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Basic questions

1. What is a nonequilibrium steady state?

2. How to define entropy production?

3. Fluctuations properties of the entropy production:

→ Gallavotti-Cohen fluctuation theorem

→ Kubo formula, Onsager relations

Main goals of the lectures: Expose the general theory (this is
the soft part) plus provide realistic examples + proofs (some
hard problems in ergodic theory/probability
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Two complementary point of view

• Dynamical system theory (review paper by JPR, Ruelle, Gallavotti,
Cohen, etc..)

→ Popular among people who like Gaussian thermostats or other

→ Models are easy to simulate and hard to analyze

• Markovian dynamics (Maes, Spohn-Lebowitz,...)

→ Traditional approach in physics to nonequilibrium using Markov
process (Onsager, Lebowitz, etc...)

→ Models are harder to simulate and easier to analyze

The two approaches are deeply linked at the mathematical levels
via Markov partition (probabilistic representation of dynamical
systems...) and ”dilation” of Markov processes but also by the
use of same tools (spectral analysis, Perron-Frobenius, etc...).
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2 basic examples from molecular dynamics (more later)

• Hamiltonian H(p, q) = p2 + V (q) with a confining potential V .

• External non-Hamiltonian force F (q).

• A thermostat or heat bath

Ex 1 (Langevin equation): stochastic and canonical heat bath

dq = p dt

dp = (−∇V (q) + F (q)− λp) dt+
√

2λTdB

T= reservoir temperature, λ=coupling, B=Brownian motion.

Ex 2 (Gaussian thermostat): deterministic and micocanonical
heat bath (by construction the energy E is conserved)

dq

dt
= p

dp

dt
= −∇V (q) + F (q)−

F · p
p · p

p
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Part I: Entropy production in Markov chain

−→ Schnakenberg, Qian & Qian, Kurchan, Spohn-Lebowitz,
Maes et al., etc..

Goal of the section: Explain the ideas and concepts for the
simplest possible example. Rich in concepts but no technical
difficulties.

Assume: Irreducible Markov chain Xn with finite state space S,
transition matrix P (x, y) and stationary distribution π(x).

Main ideas:

Non-equilibrium ≡ lack of detailed balance (or time-reversibility)

Entropy production ≡ measure of the irreversibility
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Detailed balance

Detailed balance means π(x)P (x, y) = π(y)P (y, x) for all x, y

This implies stationarity

∑
x

π(x)P (x, y) = π(y) =
∑
x

π(y)P (y, x)

and is equivalent to the time-reversibility of the stationary Markov
chain Xn.

Pπ(X0 = xn, · · ·Xn = x0)

Pπ(X0 = x0, · · ·Xn = xn)
=

π(xn)P (xn, xn−1) · · ·P (x1, x0)

π(x0)P (x0, x1) · · ·P (xn−1, xn)
= 1

or

Pπ = Pπ ◦Θ , Θ(X0, · · · , Xn) = (Xn · · · , X0) .

Any path and the time reversed path have the same probability.
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Entropy production

If no detailed balance we assume the weak reversibility assump-
tion

P (x, y) > 0⇔ P (y, x) > 0.

We interpret

µ(x)P (x, y)

as the probability current from state x to state y if Xn is in state
µ and define

F (x, y) = log
π(x)P (x, y)

π(y)P (y, x)
(= entropy production observable)

and F ≡ 0 iff detailed balance holds.
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Path space interpretation

By construction we have

Pπ(X0 = xn, · · ·Xn = x0)

Pπ(X0 = x0, · · ·Xn = xn)
= exp

(
−

n−1∑
k=0

F (xk, xk+1)

)

Let us define the ergodic average

Sn(F ) = Sn(F )(X0, · · · , Xn) =

n−1∑
k=0

F (Xi, Xi+1)︸ ︷︷ ︸
= Total entropy production along a path

In other words the Radon-Nikodym derivative

dP ◦Θ

dP

∣∣
[0,n]

= exp(−Sn(F )) .
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Relation with relative entropy I

By the law of large numbers for the Markov chain Zn = (Xn, Xn+1)
with stationary distribution π(x)P (x, y) and obtain that with
probability 1

lim
n→∞

1

n

n−1∑
k=0

F (Xk, Xk+1) =
∑
x,y

π(x)P (x, y) log
π(x)P (x, y)

π(y)P (y, x)

≡ EP(π, P ) (Steady state entropy production)

Let H(µ|ν) denote the relative entropy of µ with respect to ν.
Then

EP(π, P ) = H(Zn |Zn ◦Θ) for Zn stationary

In particular we have EP(π, P ) ≥ 0 (relative entropy is nonneg-
ative) and

EP(π, P ) > 0 iff no detailed balance
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Relation with relative entropy II

• For Markov chains the relative entropy H(µ|π) is always mono-
tone decreasing under the evolution:

H(µP |π) ≤ H(µ|π) .

• This is NOT useful (to my knowledge) in nonequilibrium since
in general π is unknown.

• For an arbitrary state µ of the MC Xn consider

EP(µ, P ) =
∑
x,y

µ(x)P (x, y) log
µ(x)P (x, y)

µ(y)P (y, x)

Fact: If detailed balance holds then

EP(µ, P ) = H(µP |π)−H(µ|π)
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Dependence on initial states

• For non-equilibrium steady states π(x) is in general not explic-
itly known.

• Pick instead F̃ (x, y) = log
P (x, y)

P (y, x)
which does not involve π.

• F (x, y) and F̃ (x, y) have the same ergodic averages

Sn(F ) = Sn(F̃ ) + logπ(X0)− logπ(Xn)

• For any initial distribution µ with µ(x) > 0 we have

Pµ(X0 = in, · · ·Xn = i0)

Pµ(X0 = i0, · · ·Xn = in)
≡ exp

(
−Sn(F̃ ) +R(in)−R(i0)

)
The boundary terms R(x) involving µ and π are negligible for
large n.
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Helmholtz decomposition of a Markov chain

We write

P (x, y)

P (y, x)
= eH(y)−H(x)+∆(x,y) with ∆(x, y) = −∆(y, x)

There is a unique such decomposition if we think of it as an
Helmoltz decomposition

Associate a graph G = (V,E) to the Markov chain in the usual
way:

V = S E = {(x, y) ∈ S × S ;P (x, y) > 0}

A flow on the graph G is a function F : E → R such that

F (x, y) = −F (y, x)

.
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Theorem: There exists a unique decomposition

F (x, y) = Fp(x, y) + Fc(x, y)

where

(a) Fp(x, y) is a potential difference, i.e., there exists a function
H : V → R such that

Fp(x, y) = H(y)−H(x)

which we can write as Fp = ∇H.

(b) Fc(x, y) is a circulation, i.e., for any x ∈ V we have∑
y:(x,y)∈V

F (x, y) = 0

which we write as divFC = 0.
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Physical Interpretation

Revisit once more EP(µ,P).

Use the decomposition log P (y,x)
P (x,y)

= β [H(x)−H(y) + ∆(x, y)]

Use now the entropy H(µ) = −
∑

x
µ(x) logµ(x)

Find

EP(µ, P ) =∑
x,y

µ(x)P (x, y) [H(x)−H(y) + ∆(x, y)]︸ ︷︷ ︸+ [H(µP )−H(µ)]︸ ︷︷ ︸
Physical entropy production Increase in

= β× dissipated heat configurational entropy
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Large deviations : reminder

Theorem (Gärtner-Ellis Theorem)

• {Γn} sequence of random variables taking values in Rd.
• For all γ ∈ Rd the logarithmic moment generating function

e(γ) = lim
n→∞

1

n
log E [exp(−γ · Γn)]

exists and is smooth (at least C1).

Then Γn

n
satisfy a large deviation principle with rate function

I(z) = − inf
γ

(z · γ + e(γ)) Legendre transform.

i.e. we have

lim
ε→0

lim
n→∞

1

n
logP

{
Γn

n
∈ Bε(z)

}
= −I(z) .

Symbolically Pπ

(
Γn

n
≈ z
)
� exp [−nI(z)]
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Large deviations for the entropy production

For an irreducible Markov chain Yn with initial state µ(x) and
transition matrix Q(x, y) and an observable f(x) the moment
generating function can be written as

Eµ [exp(−αSn(f))] = 〈µ , Qn
α1〉

with Qα(x, y) ≡ Q(x, y)e−αf(y) and 1(x) = 1.

Therefore the logarithmic moment generating function for the
Sn(F )

e(α) ≡ lim
n→∞

1

n
logEµ [exp(−αSn(f))]

exists and is smooth by Perron-Frobenius theorem and analytic
perturbation theory for eigenvalues.

So we have

Pπ

(
Sn(f)

n
≈ z
)
� exp [−nI(z)]

and the rate function I(z) is nonnegative, (strictly convex), with
a minimum at z0 = Eπ[P ].
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Gallavotti-Cohen fluctuation theorem I

Apply to the entropy production (use the Markov chain Zn =
(Xn, Xn+1))

Theorem: e(α) = e(1− α).

Proof.
Eπ

[
e−αSN(F )

]
=
∑

x0,··· ,xN

[(π(x0)P (x0, x1) · · ·P (xN−1, xN)]1−α

[π(xN)P (xN , xN−1) · · ·P (x1, x0)]α

=
∑

x0,··· ,xN

[(π(xN)P (xN , xN−1) · · ·P (x1, x0)]1−α

[π(x0)P (x0, x1) · · ·P (xN−1, xN)]α

=
∑

x0,··· ,xN

π(x0)P (x0, x1) · · ·P (xn−1, xn) ×

= ×
(
π(x0)P (x0, x1)

π(x1)P (x1, x0)

)−(1−α)

· · ·
(
π(xN−1)P (xN−1, xN)

π(xN)P (xN , xN−1)

)−(1−α)

= Eπ

[
e−(1−α)SN(F )

]
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Gallavotti-Cohen fluctuation theorem II

Consequence 1: Since e′(0) = −EP(π, P ) the symmetry implies
that

EP(π, P ) > 0 Positivity of entropy production

Consequence 2: The symmetry implies the Gallavotti-Cohen
fluctuation theorem

I(z) - I(-z) = - z

i.e., the odd part of I is linear with slope −1/2.

Or

Pπ
(
Sn(F )
n
≈ +z

)
Pπ
(
Sn(F )
n
≈ −z

) � enz
The probability to observe a value of the entropy production and
its negative value has a universal ratio.

• It is universal, no free parameters, etc...

• experimentally observable....
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Green-Kubo formula and Onsager relations

If
P (x, y)

P (y, x)
= eH(y)−H(x)+∆(x,y) then assume that

∆(x, y) =
∑

l
αlJl(x, y) = α · J

αl = thermodynamic forces: external forces, temperature differ-
ences

Jl(x, y) = thermodynamic fluxes of energy, momenta, etc...

The transition probabilities P (x, y) = P (α)(x, y) and the steady
state π = π(α) depends on the parameters α.

For α = 0, π0 corresponds thermodynamical equilibrium (de-
tailed balance) with

π0(x) ∝ exp(−H(x))
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Logarithmic joint moment generating function for the fluxes
Jl(x, y)

e(α, γ) = lim
n→∞

1

n
log E(α)

π(α) [exp (−γ · J(x, y))]

By the same argument we now have the symmetry

e(α, γ) = e(α, α− γ)

We have

∂e

∂γl
(α,0) = −E(α)

π(α)[Jl]

and thus

∂2e

∂αk∂γl
(0,0) = −

∂

∂αk
E(α)
π(α)[Jl]|α=0 = −Lkl

i.e., Lkl = are the linear response coefficients

Eπα[Jl] =
∑
i

Lklαk +O(α2)

.

21



Since e is a moment generating function, we have using station-
arity

∂2e

∂αk∂αl
(0,0) =

∞∑
k=0

Eπ0 [Jk(X0, X1)Jl(Xk, Xk+1)]

Integrated flux-flux correlation matrix

The symmetry e(α, γ) = e(α, α−γ) implies upon differentiation,
that

∂2e

∂αi∂γj
(0,0) = −

1

2

∂2e

∂αi∂αj
(0,0)

and thus

∂

∂αk
Eπα(Fl)|α=0 = Lkl =

∞∑
k=−∞

Eπ0 [Jk(X0, X1)Jl(Xk, Xk+1)]

Kubo formula and Onsager relations Lkl = Llk.
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Further ideas

• Nice (older) results from Schnakenberg and newer from Gas-
pard on the representation of EP(π, P ) using cycles. This leads
to a slightly different version of

→ Kubo formula

→ Fluctuation theorem

• Study the structure of the of the Donsker-Varadhan large de-
viation functional for the empirical measure.

→Maes and Netockny, Bodineau and Lefevere. See the diffusion
case in next chapter..

→ Explicit computations for the GC functional, Derrida et al.

• Go macroscopic (Jona-Lasino & al. )
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Part II: Stochastic differential equation of molecular
dynamics

Extending the previous theory to more general Markov processes
is possible but this requires to prove strong ergodic properties.

In general for models of physical interests,

• Existence and to a less extent uniqueness of steady states

• Ergodicity and large deviations

are hard problems.

−→ Consider concrete physically relevant problems

References:

• P. Cattiaux lecture here.
• M. Hairer: Various lectures notes (www.hairer.org)
• Rey-Bellet: Grenoble Summer School. Quantum Open Sys-
tems II. Springer LNM 1881 pp. 1–39. and pp. 41–78.
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Notations

Stochastic differential equation: x ∈ Rd (or a manifold)

dxt = b(xt)dt+ σ(xt)dBt

where

b : Rd → Rd is the drift

σ : Rd → L(Rk,Rd) is the diffusion matrix

Bt is a k-dimensional Brownian motion

We shall always assume that b and σ are sufficiently smooth, say
C∞.

However singular vector field, think Lenard-Jones or Coulomb,
are interesting: many open problems!!
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Generators and semigroup

If xt is a solution of the SDE with initial condition x0 = x is and
f : Rd → R is a (nice) function then

Ttf(x) = Ex [f(xt)]

is a semigroup (Markov property) with generator

L =

d∑
l=1

bl(x)∂xl +

d∑
k,l=1

σ(x)
(
σ(x)T∂xk

)
kl
∂xl

The adjoint (on L2(Rd)) of L is denoted by LT (Fokker-Planck
operator)

LT = −
d∑
l=1

∂xlbl(x) +

d∑
k,l=1

∂xk∂xl
(
σ(x)σ(x)T

)
kl
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Analytical tool I : Hypoellipticity

In many physically relevant examples, noise does not act on all
variables: the noise is degenerate.

rankσσT(x) < d ,

Write L = X0 +
∑
i=1

XT
i Xi

Theorem (Hörmander Hypoelliptcity): If the Lie algebra gener-
ated by

A0 = {Xi}i≥1 ,A1 = {[Xi, Y ]}i≥0,Y ∈A0
, · · · ,Ak = {[Xi , Y ]}i≥0Y ∈Ak−1

, · · ·

has full rank at every x ∈ Rd then

T tf(x) =

∫
Rd
pt(x, y)f(y) dy, pt(x, y) is C∞ in (t, x, y)

In particular the semigroup is strong-Feller: (i.e. smoothing)

If f ∈ B(Rd) then Tf ∈ Cb(Rd)
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Analytical tool II : Irreducibility and controllability

If Tt is strong-Feller we say that the Markov process xt is irre-
ducible if for any x ∈ Rd and any open set A there exists t such
that

Pt(x,A) > 0

• In general hypoellipticity (= local) does not imply irreducibility
(= global)

Example: X0 = sin(x)∂x, X1 = cos(x)∂x

• Hypoellipticity + irreducibility implies at most one invariant
measure π which has then a smooth density.
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Associated ODE control system

dxt

dt
= b(xt) + σ(xt)ut

where ut is a (piecewise) smooth control (smoother than dBt

dt
!).

We say that y is accessible from x in time t if there exists a
control us 0 ≤ s ≤ t such that xu(0) = x and xu(t) = y.

Denote

Ax,t = {y ∈ Rd, y accessible from x in time t}

Theorem (Stroock-Varadhan) We have

suppPt(x, ·) = Ax,t
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Simple example

Take a generic smooth F (p, q) and consider

dq = p dt, dp = F (q, p)dt+ dB

• Strong-Feller since

X0 = F (p, q)∂p + p∂q , X1 = ∂p , [X0, X1] = ∂q + ∂pF (p, q)∂p

• Irreducible: Given initial p0, q0 and final p1, q1 pick an (arbitrary)
time t and any smooth function q(t) such that

q(0) = q0 , q(t) = q1 ,
dq

dt
(0) = p1 ,

dq

dt
(t) = p1

and set

u(t) =
dq

dt
(t)− F

(
q(t),

dq

dt
(t)
)

⇒ For any t ≥ 0 , suppPt(x, ·) = Rn and some extra work shows
that in fact pt(x, y) > 0
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Analytical tool III : Lyapunov function

A Lyapunov function is a function V : Rd → R such that

• V is smooth

• V ≥ 1 V is bounded below.

• lim|x|→∞ V (x) = +∞ i.e. {V ≤ α} is compact for any α.

Inequalities involving LV translate into ergodic properties for xt

Standing assumptions: Tt is strong-Feller and irreducible

Notation: a, b are positive constants

K denote a compact subset of Rd.
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• (1) Existence of the dynamics

If there exists V such that

LV ≤ aV + b

then the SDE has (pathwise) solutions for all t > 0 almost surely.

• (2) Existence of invariant measure and convergence

If there exists V such that

LV ≤ −a+ b1K

then the process xt has a unique invariant measure π and Pt(x, ·)
converge to π in total variation for any initial x.
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• (3) Exponential convergence to equilibrium

If there exists V such that

LV ≤ −aV + b1K

then there exists constants c > 0 and γ > 0 such that∣∣∣∣Ttf(x)−
∫

fdπ

∣∣∣∣ ≤ CV (x)e−γt

or equivalently the semigroup Tt has a spectral gap (i.e., quasi-
compact) on the Banach space

BV (Rd) =

{
f : Rd → R ; ‖f‖V ≡ sup

x∈Rd

|f |
V

<∞
}

Remark: Proof via coupling argument (Meyn-Tweedie or much
simpler Hairer-Mattingly).
Proof via spectral argument (R-B., Grenoble lecture notes) via
Nussbaum formula for the essential spectral radius (= e−at)
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• (4) Large deviations (cf Donsker-Varadhan, Wu, Kontayannis-
Meyn)

Idea: For large deviations one needs some ”super-exponential”
convergence. (or hyper contractivity...)

If there exists V = exp(v) and an, bn, Kn with limn→∞ an =∞

LV ≤ −anV + bn1Kn

then the semigroup Tt is compact on the Banach space BV .

⇒ Large deviation principle for the ergodic average

1

t

∫ t

0

f(xs) ds

for nice function f .
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We say that f is dominated by v at infinity, write f � v

f � v if lim
R→∞

sup
|x|≥R

|f |
v

= 0 .

”Proof of LDP”:

• Use Feynmann-Kac to write the moment generating function

Ex

[
exp

(
−α
∫ t

0

f(xs) ds

)]
= T (α)

t 1(x)

• Use compactness + assumption on f to show that T (α)
t is

compact too!

• Use perturbation theory and Perron-Frobenius and Gärtner-
Ellis

• Use the Lyapunov bound to integrate x wrt to π (Ex → Eπ)

Remark: In applications one need unbounded f !
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A simple example: Overdamped Langevin equation

U is a smooth potential with compact level sets

dx = (−∇U(x) + F (x))dt+
√

2TdB

If F = 0 then e−
1
T
Udx is a stationary distribution. Liapunov

function, try first U :

LU = T∆U − |∇U |2 + F∇U

Exponential convergence if

∆U � |∇U |2 and F � |∇U |

for example if k ≥ 2 and U ∼ qk,∇U ∼ q|q|k−2, etc...
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Better try the Liapunov function exp(θU)

LeθU = θeθU
[
T∆U + (Tθ − 1)|∇U |2 + F∇U

]
So for θ < 1

T
we have a super exponential Lyapunov function

and thus a large deviation principle for any f � U as long as
|F | � ∇U | and ∆U � |∇U |2.

For more examples with stretched exponential, polynomial con-
vergence etc...

• Bakry, Cattiaux, Guillin, and collaborators.

• Many cute examples in M. Hairer ”How hot can a heat bath
get?”
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Entropy production for molecular dynamics

• Identify the entropy production: compute the Radon-Nikodym
derivative of the Markov processes with respect to the time
reversed process.

−→ Use Feynmann-Kac & Girsanov formulas

−→ Compare to a ”nearby” reversible process, i.e. thermal equi-
librium.

This is the ”easy” part.

• Prove the fluctuation theorem

−→ Prove a large deviation principle.

−→ Technical difficulty: the flux and entropy production are
unbounded and so are the boundary terms.

This is the hard part: construct a Liapunov function

38



Time reversal

• Markov process xt with generator L and stationary distribution
π, (i.e. we have LTπ = 0)

• The time-reversed process is the process with generator

L∗ = π−1LTπ

i.e. L∗ is the adjoint of L on L2(π)

Time-reversibility ⇐⇒ L∗ = L

• For system with velocities generalize: consider an involution
J : R → Rd, that is, J is invertible and J2 = 1

In all our examples J(p, q) = (−p, q).

Time-reversibility ⇐⇒ JL∗J = L
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Langevin equation and non-Hamiltonian forcing

• Hamiltonian system with (p, q) ∈ Rd × Rd and Hamiltonian

H(p, q) = p2

2
+ V (q) with a smooth confining V (q)

• Heat reservoir at temperature T via a Langevin equation

• External force F (q) which is not a gradient force

dq = p dt

dp = (−∇U(q) + F (q)− λp) dt+
√

2TdB

Generator LF = (T∆p − p∇p) + (p∇q −∇qU(q)∇p) + F (q)∇p

Fokker − Planck LTF = (T∆p +∇pp)−(p∇q − (∇U(q)∇p)−F (q)∇p
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Entropy production for the Langevin equation

• If F = 0 then π0(x)dx = Z−1e−
1
T
H(p,q)dx is a stationary distri-

bution and we have detailed balance

JL∗0J = L0

where Jf(p, q) = f(−p, q).

• If F 6= 0, a simple computation shows that

Jπ−1
0 LTFπ0J = LF − σ (?)

with

σ =
F (q) · p

T
=

power exerted by F

Temperature

σ is the physical entropy production.
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• Time-reversal on path

Θxs = Jxt−s 0 ≤ s ≤ t .

• Using Feynmann-Kac formula we obtain the path space inter-
pretation

dP|[0,t] ◦Θ

dP|[0,t]
= exp

(
−
∫ t

0

σ(xs) ds+
1

T
(H(xt)−H(x0))

)
(Note here P = Pπ0 otherwise an extra boundary term...)

• Gallavotti-Cohen symmetry. From (?) it follows immediately
that since JσJ = −σ

Jπ−1
0 (LF − ασ)T π0J = LF − (1− α)σ

This implies (formally) e(α) = e(1 − α) via a Perron Frobenius
argument.
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Entropy balance equation

Let H(µ) = −
∫
ρ log ρ dpdq denote the entropy of the measure

dµ = ρdpdq.

If µt is the distribution of (pt, qt) then we have

∫
σ(p, q)dµt −

d

dt

∫
1

T
H(x)dµt +

d

dt
H(µt) = Σ(µt)

Physical entropy production Increase in
= β× dissipated heat entropy

where

Σ(µt) =

∫ √
λ

T

1

ρt

[(
1

T
∇v + v

)
ρt

]2

dpdq ≥ 0
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From this we get

Theorem: If a stationary measure πF exists then
∫
σdπF ≥ 0 and∫

σdπ > 0 iff F 6= ∇W

Proof: • If µt = π we obtain∫
σdπ = Σ(π) ≥ 0

• If Σ(π) = 0 then π = exp(− 1
T
p2

2
)G(q). Use then Fokker-Planck.

Remark: The entropy balance equation is old...

Remark: In older literature what we call entropy production is
the entropy flow. The entropy production is Σ(µ).....
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Entropy balance and Donsker-Varadhan

Very nice recent work from Maes &Netockny and Bodineau &
Lefevere

Large deviations for the empirical measure: if xt is a Markov
process let

νt =
1

t

∫ t

0

δxs ds

Note that
∫
f(x)dνt = 1

t

∫ t
0
f(xs)ds and limt→∞ νt = π almost

surely by ergodicity

By a slight improvement of Donsker-Varadhan one has a LDP
(work in the natural topology induced by the Banach space BV !)

Pπ {vt ≈ µ} � exp(−tI(µ))
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• Fact: one has from Donsker-Varadhan I(µ) = supg≥1

(
−
∫

Lg
g

)
• Relation: Jπ−1

0 (LF − ασ)T π0J = LF − (1− α)σ

Theorem(Bodineau and Lefevere) The rate function I(µ) has
the form

I(µ) =
1

4
Σ(µ)︸︷︷︸
Entropy

production

+K(µ)︸︷︷︸
activity

−
1

2

∫
σdµ︸ ︷︷ ︸

Entropy
flow

• The first two terms are even under J while the entropy flow is
odd under J

• The rate function for the large deviations for σ is given by the
contraction principle I(z) = inf{I(µ) ;

∫
σdµ = z}.

Consequence: The symmetry under time-reversal for I(µ) im-
plies the symmetry of I(z): I(z)− I(−z) = −z.



Ergodic properties of the Langevin equation

See papers by Mattingly& Stuart, L. Wu and R.B.-Thomas and
P. Carmona. See also the book by Kashminskii

• Assumption on U : U is smooth C∞ and for large q

U(q) ∼ |q|k,∇U(q) ∼ q|q|k−2, with k ≥ 2

• Assumption on F (q): |F (q)| � |∇U | and |F | � U1/2

→ Note the two assumptions are only for large q

Theorem: Pick a time τ > 0 and θ < 1
T

then W = eθH is a super
exponential Liapunov function:

Tτe
θH ≤ αEeθH + βE1{H≤E}

and limE→∞ αE = 0.

Remark: We do not use L but eτL...
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Some ideas of one possible proof

• Uniqueness and smoothness of the measure: already done!

• Try first the energy as a Lyapunov function:

LH = T − p2 + p · F (q)

. This does not have a sign but not as bad as it looks....

•Main idea: prove that if the system starts at energy H(p(0), q(0)) =
E then ∫ 1

0

p2(s)ds ≥ cE

uniformly in E ≥ E0 (with very high probability).

• If we such bound then we have H(x) = E ≥ E0

T1H(x)−H(x) ≤ cE

since the term p · F (q)is negligible compared to p2 ' E.
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• To close the deal use that LeθH = θeθH
[
T − (1− θT )p2 + F (q)p

]
and the same estimate plus exponential martingale + Hólder in-
equality to construct the Lyapunov function.

We ”morally” have LH ≤ −aH + b

which we lift to LeθH ≤ −aHeθH + b

• Rescaling argument: Natural time scale at energy E if U ∼ qk
is E1/k−1/2. This is the time for ”one period”.

Rescale p̃(t) ≡ E−1/2q(E1/k−1/2t) q̃(t) ≡ E−1/kq(E1/k−1/2t)

which gives

dq̃

dt
= p̃

dp̃

dt
= −q̃|q̃|k−2 +O(E−α)

→ Control errors + noise...
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Another (harder) example : Anharmonic chains

Hamiltonian system p = (p1, · · · , pN), q = (q1, · · · , qN)

H(p, q) =

n∑
l=1

p2
l

2
+

n∑
l=1

V (ql) +

N−1∑
l=1

U(ql − ql−1) .

Assume V (q) ∼ qk1 U(q) ∼ qk2 and k2 ≥ k1

dq1 = p1 dt

dp1 = (−∇q1H(q)− λp1) dt+ λ
√

2TLdBL
dqj = pj dt

dpj = −∇qjH(q) j = 2, · · · , n− 1

dqn = pn dt

dpn = (−∇qnH(q)− λpn) dt+ λ
√

2TRdBR
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Entropy production for heat conduction

Choose a good reference measure (there are several options
because you can measure energy flows in several ways!).

Define the energy of the particle i by

Hi =
p2
i

2
+ V (qi) +

1

2
U(qi−1 − qi) +

1

2
U(qi − qi+1)

so that

H =
∑
i

Hi

Writing a balance equation d
dt
Hi = Φi−1 −Φi we have

Φi =
pi + pi+1

2
∇V (qi − qi+1) heat flow from i− 1 to i
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We pick the reference state π0 ∼ e−Ri where

Ri =
1

TL

∑
k≤i

Tk +
1

TR

∑
k>i

Tk

and after computing we find

Jπ−1
0 LTπ0 = L− σi

where

σi =
(

1

Tr
−

1

Tl

)
Φi

and again

Jπ−1
0 (L− ασi)Tπ0 = L− (1− α)σi
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Ergodic properties

• Assume the coupling U is nice in the sense that U does not
have a ”flat piece” nor there are infinitely degenerate critical
points for ∇U . This means the oscillators are really coupled.

→ Hypoellipticity and controllability: ”by induction over the
chain”.....

• Dissipation

LH = (TL − p2
1) + (TR − p2

n)

→ Lyapunov function W = eθH if θ < min{ 1
TL
, 1
TR
}.

Tτe
θH ≤ αEeθH + βE1{H≤E}

52



• Existence and uniqueness of the steady state.

• Spectral gap and compactness of the semigroup on B(W ).

• Gallavotti-Cohen fluctuation Theorem

”Technical” issue σ is not relatively bounded by H!

→ Write σi = σ∗ + LRi where σ∗ ≤ CH and Ri ≤ CH

→ Show the existence of e(α) only in a neighborhood of [0,1]

→ Control the boundary terms and show a LDP restricted to a
neighborhood of the origin.
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More examples

• More general heat conduction networks

• Molecular motors...

• Models of heat conduction by Lefevere (cf. Bodineau & Lefe-
vere, Carmona)

• Models of heat conduction by Olla, Stolz & al. (microcanon-
ical thermostats).

• Shear flows (Joubaud & Stolz)

• Other thermostats.....
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Loose ends

• Villani (Hypocercivity) and Helffer-Nier have better estimates
on the dynamics but (?) it works only at equilibrium. Does it?

• Hairer and Mattingly construct Lyapunov functions via ”aver-
aging”.

• Bodineau and Lefevere (and Maes and Netockny) have a varia-
tional principle for the steady state based on Donsker-Vardahan
large deviation functional.

• Large systems, Hydrodynamic limits and fluctuations, Jona-
Lasino & al. (Macroscopic theory)
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PART III: Deterministic dynamics

Basic questions

• What is nonequilibrium in this context?

→ Time reversibility symmetry breaking again but with a slightly
different twist.

• A deterministic dynamics almost always has very many invari-
ant measures. Which one to pick?

→ Pick a reference measure (encode the physics) and define a
NESS as an SRB-measure

• Relations between stochastic and deterministic systems?

→ Extract stochastic process out of a deterministic one via
Markov partition.

→ Stochastic process as reduced description of a (large deter-
ministic) system.
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Abstract definition of a NESS

Dynamical system with reference measure

• State space M (maybe a Polish space)

• Dynamics: a (invertible) map F : M →M (discrete-time) or a
flow Φt : M →M (continuous time).

• Reference measure µ0. In general not invariant under the
dynamics.

In applications µ0 will encode thermodynamical parameters (En-
ergy, temperature, ...).
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NESS = SRB measures

Definition: A SRB measure µ+ is an invariant measure for the
dynamics, i.e. µ+(F−1A) = µ+(A) such that for f ∈ Cb(Rd)

1. µ+ is ergodic:
1

n

n−1∑
k=0

f ◦ F k(x)→ µ+(f) , µ+ almost surely .

2. SRB measure:
1

n

n−1∑
k=0

f ◦ F k(x)→ µ+(f) , µ0 almost surely .

Think of nontrivial nonequilibrium occurs when µ+ ⊥ µ0.

The SRB measure µ+ is also called the physical measure: it
describe the statistics of µ0 almost every point and is selected
among all the (typically very many) invariant measures.
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In addition we will often require that the dynamics is time-
reversal invariant

Time reversal: Involution of phase space J : M →M so that

J2 = J

Typical: x = (q, p) ∈ M then i(x) = (q,−p), i.e., i change signs
of the velocities.

The dynamics is time-reversal invariant if

J ◦ F = F−1 ◦ J or J ◦Φt = Φ−t ◦ J
.

It is convenient to assume that the reference measure is time
reversal invariant (but not really necessary...)
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Example 1 : ”Micro-canonical” NESS: Gaussian
thermostats

• Hamiltonian: H(q, p) = p2

2
+ V (q)

• External force: F (q) non Hamiltonian external force (driving
the system out of equilibrium).

• Reference measure: µ0 = µ0,E Lebesgue (microcanonical)
measure on the energy surface {H = E}

• Gaussian thermostat: α(p, q) thermostatting force (non-holonomic
constraint) which constrains the system to stay on the energy
surface {H = E}

• Time-reversal: J(p, q) = (−p, q), H ◦ J = H, and µ0 ◦ J = µ0.

Equations of motion:
q̇ = p

ṗ = −∇V (q) + F (q)− α(p, q)

α(p, q) =
F (q) · p
p · p

p

Dynamics is dissipative, yet energy conserving, and time-reversible.
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Example 2 : ”Canonical” NESS: Heat reservoirs

• Small system: (finitely many degrees of freedom) Hamiltonian

HS(q, p) = p2

2
+ V (q)

• K heat reservoirs: Hamiltonian systems, extended systems, ∞
many degrees of freedom. For example for k = 1, · · · ,K

Hk(ϕk, πk) =
1

2

∫
Rd

|∇ϕk|2 + |πk|2 dx (Linear wave equation)

with Gibbs measure

dνβk(ϕk, πk) = Z−1 exp(−βkHk(ϕk, πk))
∏
x∈Rd

dϕxdπk(x)

This is a Wiener measure (ϕk) times a white noise measure (πk)
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• Total Hamiltonian: Coupling Vk between the small system and
reservoir k. Total Hamiltonian

H = HS(p, q) +

K∑
k=1

Hk(πk, ϕk) +
∑
k=1

Vk(p, q, πk, ϕk)

• Reference measure: Choose inverse temperatures β1, · · ·βK and
(arbitrary) measure νS on small system

µ0 = νS × µβ1 × · · · × µβK

• Time-reversal: J(p, q, π, ϕ) = (−p, q,−π, ϕ) and H ◦ J = H and
µ0 ◦ J = µ0.

Dynamics:

Hamiltonian flow on infinite dimensional phase space
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Definition of entropy production

Reference measure evolved under the dynamics µt ≡ µ0 ◦Φ−t

Radon-Nikodym derivative (Jacobian) Jt =
dµt

dµ0

Chain rule Jt+s = JtJs ◦Φ−t implies that

Jt = exp

[∫ t

0

σ ◦Φ−s ds

]
,

where

σ =
dJt

dt
|t=0 ≡ Entropy production observable
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Examples

Example 1: Assume M is a compact manifold and µ0 = is
Lebesgue measure on M . Then

σ = phase space contraction rate

If the dynamics is ẋ = G(x) then σ(x) = div(G)(x)

Example 2: Small system coupled to heat reservoirs. Then a
computation shows that

σ =

K∑
k=1

βkJk = ”Physical entropy production”

where

Jk = Energy flow from small system into reservoir k
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Relative entropy and positivity of entropy production

Relative entropy: H(µ|ν) =
∫

log
(
dµ
dν

)
dµ. Then

H(µt|µ0) =

∫ t

0

µs(σ) ds

Since H(µ|ν) ≥ 0 and if t−1
∫ t

0
µs → µ (by the SRB-property)

then

0 ≤ lim
t→∞

1

t
H(µt|µ0) = lim

t→∞

1

t

∫ t

0

µs(σ) ds = µ+(σ)

The entropy production in the steady state is non-negative

Under mild conditions one can prove

µ+(σ) > 0 iff µ+ ⊥ µ0

i.e. the entropy production is positive iff the NESS µ+ is singular
with respect to the reference measure µ0.
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Time reversal, Evans-Searle, Gallavotti-Cohen

Assume now TIME REVERSAL INVARIANCE

• We have σ ◦ J = −σ (i.e. the entropy production is odd under
time-reversal).

• Time reversal on paths

Θ : {Φt(x)}0≤s≤t 7→ {Φt−s ◦ i(x)}0≤s≤t

• Path space measure: The reference measure µ0 on M induces

a probability distribution Pµ0 on the path space M [0,t].

We have

dPµ0 ◦Θ

dPµ0

|[0,t] = exp

[
−
∫ t

0

σ ◦Φs(x) ds

]
(?)

(Looks familiar?)
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Evans-Searle Symmetry

Moment generating function

gt(α) = µ0

(
exp

[
−α
∫ t

0

σ ◦Φs ds

])
Then (?) is equivalent that gt(α) = gt(1− α) .

Let Qµ0,t denote the probability distribution of 1
t

∫ t
0
σ(xs) ds with

initial distribution µ0 and let τ(z) = −z.

We obtain

dQµ0,t ◦ τ
dQµ0,t

(z) = exp(−tz) . Evans− Searle

→ True for all times t but it depends crucially on picking the
reference measure µ0.

→ True even without any good ergodic properties!
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From Evans-Searle to Gallavotti-Cohen

Assume that

e(α) = lim
t→∞

1

t
log gt(α) = lim

t→∞

1

t
logµ0

(
exp

[
−α
∫ t

0

σ ◦Φs ds

])
exists and is C1 then e(α) = e(1 − α) and we obtain a large

deviation principle

µ0

(
1

t

∫ t

0

σ ◦Φs ds ≈ z
)
∼ e−nI(z)

where

I(z)− I(−z) = −z Gallavotti−Cohen symmetry

Remark: The large deviations is with respect to the initial mea-
sure µ0 not the NESS µ+ which is singular to µ0. Large devia-
tions with respect to µ+ is extra work (highly nontrivial exchange
of limit!).
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Gibbsian approach to non equilibrium

Another road to the fluctuation theorem (advocated by Maes)
use the thermodynamic formalism of Ruelle.

It works best for a compact metric space M , and a continuous
map F : M →M .

Variational principle: For ϕ : M → R

P (ϕ) = sup
v invarariant

{
hν(F ) +

∫
ϕdν

}
.

where hν(F ) is the Kolmogorov-Sinai entropy and P (ϕ) is the
topological pressure.

If the dynamical system is ”sufficiently chaotic” and ϕ is Hölder
continuous then we the supremum is attained and is attained at
a unique ν = νϕ which is called the equilbrium measure for the
potential ϕ

69



Large deviations for ergodic averages Sn(ψ)

Large deviations: (Kiefer) If ν = νφ and ψ : M → R is Hölder
continuous then we have for ”sufficiently chaotic map”

εψ(α) = lim
n→∞

1

n
log ν(eαSn(ψ)) = P (ϕ+ αψ)

and e(α) is smooth.

Examples: Anosov maps, Markov subshifts, one-dimensional
Gibbs measure (space=time).
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Assume now that there is time reversal J : M →M and assume
that the potential ϕ is not time reversal invariant

σ = σϕ = ϕ− ϕ ◦ J

Canonical example and connection with SRB: M smooth mani-
fold, F smooth uniformly hyperbolic map.

ϕ = − log JDF u , σ = − logDF
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Theorem: We have e(α) = e(1− α)

Proof:

P (ϕ− ασϕ) = sup
ν

{
hν(F ) +

∫
[ϕ− ασϕ] dν

}
= sup

ν

{
hν ◦ J(F ) +

∫
[(1− α)ϕ− αϕ ◦ J] dν ◦ J

}
= sup

ν

{
hν(F

−1) +

∫
[(1− α)ϕ− ασ ◦ J] dν ◦ J

}
= sup

ν

{
hν(F ) +

∫
[(1− α)ϕ ◦ J − ασ] dν

}
= P (ϕ− (1− α)σϕ)
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Examples

Two examples:

1) Anharmonic chain coupled to two heat reservoirs

Joint work with J.-P. Eckmann, C.-A. Pillet and L.E. Thomas.

2) Hyperbolic billiard under external electric field and Gaussian
thermostat:

Joint work with L.-S. Young.

Based on results of

• Sinai, Bunimovich, and Chernov 1980’s

• Chernov, Eyink, Lebowitz, and Sinai 1995

• Chernov 2002

• L.-S. Young 1995

• Wojtkowski

New results: Large deviation principle for billards!
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Example 1 : Anharmonic chains

Small system p = (p1, · · · , pN), q = (q1, · · · , qN)

HS(p, q) =

n∑
l=1

p2
l

2
+

n∑
l=1

V (ql) +

N−1∑
l=1

U(ql − ql−1) .

Assume V (q) ∼ qk1 U(q) ∼ qk2 and k2 ≥ k1

Two reservoirs: Linear wave equations at inverse temperature
βL and βR. Initial configurations of the reservoir distributed
according to Gibbs measures µβL and µβR.

Coupling: q1 ·
∫
φLρL dx+ qN ·

∫
φRρR dx

Special couplings: |ρ̂i(k)|2 ∼ 1
Pi(k2)

, P=polynomial
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Extract a stochastic process

Integrate the (linear) equation for the bath yields generalized
Langevin equation

d2q1

dt2
= −∇q1H(p, q)−

∫ t

0

D(t− s)p(s) ds+ ξ(t)

d2q2

dt2
= −∇q1H(p, q)

· · · · · ·
where ξ(t) is a Gaussian random process with covariance TC(t)
and D(t) = d

dt
C(t) (fluctuation-dissipation Thm).

If |ρ̂i(k)|2 ∼ 1
k2+γ2 then one finds a SDE

d2q1

dt2
= −∇q1H(p, q) + r

dr = −γr + λp+
√

2TλdB(1)

and we are in business again.
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Example 2: Hyperbolic billiards

Single particle moving freely and colliding elastically on a peri-
odic array of strictly convex smooth obstacles in R2. Periodicity
reduces to a system on with phase space (T2 \ ∪iΓi)×R2.

Assume: Finite horizon: every trajectory meets an obstacle.

Equations of motions: equilibrium

q̇ = p

ṗ = 0 + elastic reflections

Energy is conserved → the phase space reduces to (T2\∪iΓi)×S1

The Lebesgue measure µ0 on each energy surface is invariant,
ergodic, and mixing (Sinai, Bunimovich, Chernov).

76



Equations of motions: non-equilibrium.

We add an External electric field E and Gaussian thermostat

q̇ = p

ṗ = E −
E · p
p · p

p + elastic reflections

The system is time reversible, i(p, q) = (−p, q).

If E is small enough there exists a SRB measure µ(E)
+ on each

energy surface which is invariant, ergodic, and mixing (Chernov,
Eyink, Lebowitz, Sinai; Chernov; Wojtkowski).

Linear response is treated in Chernov, Eyink, Lebowitz, Sinai;
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We analyze the system in terms of the collision map:

FE : (θ, x) 7→ (θ′, x′)

where (θ, x) is the position of a collision on the boundary of
the obstacles and θ is the angle of the incoming velocity with
respect to the normal.

Discrete-dynamical system on the 2-dimensional phase space

M = ∪i∂Γi ×
(
−
π

2
,
π

2

)
If E = 0 (equilibrium) F0 preserves the measure

µ0 = const cos(θ) dθ dr

If E 6= 0 (non-equilibrium) FE has an SRB measure (µ0=reference
measure)

µ(E)
+ with µ(E)

+ ⊥ µ0

.
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Large deviations for billiards

Suppose g is Hölder continuous on M (or piecewise Hölder con-

tinuous; singularities). For convenience assume µ(E)
+ (g) = 0.

Ergodic sum Sn(g) =
∑n−1

k=0
g ◦ F (E)

Autocorrelation function

σ2(g) = lim
n→∞

1

n
Var(Sn(g)2) = µ(E)

+ (g2) + 2

∞∑
n=1

µ(E)
+ (g(g ◦ F n

E))

Fact:

0 < σ2 <∞ , σ2(g) = 0 iff g = C + h ◦ FE − h
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Theorem (L.-S. Young, L. R.-B. ) Assume σ2(g) > 0.

• Large deviations: There exists an interval (z−, z+) which con-
tains µ+(g) = 0 such that for a ∈ (z−, z+) we have

µ+

{
Sn(g)

n
≈ a
}
∼ exp [−nI(a)] .

Moreover I(z) strictly convex and real-analytic with I ′′(0) =
1

σ2

• Moderate deviations: Let 1/2 < β < 1. Then

ν

{
Sn(g)

nβ
≈ a
}
∼ exp

[
−n2β−1 a2

2σ2

]
.

• Central Limit Theorem: Already known: Sinai & al, Liverani,
Young...

ν

{
a ≤

Sn(g)

n1/2
≤ b
}
→

1
√

2πσ

∫ b

a

exp

[
−
z2

2σ2

]
dz .
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Young towers

Our theorem is proved using Young towers introduced by Lai-
Sang Young in 1995. The towers are a symbolic representation
of non-uniformly hyperbolic dynamical systems.

Special type of Markov partition with countably many states,
based on ideas of renewal theory: choose a set Λ ⊂ M and
construct a partition of Λ ≈ ∪iΛi where Λi is a stable subset
which ”returns” (≡ full intersection) after time Ri. This gives a
Markov extension. Finally quotient out the stable manifolds.

Consequence: our large deviation results apply to

• Billiards

• Quadratic maps

• Piecewise hyperbolic maps

• Hénon-type maps

• Rank-one chaos (Qiudong Wang and L.S. Young) Some peri-
odically kicked limit cycles and certain periodically forced non-
linear oscillators with friction.
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Tower Ingredients

•Measure space (∆0,m) and a map f : ∆0 →∆0 (noninvertible)

• Return time R : ∆0 :→ N.

Assume exponential tail: m{R ≥ n} ≤ De−γn

Assume aperiodicity: g.c.d.{R(x)} = 1

• Tower = suspension of f under the return time R

∆l ≡ {x ∈∆0 ; R(x) ≥ l + 1}︸ ︷︷ ︸ and ∆ ≡ tl≥0∆l︸ ︷︷ ︸ (disjoint union)

l-th floor tower

Dynamics F : ∆→∆ F (x, l) =
{

(x, l + 1) R(x) > l + 1
(f(x),0) R(x) = l + 1

82



• Markov partition ∆l = ∆l,1 ∪ · · ·∆l,jl with jl <∞.

F maps ∆lj onto a collection of ∆l+1,k’s plus possibly ∆0.

The Markov partition is generating (i.e. each point has a
unique coding).

• Dynamical distance:

s(x, y) = inf{n, F i(x) andF i(y) belong to the same ∆l,k ,0 ≤ i ≤ n}

For β < 1 let dβ(x, y) = βs(x,y)

• Distortion estimates: Let JF the Jacobian of F with respect
to m.

∣∣∣JF (x)

JF (y)
− 1

∣∣∣ ≤ Cdβ(x, y)

Remark: If JF = const on each ∆lj then we have a Markov
chain on a countable state space
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Transfer operators and large deviations

Think of m as the (image of) Lebesgue measure on unstable
manifolds. The (image of the) SRB measure has then the form

ν = hdm , h ∈ L1(m) .

The transfer operator L0 is the adjoint of Uψ = ψ ◦ F∫
ϕψ ◦ F dm =

∫
L0(ϕ)ψ dm

L0ϕ(x) =
∑

y :F (y)=x

1

JF (y)
ϕ(y)

ν = hdm F -invariant iff L0h = h
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Moment generating function and large deviations

Consider the moment generating function

µ+ (exp [θSn(g)])

for the random variable Sn(g) = g + g ◦ F + · · ·+ g ◦ F n−1.

If

e(θ) ≡ lim
n→∞

1

n
logµ+ (exp [θSn(g)])

exists and is smooth (at least C1) then we have large deviations
with

I(z) = sup
θ

(θz − e(θ)) , Legendre Transform .

(Gartner-Ellis Theorem)
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Moment generating functions and transfer operators

To study the large deviations for Sn(g) consider the generalized
transfer operator

Lgϕ(x) =
∑

y :F (y)=x

eg(y)

JF (y)
ϕ(y)

Then we have

µ+ (exp [θSn(g)]) = m (exp [θSn(g)]h)

= m (Ln0 [exp [θSn(g)]h]))

= m
(
Lnθg(h)

)
⇒ Large deviations follow from spectral properties of Lθg
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Spectral properties of transfer operators

Suppose Lθg is quasi-compact on some Banach space X 3 h, i.e.
the essential spectral radius strictly smaller than the spectral
radius.

By a Perron-Frobenius argument Lθg a maximal eigenvalue exp[e(θ)]
and a spectral gap (aperiodicity) and thus

e(θ) = lim
n→∞

1

n
log ν (exp [θSn(g)])

By analytic perturbation theory e(θ) is real-analytic and then
standard probabilistic techniques implies

µ+

{
x ;

Sn(g)

n
≈ z
}
∼ e−nI(z)

I(z) = Legendre transform of e(θ)

as well as moderate deviations, central limit theorem, and so
on...
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Choice of Banach space

Recall m{R ≥ n} ≤ De−γn. Choose γ1 < γ and set

v(x) = eγ1l x ∈∆l

Banach space

X = {ϕ : X → C ; ‖ϕ‖v ≡ ‖ϕ‖v,sup + ‖ϕ‖v,Lip <∞}

with

ϕv,sup = sup
l,j

sup
x∈∆l,j

|ϕ(x)|eγ1l

ϕv,Lip = sup
l,j

sup
x,y∈∆lj

|ϕ(x)− ϕ(y)|
dβ(x, y)

eγ1l

Banach space of weigthed Lipschitz functions
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Spectral analysis

Lasota York estimate: For g bounded Lipschitz

‖Lng(ϕ)‖v ≤ ‖Lng(1)‖v,sup (βn‖ϕ‖v + C‖ϕ‖v,sup)

Pressure

P (g) = lim
n→∞

1

n
log ‖Lng(1)‖v,sup .

Pressure at infinity: Control on the high floors of the towers!

P∗(g) = lim
n→∞

1

n
log ‖ inf

k≥0
Lng(1)>k‖v,sup .

( ϕ>k = ϕ for x ∈∆l with l > k and 0 otherwise)
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Theorem:

The spectral radius of Lg is eP (g).

The essential spectral radius of Lg is max{eP∗(g), βeP (g)}

⇒ Lg is quasicompact if P∗(g) < P (g).

Theorem: P∗(g) < P (g) if (max g −min g) < γ.

Theorem: If P∗(g) < P (g) then exp(P (g)) is a (simple) eigen-
value and no other eigenvalue on the circle {|z| = exp(P (g))}.

Conclusion: The moment generating function

e(θ) = lim
n→∞

1

n
log ν (exp [θSn(g)])

exists and is analytic if |θ| ≤ γ/(max g −min g).

�
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Fluctuation theorem

Combine

• Time-reversal i, i(p, q) = (−p, q)

• Entropy production =phase space contraction

Σ = − log JF s − log JF u

• The SRB measure is ”the equilibrium state” for the potential
− log JF u (use the Markov extension).

• The large deviation principle.
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