Méthodes déterministes en finance :

TD : modèle de Black-Scholes

Parité Call Put

Soit C(t, S) et P(t, S) les prix d'un call et d'un put, pour une maturité T et un strike K fixés.

- 1. Quelle est l'équation vérifiée par C P?
- 2. En déduire la parité call-put : $C(t, S) P(t, S) = S Ke^{-r(T-t)}$.

Cas de r et σ dépendants du temps

Montrer que le prix P(t,S) d'une option européenne de payoff $\phi(S)$ dans le modèle de Black Scholes avec un taux d'intérêt r et une volatilité σ dépendant du temps et égal au prix de l'option de même maturité, avec un taux d'intérêt constant égal à $\overline{r} = \frac{1}{T-t} \int_t^T r(s) \, ds$ et une volatilité constante égale à $\overline{\sigma} = \sqrt{\frac{1}{T-t} \int_t^T \sigma^2(s) \, ds}$. On pourra utiliser une méthode probabiliste et une méthode déterministe, par des changements de variables successifs sur l'EDP de Black Scholes. Comparer les deux approches.

Option Lookback

On considère une option sur maximum : le pay off est $h = \phi(S_T, M_T)$ où $M_t = \max_{0 \le r \le t} S_r$, et S_t vérifie l'EDS $dS_t = S_t(r dt + \sigma dW_t)$ sous la probabilité risque neutre. Les paramètres r et σ sont supposés constants.

- 1. Vérifier que (S_t, M_t) est un processus de Markov. Donner le prix de l'option sous la forme d'une espérance conditionnelle.
- 2. Le prix de l'option est donc de la forme $P(t, S_t, M_t)$. En remarquant que M_t est un processus à variation finie et que la mesure dM_t est étrangère à la mesure de Lebesgue dt, en déduire l'EDP vérifiée par P:

$$\begin{cases}
\partial_t P + \frac{\sigma^2}{2} S^2 \partial_{S,S} P + r S \partial_S P - r P = 0, & \text{pour } 0 \le S \le M, \\
P(T, S, M) = \phi(S, M), & \\
\frac{\partial P}{\partial M}(t, S, S) = 0.
\end{cases} \tag{1}$$

- 3. Vérifier réciproquement que si P est solution de (1), alors le prix de l'option est bien $P(t, S_t, M_t)$, en ajoutant des conditions de régularité adéquates sur P, r et σ .
- 4. On suppose dans cette question que le payoff est de la forme : $\phi(S, M) = M\tilde{\phi}(S/M)$. Montrer que P est alors de la forme P(t, S, M) = MW(t, S/M) où W vérifie :

$$\begin{cases} \partial_t W + \frac{\sigma^2}{2} \xi^2 \partial_{\xi,\xi} W + r \xi \partial_{\xi} W - r W = 0, & \text{pour } 0 \le \xi \le 1, \\ W(T,\xi) = \tilde{\phi}(\xi), & \\ \frac{\partial W}{\partial \xi}(t,1) = W(t,1). \end{cases}$$
 (2)