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State space Euclidean space R

Hamiltonian Function H : RV - R
H specified later

Gibbs measure p(dx) := Z7 " exp (—H(x))dx



Kawasaki dynamics

Stochastic process dX; = —AVH(X;)dt + V2AdB:, X; € RV

A second order difference operator
f.e. for the 1-d periodic lattice
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Spin exchange between nearest neighbors



Kawasaki dynamics: simulation

System size N=6
Single-site potential P(z) = (22 —1)?
Hamiltonian H(x) = 320, w(x)
Deterministic gradient flow Stochastic perturbation

dX; = —AVH(X;)dt +V/2AdB;




Kawasaki dynamics

Questions Is there an equilibrium state for X;?
If yes, does X;: approach the equilibrium?
In which sense and how fast?



Kawasaki dynamics

Questions Is there an equilibrium state for X;?
If yes, does X;: approach the equilibrium?
In which sense and how fast?

Conservation IS xi(t) =4SN, x(t=0)=m

of mean spin

New state space RN v Xym = {x ERV| LN X = m}
Canonical ensemble e~ p=2"" exp(—H(x)) Hifosn, X/:m}(dx)

u is stationary for X;.



Logarithmic Sobolev inequality

Definition wu(dx) satisfies LSI(p), if for all f(x) > 0
o [ IVIP
Ent(fulp) := [ flog fdu — fdu | log fdu | <p o du.
Observation 1 |V < N2|VAVF.
Observation 2 Let X; be distributed as iy, then

d B |VAVf[?
gt ENt(fuln) = — / Tpp dw

Consequence
If 10 satisfies LSI(p), then Ent(fiu|u) < exp(—N"2p t) Ent(fou|p).

Remark LSl is well adapted to the hydrodynamic limit N — oco.



LSI for Kawasaki: known results

Quadratic case

Proposition (Landim, Panizo & Yau '02)

Assume

N
H(x) = Zw(x;), non-interacting

i=1
1

¥(z) = 5z2 + Vo(2), z€R with |Vloo,|Vhoo, | Vi oo < 00

Then u satisfies LSI(p).

The constant ¢ > 0 is independent of the system size N and the mean spin m.

Two different proofs

Landim, Panizo & Yau '02, Chafai '03: Lu-Yau martingal method
Grunewald, Otto, Villani & Westdickenberg '09: Two-scale approach



LSI for Kawasaki: known results

Subquadratic case counterexample of Barthe & Wolff '09

¢(Z)={Z7 forz>0 SG(o) ~ -z

m2
oo, else LSI(0) ~ 71

Superquadratic case Question raised by Varadhan '93

P(2) = Ve(2) + Vo(2)

Vi(z)>c>0  and [Voloo, [Vbloo < o0.

Conjecture by Landim, Panizo & Yau '02

Partial answer for spectral gap by Caputo '02



LSI for Kawasaki: superquadratic case

Proposition (M. & Otto '10).
Assume

N
H(x) = Zw(xl-), non-interacting
i

with 1) is perturbed strictly convex i.e

P(z) = Ve(2) + W(2), z€R
Vi(z)>c>0 and  |Vb|oo, | Vil < 0.

Then p satisfies LSI(p), independent of N and m.

Remarks Improves result of Caputo for spectral gap.



LSI for Kawasaki: technical difficulties

Standard Criteria for LSl fail:

Tenzorization principle Restriction to Xn,m ~» w is not product measure,
Bakry & Emery H(x) is not convex,
Holley & Stroock LSI(p) independent of N.

Elaborated machinery for LSI:
Lu & Yau Martingal method ¢ (z) bounded perturbation of Gaussian

Two-scale approach requires | |0 < 0.

Strategy: Adapt the two-scale approach.



Two-scale approach

Coarse graining | |

K = size of a block
M = number of blocks

N = size of the system — | | |
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Two-scale approach

Coarse graining

N = size of the system
K = size of a block
M = number of blocks

Coarse graining operator Px := (Y1y...,Ym)
= (1? Z/K:1 Xiyeoos 1? Z;V:N—K-H X/)
Decomposition of ;. wu(dx) = p(dx|Px = y) a(dy)



Two-scale approach

Coarse graining

N = size of the system
K = size of a block
M = number of blocks

Coarse graining operator Px := (Y1y...,Ym)
= (1? Z,K:1 Xiyeoos 1? Z;V:N—K-H X/)
Decomposition of ;. wu(dx) = p(dx|Px = y) a(dy)

Proposition (Two-scale criterion for LSI, GOVW '09)
Assume that

o K= Sup{(m%ﬁl}/) i xXEKerP, ye (KerP)L} < 00,

e u(dx|Px = y) satisfies LSI(p1) independent of N, m, andy,  (Mikro LSI)
e ji(dy) satisfies LSI(1) independent of N and m. (Makro LSI)

Then p satisfies the LSI(p), independent of N and m.




Adapted two-scale approach

Problem k=00 for generaly = Vo + Vp



Adapted two-scale approach

Problem k=00 for generaly = Vo + Vp

Simplification Coarse graining of pairsi.e. K =2

M
Xoj— Xoj
wax|Px = y) = Q) (dxzi—u<3')(2i|%Jr2 = Yi)

i=1

z| y
Fluctuations of a spin pair l

X X2

1 (dX1,dX2 \X1 ZXZ = y) ~ exp (—y(z +y;_ Y(=z+y)) dz
=:v(dz|y)

v(dzl|y) is an one-dimensional measure



Crucial estimate for two-scale criterion

Lemma (Covariance estimate GOVW ’09)
Assume that ¢ = V¢ + Vp. Then for [ f(z)v(dz|y) =1

cov,a1 (9(2),1(2)) < C sunld ()] ([ 15N wtaz) "

For the two-scale criterion: 9(z) = Vi(—z+y)+ Vi(z+y)
Case V,(z)=z% g(z)=4 = r=sup,|d(2)] < oo
Case V.(z)=z" g(2)=48zy = Kk=sup,|d(2)]=c0
Consequence Improve the covariance estimate!
Hope Convexity is "good”.

Use the additional convexity of z* «— 22!




Crucial estimate: superquadratic case

Proposition (Brascamp & Lieb '76).
Assume uw(dz) = Z "exp(—H(z))dz, zc€R and H’(z)> 0.

Then var,(f) < / ‘fl/(iy;u(dz).

Proposition (Assymetric Brascamp & Lieb, M. & Otto ’10).

Assume u(dz) = Z "exp(—H(z))dz, ze€R and H’(z)>0.

Then cov,(g, f) < sup ‘ g:,((zz))’ /\f/(z)m(dz).

Elementary proof using calculus.

Multidimensional version by Carlen, Cordero-Erausquin & Lieb *11.




Crucial estimate: superquadratic case

Corollary (Improved covariance estimate).
Assume that ¢ = V; + Vp. Then for [ f(z)v(dz|y) =1

COV, (dz|y) (9, f)

< Csup ’ Vi(—z+ 5;(j)vc"(z ) ‘ (/ ‘f/fi))ﬁ”(dz'y )) g

Apply covariance estimateto  g(z) = Vi(—z+y) + Vi(z+y)

sup

z

‘ Ve (—z+ f;(i)v:(z +Y) ' a



Crucial estimate: superquadratic case

Corollary (Improved covariance estimate).
Assume that ¢ = V; + Vp. Then for [ f(z)v(dz|y) =1

COV, (dz|y) (9, f)

Vél(fz+f;(j)Vé’(2+y)‘ (/flfi))|2’/(d2|y));.

< C sup

z

Apply covariance estimateto  g(z) = Vi(—z+y) + Vi(z+y)

sup

z

g(2) ' _
Vi(—z+y)+ Vd(z+y)

Two-scale criterion for LSl is satisfied for coarse-graining of pairs!



Hamiltonian with interaction

Proposition (M '09).

Assume
N

H(x) = Z(ng + W(xi)) + sz XiXj, interacting

i=1 inoj

‘Vb|007 |Vl;|0<>a‘v1;/|°0 < oo.

If e > 0 is small enough, then p satisfies LSI(p).

In this case o > 0 is independent of the system size N and the mean spin m.

Generalize last statement to

H(x) = Z(VC(X/') + Vb(x)) + 52)(,-)(,-

i=1 invf



Hamiltonian with interaction

Proposition (M '09).

Assume
N

H(x) = Z(ng + W(xi)) + sz XiXj, interacting

i=1 invj

‘Vb|007 |Vl;|0<>a‘v1;/|°0 < oo.

If e > 0 is small enough, then p satisfies LSI(p).

In this case o > 0 is independent of the system size N and the mean spin m.

Generalize last statement to

H(x) = Z(VC(X/') + Vb(x)) + 52)(,-)(,-

i=1 invf

Thank you for your attention.



Iterated of coarse graining of pairs

Coarse grained system i(dy) = Z " exp (—H(y)) H(dy)

— N
Coarse grained Hamiltonian Hy) =>4 Rv(y)

Renormalization operator R:R—R

Ri(2) = ~log [ expl—1()  $(02)) H, (s _,) (06, )

Lemma (Invariance under renormalization)

If 4 is perturbed strictly convex then R+ also is perturbed strictly convex.

Lemma (Convexification of ¢ by iterated renormalization)

There is K such that R is uniformly striclty convex.

Macroscopic LS| by iterated coarse-graining and Bakry & Emery



Hierarchic criterion for LSI

Decomposition of 1 w(dx) = p(dx|Px = y) ia(dy)

Decomposition of entropy (¥ = [ f(x)u(dx|Px = y), then

Ent(fs, 1) = | Ent(fu(dxly). () df + EN(TF. )
Microscopic scale 1 perturbed strictly convex
= p(dx|Px = y) satisfies LSI(g) i.e.

| Enttintaxy). wadyicay) < % [ ZEEL e = yyia).

=p(dx)

Macroscopic scale By assumption i satisfies LSI(o1) i.e.




Hierarchic criterion for LSI

Crucial estimate for hierachic criterion

VI Vi(x)]
S i@ < o [ rlue |

X4 Xo

Distribution of a pair

X erxz ) ~ exp(f¢(2+y;*w(*z+}/))dz

=iw(dzly)

u(dxi, dxe |

Crucial estimate reduced to

Recall ) = V¢ + Vp. Forall f : R — R with [ f(z)v(dz]y) =1,

ooy (Viz +9) 4+ Vil-z 4 9).02) = ¢ ([ g2 wiaa)’




From quadratic to superquadratic potentials

Change the structure of the proof of GOVW ’09
two-scale argument (big blocks) ~» iterative argument (block of pairs)

New tools to handle superquadratic potentials

generalized covariance estimate ~~  Hierarchic criterion for LSI
~ Invariance of renormalization

generalized local Cramér theorem ~  Convexification of Ry



Result for spectral gap by Caputo

Proposition (Caputo '02).

Assume

N
H(x) = Zw(x,), non-interacting
i=1

P(2) = Ve(2) + Vo(2), z€R with Voo, |[Viloo, [ Voo < o0,

VI(z) > ¢ >0, L <liminf*22 <limsup

e B < ¢, €>0, nel0,00).

Then p satisfies SG(p).

The constant ¢ > 0 is independent of the system size N and the mean spin m.

Remark Conservation of mean spin ~+ long-range interaction.

Question Similar result for LSI?




