Metastability and transition times for a space-time white noise stochastic partial differential equation in dimension 1

Florent Barret, PhD under the direction of Sylvie Méléard and Anton Bovier

> CMAP École Polytechnique Palaiseau

23th September 2011, Journées MAS, ENPC

For
$$(x,t) \in [0,1] \times \mathbb{R}^+$$
, $u(x,t) \in \mathbb{R}$ satisfies

$$\begin{cases} \partial_t u(x,t) &= \gamma \partial_{xx}^2 u(x,t) - V'(u(x,t)) + \sqrt{2\varepsilon} W \\ u(x,0) &= u_0(x) \end{cases}$$

with

- u_0 continuous function on [0,1]
- $\varepsilon, \gamma > 0$
- W space-time white noise.

with boundary conditions (Dirichlet or Neumann). Existence and unicity of a mild solution (Walsh 1984, Gyöngy, Pardoux).

Example: Allen-Cahn $V(x) = \frac{x^4}{4} - \frac{x^2}{2}$ (Faris, Jona-Lasinio 1982)

$$\partial_t u(x,t) = \gamma \partial_{xx}^2 u(x,t) - u^3(x,t) + u(x,t) + \sqrt{2\varepsilon} W$$

$$\partial_t u(x,t) = \gamma \partial_{xx}^2 u(x,t) - V'(u(x,t)) + \sqrt{2\varepsilon} W$$

Interpretations:

- elastic string in a viscous random environment submitted to a potential (Funaki, 1983)
- quantum field theory (Faris, Jona-Lasinio 1982)
- statistical mechanics as a reaction diffusion equation modeling phase transitions and evolution of interfaces (Vanden-Eijnden, Westdickenberg).

Analogue in infinite dimension of a gradient system:

$$\partial_t u = -\frac{\delta S}{\delta u} + \sqrt{2\varepsilon} W$$

where S is a functional potential (free energy)

$$S(\phi) = \int_0^1 \frac{\gamma}{2} \left| \phi' \right|^2 (x) + V(\phi(x)) \mathrm{d}x.$$

Gradient flow in infinite dimension : for $\phi, k \in C^2_{bc}([0,1])$

$$S(\phi) = \int_0^1 \frac{\gamma}{2} \left| \phi' \right|^2 (x) + V(\phi(x)) dx$$

Taylor expansion at the 2nd order:

$$S(\phi + k) = S(\phi) + \int_0^1 \frac{\delta S}{\delta \phi}(x)k(x) + \frac{1}{2} \frac{\delta^2 S}{\delta \phi^2}(k)(x)k(x) dx + o(\|k\|^2)$$
$$\frac{\delta S}{\delta \phi}(x) = -\gamma \phi''(x) + V'(\phi(x))$$
$$\frac{\delta^2 S}{\delta \phi^2}(k) = -\gamma k'' + V''(\phi)k =: \mathcal{H}_{\phi}Sk$$

 $\mathcal{H}_{\phi}S$: Strum-Liouville operator on [0,1] with eigenvalues $(\lambda_k(\phi))_k$.

Analogous to finite dimensional gradient system

$$\mathrm{d}X_t = -\nabla F(X_t)\mathrm{d}t + \sqrt{2\varepsilon}\mathrm{d}B_t \in \mathbb{R}^N$$

Properties:

- Metastable states: minima of the free energy (F).
- Transitions occur between metastable states through the lowest saddle points.
- The law of the hitting time is asymptotically exponential.

Simplest case: m^-, m^+ minima of F s.t. $F(m^-) \geqslant F(m^+)$ separated by a unique saddle point \hat{s} .

Let $\tau_{\varepsilon}(B_{+})$ be the hitting time of a small ball $B_{+}=B_{\rho}(m^{+})$. The Eyring-Kramers Formula reads (Bovier, Eckhoff, Gayrard, Klein, 2004)

$$\mathbb{E}_{m_{-}}(\tau_{\varepsilon}(B_{+})) = \frac{2\pi}{|\lambda^{-}(\widehat{s})|} \sqrt{\frac{|\det HF(\widehat{s})|}{\det HF(m^{-})}} e^{\frac{F(\widehat{s}) - F(m^{-})}{\varepsilon}} (1 + O(\sqrt{\varepsilon} |\ln \varepsilon|^{3/2})).$$

HF Hessian matrix of F, and $\lambda^{-}(\widehat{s})$ the unique negative eigenvalue of $HF(\widehat{s})$.

Very strong link with the first eigenvalues of the infinitesimal generator. Other method: semi-classical analysis (Helffer, Klein, Nier...).

We consider the simplest situation: S have three stationary points, solutions of

$$\begin{cases} \frac{\delta S}{\delta \phi} &= -\gamma \phi''(x) + V'(\phi(x)) = 0 \\ &+ b.c. \end{cases}$$

- \bullet ϕ^+,ϕ^- two minima
- 2 $\widehat{\sigma}$ a single saddle point between ϕ^+ and ϕ^- .

Example : $V(x)=\frac{x^4}{4}-\frac{x^2}{2}$, for $\gamma>\gamma_0=\frac{1}{\pi^2}$ (Allen-Cahn + Neumann b.c.)

- two minima $\phi^+=+1$, $\phi^-=-1$
- one saddle point $\hat{s} = 0$.

Assume
$$S(\phi^-) \geqslant S(\phi^+)$$
, we let $B^+ = B_\rho^{H^1}(\phi^+)$ for $\rho_0 > \rho > 0$

$$\mathbb{E}_{\phi^{-}}\left[au_{arepsilon}\left(B^{+}
ight)
ight]=rac{2\pi}{|\lambda^{-}(\widehat{\sigma})|}\sqrt{\left|rac{\mathrm{Det}\mathcal{H}_{\widehat{\sigma}}\mathcal{S}}{\mathrm{Det}\mathcal{H}_{\phi^{-}}\mathcal{S}}
ight|}e^{\widehat{\mathcal{S}}(\phi^{-},\phi^{+})/arepsilon}\left(1+O(\sqrt{arepsilon}\left|\lnarepsilon
ight|^{rac{3}{2}})
ight)$$

where $\widehat{S}(\phi^-,\phi^+) = S(\widehat{\sigma}) - S(\phi^-)$. We define

$$\frac{\mathrm{Det}\mathcal{H}_{\widehat{\sigma}}S}{\mathrm{Det}\mathcal{H}_{\phi^{-}}S} = \prod_{k\geqslant 0} \frac{\lambda_{k}(\widehat{\sigma})}{\lambda_{k}(\phi^{-})}$$

which converge since $\lambda_k = c\gamma k^2 + O(1)$ for $k \ge 0$.

Example Allen-Cahn (Neumann b.c.) for $\gamma > \gamma_0 = \frac{1}{\pi^2}$: we have $\phi^+ = \mathbb{1}$, $\phi^- = -\mathbb{1}$ and $\widehat{s} = 0$. We get

$$S(\phi) = \int_0^1 \frac{\gamma}{2} \phi'^2(x) + \frac{1}{4} \phi(x)^4 - \frac{1}{2} \phi(x)^2 dx$$
$$\mathcal{H}_{\phi} Sh = -\gamma h'' + (3\phi^2 - 1)h.$$

We obtain

$$S(\phi^{\pm}) = -\frac{1}{4} \qquad S(\widehat{\sigma}) = 0$$

$$\mathcal{H}_{\phi^{\pm}}Sh = -\gamma h'' + 2h \qquad \mathcal{H}_{\widehat{\sigma}}Sh = -\gamma h'' - h$$

$$\lambda_{k}(\phi^{\pm}) = \gamma \pi^{2} k^{2} + 2 \qquad \lambda_{k}(\widehat{\sigma}) = \gamma \pi^{2} k^{2} - 1 \qquad k \geqslant 0$$

Functional determinants, Levit Smilansky 1977, Dreyfus Dym 1978

For \hat{s} , f^- solutions of

$$\mathcal{H}_{\hat{\sigma}}S\hat{s} = 0$$
 $\hat{s}(0) = 1$ $\hat{s}'(0) = 0$ $\mathcal{H}_{\hat{\sigma}^{-}}Sf^{-} = 0$ $f^{-}(0) = 1$ $f^{-'}(0) = 0$

then

$$f^-(x) = \operatorname{ch}\left(\sqrt{\frac{2}{\gamma}}x\right), \qquad \widehat{s}(x) = \cos\left(\frac{x}{\sqrt{\gamma}}\right).$$

For Neumann boundary conditions,

$$\frac{\mathrm{Det}\mathcal{H}_{\hat{\sigma}}\mathcal{S}}{\mathrm{Det}\mathcal{H}_{\phi^{-}}\mathcal{S}} = \frac{\hat{s}'(1)}{f^{-'}(1)} = -\frac{1}{\sqrt{2}} \frac{\sin\left(\frac{1}{\sqrt{\gamma}}\right)}{\sin\left(\sqrt{\frac{2}{\gamma}}\right)}.$$

Analogue representation for Dirichlet boundary conditions.

Finite Difference Approximation

Main principle: use Eyring-Kramers Formula in dimension N then $N \to +\infty$.

We construct a diffusion in \mathbb{R}^N such that $Y_t^i \approx u(\frac{i}{N}, tN)$.

$$S_{N}(y) = \frac{1}{N} \sum_{i=1}^{N} \frac{\gamma}{2} N^{2} (y_{i+1} - y_{i})^{2} + V(y_{i}) \quad (y_{i} = \phi(i/N))$$
$$dY_{t} = -\nabla S_{N}(Y_{t}) dt + \sqrt{2\varepsilon} dB_{t}$$
$$= \frac{N\gamma}{2} \left[Y_{t}^{i+1} - 2Y_{t}^{i} + Y_{t}^{i-1} \right] dt - \frac{1}{N} V'(Y_{t}^{i}) dt + \sqrt{2\varepsilon} dB_{t}^{i}.$$

 B_t defined from the white noise

$$B_t^i = \sqrt{N}W\left(\left[\frac{i}{N}, \frac{i+1}{N}\right] \times [0, t]\right).$$

We approximate u with u^N the linear interpolation s.t. $u^N(\frac{i}{N}, tN) = Y_t^i$.

Main steps

Aim: interchange of limits $(\varepsilon \to 0 \text{ and } N \to \infty)$

• for a fixed ε , convergence of u^N to u, thus convergence of the expected transition time

$$\lim_{N\to\infty}\mathbb{E}_{\phi_{N}^{-}}\left[\tau_{\varepsilon}^{N}\left(B^{+}\right)\right]=\mathbb{E}_{\phi^{-}}\left[\tau_{\varepsilon}\left(B^{+}\right)\right].$$

2 for fixed N, calculation of the transition time $a_N(\varepsilon)$

$$\left|\frac{1}{a_{N}(\varepsilon)}\mathbb{E}_{\phi_{N}^{-}}\left[\tau_{\varepsilon}^{N}\left(B^{+}\right)\right]-1\right|=\psi(\varepsilon,N)<\Psi(\varepsilon)=O(\sqrt{\varepsilon}\left|\ln(\varepsilon)\right|^{3/2})$$

where $\Psi(\varepsilon)$ does not depend on N.

3 the limit $a(\varepsilon)$ of $a_N(\varepsilon)$ gives the precise asymptotics

$$a(\varepsilon) = \lim_{N \to \infty} a_N(\varepsilon).$$

Step 2

Aim: calculation of $a_N(\varepsilon)$ with error bounds uniformly in the dimension

using potential theory

$$\left|\frac{1}{\mathsf{a}_{\mathsf{N}}(\varepsilon)}\mathbb{E}_{\nu_{-}^{\mathsf{N}}}\left[\tau_{\varepsilon}^{\mathsf{N}}\left(\mathcal{B}^{+}\right)\right]-1\right|=\psi_{1}(\varepsilon,\mathsf{N})<\Psi_{1}(\varepsilon)$$

where ν_N^- is the equilibrium probability on ∂B_N^- .

Then using the loss of memory of the initial condition uniformly in the dimension

$$\frac{1}{a_{N}(\varepsilon)}\left|\mathbb{E}_{\nu_{N}^{-}}\left[\tau_{\varepsilon}^{N}\left(B^{+}\right)\right]-\mathbb{E}_{\phi_{N}^{-}}\left[\tau_{\varepsilon}^{N}\left(B^{+}\right)\right]\right|<\Psi_{2}(\varepsilon).$$

Results from Martinelli, Scoppola, Olivieri on the loss of memory of the initial condition.

Step 2.1

From the potential theory, with $\mu_{\varepsilon}^{N}(\mathrm{d}z) = \exp(-S_{N}(z)/\varepsilon)\mathrm{d}z$ the reversible measure

$$\mathbb{E}_{\nu_{-}^{N}}(\tau_{\varepsilon}^{N}(B_{N}^{+})) = \frac{\int_{(B_{N}^{+})^{\varepsilon}} h^{*}(z) \mu_{\varepsilon}^{N}(\mathrm{d}z)}{\mathrm{cap}(B_{N}^{-}, B_{N}^{+})}.$$

The capacity satisfies

$$\operatorname{cap}(B_N^-,B_N^+)=\inf\big\{\mathcal{E}(h,h),h=\mathbb{1}_{B_-}\text{ on }B_-\cup B_+\big\}=\mathcal{E}(h^*,h^*).$$

 \mathcal{E} is the Dirichlet form

$$\mathcal{E}(h,h) = arepsilon \int_{\mathbb{R}^N} \|
abla h \|_2^2 \, \mathrm{d} \mu_arepsilon^N$$

and
$$h^*(z) = \mathbb{P}_z[\tau_{\varepsilon}^N(B_N^-) < \tau_{\varepsilon}^N(B_N^+)].$$

Uniform upper bound for capacities

Aim: construction of a good test function h able to minimize $\mathcal{E}(h,h)$ well enough.

Heuristics: h must be close to h^* , therefore h must be nearly constant on the basins of attraction of B_N^- (≈ 1) and B_N^+ (≈ 0) and is steeper near the saddle $\widehat{\sigma}_N$.

Then a good choice of h leads to

$$\mathcal{E}(h,h) \leqslant \int_{C_{\delta}^{N}(\widehat{\sigma}_{N})} \|\nabla h(z)\|_{2}^{2} e^{-\frac{S_{N}(z)}{\varepsilon}} dz$$
$$+ \int_{S_{N}(z) > S_{N}(\widehat{\sigma}_{N}) + \eta} \|\nabla h(z)\|_{2}^{2} e^{-\frac{S_{N}(z)}{\varepsilon}} dz.$$

The second integral gives a negligible contribution. The first, I_1 , can be evaluated using Laplace's method: approximate S_N by a quadratic potential (i.e. the Hessian form).

The set $C_\delta^N(\widehat{\sigma}_N)$ is such that, for all N, $z \in C_\delta^N(\widehat{\sigma}_N)$

$$\left|S_N(z)-S_N(\widehat{\sigma}_N)-\frac{1}{2}HS^N(z-\widehat{\sigma}_N)\right|\leqslant C\delta^3.$$

One possible choice is to take (in the orthonormal basis of HS^N associated to eigenvalues $(\lambda_k^N)_{0 \leqslant k \leqslant N-1}$ in increasing order)

$$C_{\delta}^{N}(\widehat{\sigma}_{N}) = \widehat{\sigma}_{N} + \prod_{k=0}^{N-1} \left[-\frac{\delta r_{k}}{\sqrt{|\lambda_{k}^{N}|}}, \frac{\delta r_{k}}{\sqrt{|\lambda_{k}^{N}|}} \right]$$

where $\sum_{k\geqslant 1}\frac{r_k^{3/2}}{k^{3/2}}<\infty$. Then we choose $h(z)=h_0(\widehat{y}_0)$ where \widehat{y}_0 is the coordinate associated to λ_0^N (unique negative eigenvalue).

We obtain

$$\begin{split} I_1 &= \int_{C_\delta^N(\widehat{\sigma}_N)} h_0'(\widehat{y}_0)^2 e^{-\frac{S_N(\widehat{y})}{\varepsilon}} \mathrm{d}\widehat{y} \\ &\leqslant e^{-\frac{S^N(\widehat{\sigma}_N)}{\varepsilon}} \int_{-\delta\alpha_0}^{\delta\alpha_0} h_0'(\widehat{y}_0)^2 e^{\left|\lambda_0^N\right| \widehat{y}_0^2/2\varepsilon} \mathrm{d}\widehat{y}_0 \times \prod_{k=1}^{N-1} \int_{\mathbb{R}} e^{-\left|\lambda_{N,k}\right| y_k^2/2\varepsilon} \mathrm{d}y_k \\ &\times \left(1 + 2C\frac{\delta^3}{\varepsilon}\right). \end{split}$$

Then optimizing h_0 and setting $\delta = O(\sqrt{\varepsilon |\ln \varepsilon|})$

$$I_1 \leqslant \sqrt{2\pi\varepsilon}^{N-2} \frac{\left|\lambda_0^N\right| e^{-\frac{S_N(\widehat{\sigma}_N)}{\varepsilon}}}{\sqrt{|\det(HS^N(\widehat{\sigma}_N))|}} (1 + O(\sqrt{\varepsilon} |\ln(\varepsilon)|^{3/2})).$$

