | 8 | 1'0 | 1'2 | 1'4 | 1'6 | 1'8 | 2'0 | 2'2 | 2-Freeenergy —p-53
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ERRORS FROM QUANTUM
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Errors from quantum

# The subject IS NOT cleaned up at all.
# (i) Errors from failure of semi-classical limit for nuclei.

o (i) Errors from failure of adiabatic decoupling .
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Errors from semi-classical

# A simple computation shows that
hw >> 371

where w is the frenguency of most bond oscillations !! (low temperature

case). This is in apparent contradiction with the classicality of the nuclei
dynamics.

# (1) OPEN: study the commutation of the limite — 0 and 8 — +oc for a
given potential. It is not clear to me what is happening. A possible route:
starts directly from the Gibbs guantum state:

Tr(e PHe )
Tr(e=FAHe)
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Errors from semi-classical

# (i) OPEN: study the commutation between the (i) process and the
Matching Procedure to compute effective potential.

# (i) OPEN: Find a non-controversial effective potential for bonded
interactions.
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Errors from lost of adiabaticity

# The cause is conical crossing (or "diabolic points™), and is defined as
the submanifold where E%(q) = El(q).

o Many real life examples exhibit case where the chemistery DO USE
canonical crossing (coupling with light).

# Here again, the dynamics is quite well-known ( surface hopping,
Landau-Zener formula ...), but :

# (i) OPEN: expand the semi-classical limit of the quantum Gibbs
distribution.

o (i) OPEN: find all Langevin versions of surface hopping that samples
the expanded Gibbs distribution.

o (i) OPEN: find the most efficient one...
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Benchmarking

# Even for simple cases there is a lack of benchmarking.

o It would be useful to make a systematic study of ALL sources of errors
on simple molecular examples, and a review on the most reasonable
methods.
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