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Introduction

General question

How to deal with spatially rough stochastic PDEs?

We study equations of the form

∂tu = ∂2
x u + g(u)∂xu + ξ

where

u = u(x , t) ∈ Rn, x ∈ [0, 1], t ≥ 0, periodic boundary conditions.

g : Rn → Rn×n smooth

ξ: space-time white noise: Gaussian process with covariance

Eξ(x , t)ξ(y , s) = δ(x − y)δ(t − s)

Remark

We can deal with an reaction term f (u) as well. (Easy)

We can treat multiplicative noise as well. (Not so easy)
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Introduction

∂tu = ∂2
x u + g(u)∂xu + ξ

Motivation

Natural extensions of Burgers equation (g(u) = −u).

Path-sampling problems for stochastic ODEs

Spatial regularity is at the borderline where ‘classical’ techniques
break down. Techniques apply to even rougher equations (KPZ).

Structure of the talk

Part I: g = DG is a gradient
I Existence & Uniqueness: well-known (Da Prato & Debussche &

Temam ’94; Gyöngy ’98)
I Approximations: (Hairer & M.)

Part II: g is not a gradient
I Existence & Uniqueness: (Hairer; Hairer & Weber)
I Approximations: (Hairer & M. & Weber )
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Part I: Gradient case: g = DG

∂tu = ∂2
x u + g(u)∂xu + ξ

How to solve this equation? First look at the linearised equation:

Stochastic heat equation

∂tψ = ∂2
xψ + ξ

Explicit solution: ψ(·, t) = et∆u0 +

∫ t

0
e(t−s)∆ dW (s)

Spatial regularity: for fixed t, ψ(·, t) belongs to Cα iff α < 1
2 .

Back to the nonlinear equation

Intuition: u ∼ ψ in terms of regularity.

Problem: how to make sense of the nonlinearity g(u)∂xu ?
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How to make sense of solutions? ∂tu = ∂2
xu + g(u)∂xu + ξ

Definition

u is a mild solution if it satisfies the ‘variation of constants formula’:

u(·, t) = et∆u0 +

∫ t

0
ds +

∫ t

0
e(t−s)∆ dW (s)

This only works if g = DG is a gradient!

How to obtain solutions?

Standard trick: Decompose u = ψ + v , so that

ψ(·, t) = et∆u0 + +

∫ t

0
e(t−s)∆ dW (s) ,

v(·, t) =

∫ t

0
∂xe(t−s)∆

[
G (u(·, s))

]
ds .

Moral: After fixing ψ, the equation for v becomes deterministic;

 can be solved pathwise by a standard fixed-point argument in C 1.
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Approximations: numerical results

Heuristics: If an equation is well-posed, then the solutions to all reasonable
approximating equations converge to the “right” limit.

However:

Consider the approximating equation:

∂tuε = ∆εu
ε + g(uε)Dεu

ε + ξ

where Dεu(x) :=
u(x + ε)− u(x)

ε
.

Numerics 1 (Hairer & Voss)

If ∆ε = “finite difference appr.”,
then uε → ū with C = 1

4 .

where ∂t ū = ∂2
x ū + g(ū)∂x ū − C (∇ · g)(ū) + ξ.

Left-sided discretisations?  correction with opposite sign.



Approximations: numerical results

Heuristics: If an equation is well-posed, then the solutions to all reasonable
approximating equations converge to the “right” limit. However:

Consider the approximating equation:

∂tuε = ∆εu
ε + g(uε)Dεu

ε + ξ

where Dεu(x) :=
u(x + ε)− u(x)

ε
.

Numerics 1 (Hairer & Voss)

If ∆ε = “finite difference appr.”,
then uε → ū with C = 1

4 .

where ∂t ū = ∂2
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Left-sided discretisations?  correction with opposite sign.



Approximations: numerical results

Heuristics: If an equation is well-posed, then the solutions to all reasonable
approximating equations converge to the “right” limit. However:

Consider the approximating equation:

∂tuε = ∆εu
ε + g(uε)Dεu

ε + ξ

where Dεu(x) :=
u(x + ε)− u(x)

ε
.

Numerics 1 (Hairer & Voss)

If ∆ε = “finite difference appr.”,
then uε → ū with C = 1
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Left-sided discretisations?  correction with opposite sign.



Approximations: theoretical results
• Consider the approximating equation:

∂tuε = ∆εu
ε + g(uε)Dεu

ε + ξε,

with arbitrary translation invariant approximations (i.e. Fourier
multipliers)

∆̂εu(k) = −f (εk)k2û(k) , ξ̂ε(k) = h(εk)ξ̂(k) .

Dεu(x) :=
1

ε

∫
R

u(x + εy)µ(dy),

• Consider the corrected equation:

∂t ū = ∂2
x ū + g(ū)∂x ū + ξ − C (∇ · g)(ū),

where C :=
1

2π

∫
R+

∫
R

h2(t)

f (t)

(1− cos(yt))

t2
µ(dy) dt

Theorem (Hairer - M. ’10)

lim
ε→0

P
(

sup
t≤τε
‖uε(t)− ū(t)‖L∞ > ε

1
6
−κ
)

= 0 ∀κ > 0.
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Remarks

No correction term appears if space-time white noise is replaced by
more regular noise.

Correction term arises due to the lack of spatial regularity.

It is exactly the local cross-variation in space : d [g(u), u] (kind of
Itô-Stratonovich correction).
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Part II: g is not a gradient



Part II: Non-gradient case

How to make sense of solutions?

Recall the decomposition u = ψ + v :

ψ(·, t) = et∆u0 +

∫ t

0
e(t−s)∆ dW (s) ,

v(·, t) =

∫ t

0
e(t−s)∆

[
g(u(·, s))∂xu(·, s)

]
ds .

Main Problem

Need to make sense of

∫ 1

0
pt−s(x − y)

[
g(u(y , s))∂xψ(y , s)

]
dy ,

where pt(x) denotes the heat kernel.

Observation: looks a bit like a stochastic integral

But: Stochastic calculus does not apply (no arrow of time)

Solution (following Hairer, Weber): use Lyons’ Rough Paths Theory.
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1-Slide Crash course in Rough Paths Theory

Goal

Making sense of

∫ z

y
Y (x) dX (x) for suitable X ,Y ∈ Cα with α < 1

2 .

Problem: different Riemann sum approximations → different limits.

Rough Path Theory (Lyons, Gubinelli)

Postulate the value of ‘area process’∫ z

y
X (x)− X (y) dX (x) := X(y , z)

If Y is ‘controlled’ by X , i.e.,

Y (y)− Y (x) = Y ′(x)
(
X (y)− X (x)

)
+ {smooth},

one can define

∫ z

y
Y (x) dX (x)

by ‘second order Riemann sum approximation’ involving X.

Note: the value of

∫ z

y
Y (x) dX (x) depends on the choice of X!
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Back to the SPDE... (following Hairer ’11)

Agenda:

1 Construct an area process Ψ for the linearised solution ψ.

2 Make sense of mild solutions using rough integrals.

3 Construct solutions using a fixed point argument.

4 Prove convergence of approximations.

Theorem (Friz & Victoir ’05; Hairer ’10)

Let ψ be the solution to the stochastic heat equation. For fixed t there is
a “canonical” area process Ψ such that (ψ(t, ·),Ψ(t, ·, ·)) is a rough path.

Note however: Ψ̃(t, x , y) := Ψ(t, x , y) + c(y − x) would be admissible as
well (for any c ∈ R)!
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Making sense of weak solutions
Let ψ be the solution to the stochastic heat equation.

Definition

A continuous stochastic process u is a solution to (SPDE) if v := u − ψ
belongs to C 1 (in space) and satisfies

v(·, t) =

∫ t

0

∫ 1

0
pt−s(x − y)

[
g
(
u(y , s)

)
∂xv(·, s)

]
dy ds

+

∫ t

0

∫ 1

0
pt−s(x − y)

[
g
(
u(y , s)

)]
dyψ(y , s) ds.

First integral: no problem, v is differentiable.
Second integral: interpretation in the sense of rough paths.

Remarks

Notion of solution depends on the choice of the area process Ψ!

Once Ψ has been fixed, everything is deterministic!
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Results

Existence and uniqueness (Hairer; Hairer & Weber)

Existence & uniqueness of solutions.

Extension to multiplicative noise (nontrivial!)

If g = DG , then solutions coincide with “classical solutions”, provided
Ψ is the canonical area process.

Further results (Hairer & M. & Weber)

Extension of the approximation results to the non-gradient case.

Solutions to the corrected equation

∂tu = ∂2
x u + g(u)∂xu + c (∇ · g)(u) + ξ with canonical area process Ψ

coincide with solutions to

∂tu = ∂2
x u + g(u)∂xu + ξ with area process Ψ(x , y) + c(y − x)

interpretation: Approximations converge to SPDEs with the
nonlinearity
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Ann. Probab., to appear.

M. Hairer, J. Maas, H. Weber

Approximating rough stochastic PDEs

in preparation.

M. Hairer, J. Voss

Approximations to the stochastic Burgers equation

J. Nonlinear Sci., to appear.

M. Hairer, H. Weber

Rough Burgers-like equations with multiplicative noise

Probab. Theory Relat. Fields, to appear.

Thank
you!

16




