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Outline

Modelling polymer molecules by “dumbbells”

A new force law: “Constrained Hookean” force leading to
the Reflecting Stochastic Differential Equations

Calculating the extra-stress tensor via penalization
(theoretical results)

3 methods for the discretization in time: penalization,
reflection and half-space approximation

Numerical results for simple flows



Dumbbell models for polymer molecules
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Governing SDE

Gradient of
the velocity

Stress tensor :

Hookean force

FENE force

}(f(ﬂ@t - ;\7’(@0) dt 4 \/Edth,\
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T(t) =

Brownian
motion

(Rt ® F(Qr))

) F(Q) = HQ,
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“Constraned” Hookean forcce

FE(Q) = Q+ 18(Q) F(Q) = om

B(Q) =Q —NE and I is the projection on B(0, R)
where R = /b



Reflecting SDE

Define F as the subdifferential of the potential
1(Q) = { 31QP, if QI < R

400, otherwise

for some fixed R.
Reflecting SDE for Q¢

1 1
dQt = (R(t)Qt — Q—AQt> dt — ndn + \ﬂdBt,

where n¢ iIs an unknown stochastic process imposing to the pro-
cess to remain in the ball B(0,R).




Stress tensor for the constrained Hookean force

The Kramers expression for the stress (for a nice force law)

7(t) = B(Qt ® F(Qy))
In the case of the reflected diffusion the force is (something like)
2
Fidt = Qdt + EQtdnt
The Kramers stress is (something like)

2AE(Q ® Qudne) 297
R dt

(t) ~ % (E(Qt ® Q1) +

The sensible way to define the stress is rather

&) ="iim (B(Qf 0 Qi + Qf @ -6@D) — 1).



Main result, calculation of the stress

Let
g € B(0, R) be an initial condition,
K € Rdxd’
)\ > O, 77p > O,
dQ; = (k(DQF — 1@ — 55:8(Q)) dt + \/1dB:, Q5 =4q
() =2 (B(Qf®Qf+ Qi 018(Q)) —1).
Then
7(t) = lim 7e(t) € ([0, T]; R™%)

and the limit above exists for all t € [0,T]. Moreover,

7(6) =~ Qi ® Q)+ mB((Q1 © QAT + r(D( Q1 © Q1))
a.e. in [0,T].



Known properties of reflected diffusions

Menaldi (82)

For each 1 < p < oo, there exists a constant C independent of ¢
such that

sup |Q¢|P| <C (1)
te[0,T7]

and for each 1 <p<oo, 0 <T < oo We have

lim ( sup |Qt—Qf|p> = 0. (2)

e—0 \0<t<T



Proof of our main result in a weak form

Apply Itd’s rule to Qf ® (QF) and take the expectation :
1 ¢ € € 1 € € — & &
(B[ (Q5eQi+ Qiep(QD) ds = -B(Qf 0 Qf) +9®4
t 1
+ [ B(Q5 © Q9)r()” + r(s)(Q5 ® Q5))ds + .

By known results, the limits of all the terms in the RHS as ¢ — 0O
exist, hence

i ! € € 1 3 5
Xéll—rPOE 0 (QS ® Qs+ ng ® B(Qs>> ds
=-E(Q:®Q:) +9®q
t 1
+ /O B(Qs ® Qs)r(s)T + #()(Qs @ Qs))dsig + 1t
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Proof of our main result pointwise in time

We need
e Boundedness uniform in e: E(Qf - 18(Q5)) < C,
e Continuity in t uniformly in e :

5 € 1 € € 1 €
A@O sup B(Qi4p - gﬁ(QH_h)) — E(Q; - gﬁ(Qt)) = 0.

The desired result is then obtained by the lemma:
Let f-(x) (¢ € R) be a family of functions [0,T] — R such that
Jim sup | fe(t 4+ h) — fe()| = 0,Vt € [0, T]

and the limit lim._q [§ fe(s)ds exists for all t € [0,T]. Then the
limit f(t) = lime—oo f=(t) exists for all t € [0,T], f(t) is continuous
and

tim [ fe(s)ds = [ ()
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The Fokker-Planck equation

Y(t,Q), Q € B (B = (0,vb)) — the probability density to find a
dumbbell with end-to-end vector Q at time ¢

% v (ra- 2a)) = Ao

Boundary conditions at 0B (vanishing of the probability flux):

KQY T 5 Qw-l- VQ%D =0
(- )

Expression for the stress tensor:

T

—npat/ Q®Q¢dQ—|—np/ (@2 Q+Q®Qan")vdq
L[ QoQudq+ [ Qo Quds -1
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Numerical algorithm with penalization

Algorithm by penalization
h
Qe =4q

h 1 h h h 1 eh 1
Qi o @i o = Q7 (w0~ 2@ b (BB

h h, L ch h
) = PE (@5 @ FF + Q7 @ (a5 ) - .

Weak convergence of Qif’h to @Q; with order v/h is known for the
choice e = h (Pettersson, 1997).

Convergence of 77?
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Auxiliary lemma: A comparison principle

Let
Y= _ sup Q-(ff—i>Q_

QERY, |Q|=1
Let |q| < |y| and consider

g,h 1 g,h __ v&h g,h 1
Ytn+1+2—>\gB(Ytn+1)h_Ytn thly, +\g(Bt”+1_Bt”)’

Then, for any nondecreasing function g : [0, 00[— R

E(g(1Q5")) < EY(9(|Y:")), vn e N.
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|: Uniform boundedness

The process Qz;h with any initial condition ¢ € B(0,1) and any
t € [0,T] satisfies

EY(Q;"- —B(Q "y<c

Proof. Let 7. ; be the stationary distribution of Qg’h and
IL = {z ¢ R? : |z| > |z|}. The comparison principle with with

h(Q) = 16(@) entails

E9(Q5" 15(@ ) < Ereal(yeh, —5( 20)
]Eﬂ'gh(yvté"h 1ﬁ( )) Eﬂg,hlyvti,h|2
Ws,h(l—k) - We,h(l—l—)

<
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[I: Equi-continuity

Let ¢ : RY — R such that ¢(z) = 0 for all z € B(0,1) and suppose
that for all n € N it holds

E10(Q| < claD.

Then we have for any + >0

sup ‘Eq ( (DR ) - ¢(Q§;h>>)| < Chl/2—= (1)

Proof. Fix any r such that |¢|<r <1 and a € (0,1)
1 h g,h
q( ZhH(OF — Q= z
E (€¢(Qtn )) /B(O,r) pia (2)E ( (Qy ha)> dz

+ /Rd\B(O,r) Qgh(z)Eq( HQ) = (2)
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Consider also the unconstrained process Qﬁn

1 1
Qf 1, = Qb + (nQh, - Qb ) h + \g(Bth ~ Bt,).
and the stopping time o = inf{s : |[QS"| =r} = inf{s: |Q} = r}.

The second integral above is estimated as

E9 (@5 gl ) <EY (6@ 1pape) =
—E (EQ?h (%qﬁ(@f_g)) 1a<ha> < C(r)YP(o < hY).
Hence

EV(Z0@i) = [ p GE (Zo(@il) ds+ 02,
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End of the proof

By similar calculations

[ p O (So(Q) ) dx = [ ot VEF (S0 ) ) dz
+O(n'/275)

We can now compare the result at times t, and ¢,411 =tn +h

e (Locaitin) -2 (Lo
/B(O )(pha—l—h(z) Pha (z))EZ( P(Q; ha)) dz

_I_ O(hl/Q—:t)

1/2—
<C [ om PP (2) — P (2)|dz + O(h1/27)
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Convergence of the stochastic simulations by
penalization
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Good convergence
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Convergence of the stochastic simulations by
penalization

b= 20

k() = (g 100)

M = 25000

Red — At =0.1
Green — At = 0.01
Blue — At = 0.001
Cyan — At = 0.0001
Black FP

Noise gets bigger

when refining in time
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Algorithm by symmetric reflection
M. Bossy et al, 2004,

Weak convergence of order At

e Update the stochastic process without taking into account
the re° ecting force

1 1
Yn—l-l — QR = (R(tn)@%t — 2—AQ7§t> At + \/;(Btn—l—l — Bt,)

e If a re® ection occurs (|Y 1| > R), set

At
ooy 2RIV 1|YAt
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Approximations for the stress tensor

r="[ QeQudQ+% [ Qe Quds— L1

We can use

W(RO) = — [ r(r)dr + O(a)
to write

Q® Qubds = — B2 0 0u(Q)dq + 0(a)

oD aR JR—a<|Q|<R |Q|2
The first idea for the stochastic approximation (a = h)

N R
T (tn) = B (Qtn ® Qi (1 i 1'Q?n|>R_hh|Q? |2) I>
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A better approximation for the stress

If we know that %—‘f(R, 0) = b(0)y(R,0) then we can write (for
example)

_ R? 2(R—1Q))
/ap @®Qpds = /R—a<|Q|<R 029 %9 2R — a2 —b(@)ar/2)? D
+0(a?)
Take a = +v/h and approximate the stress by
() = 2B(Qf, © Qf,
2(R - QL)) R\
(t+ St o r R = vz - wah AR GER) )
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Results of simulations

O 10

A="p=1, b= 20, K}(t)=<o 0

) At = 0.001, M = 5000

il
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Oth-order approximation 1st-order approximation
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Convergence of the stochastic simulations by
symmetric reflection
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correct solution
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Convergence of the stochastic simulations by
symmetric reflection
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An algorithm by half-space approximation

D. Lepingle (1995), E. Gobet (2001)

Going from Qt to Qth

e Set Ny = WaD(Qt ) and approximate the domain D by the
half-space {z € R%: (z — My) - n(Ny) < 0}

e Use the exact solution for the diffusion reflected in the half-
space

_ 1 1
h h __ h h h h
where the increment of the local time is

h h __
ntn—l—l — N, = MaxXx (O,

b ho 1 p 1
0558 (Q’fn R AR O B“”) "),



The algorithm (continued)

the supremum is equivalent in law to

SUp a- Bs 4 cs ~ —(a By, + ch +\/|a]2V + (a- By, + ch)?
0<s<h
where BS = By, 4+ s— B¢, and V IS an random variable exponentially
distributed with rate % and independent of Eh.

e If the half-space approximation was not accurate enough, i.e

IQthI > R, set

R
Qtn+1 |YAt | Qtn+1’

otherwise Q7 e — Qth
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Approximation of the stress

We have the convergence of order h for the functionals of
and n

t
B(£(Q0) + | 9(Qi)dny) =

n—1
E(f(QF) + zo g(map(@QEN(nf,, —nf: + QL , — Q)+ O(h)
1=
but the formula for the stress 7 includes a derivative of the local
time:

_
) =" (3@ e @)+ 5L

We approximate the stress by

(i) = 2 (B(Q), @ QF)

2\ )
+ o E(map(Qy) ® mo (@) (e, — 11,y +1Q%, — Q8,1 - I>

2AE(Q: ® Qidnt) I)
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Convergence of the stochastic simulations
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Possible connection with FENE

Reminder:

. 1 Q¢ 1
dQt = (RQt T — IQtIQ/b> dt + \/;dBt

HC Ottinger discreization in time

h
h tha1 h 1
Q? + ot — RQtnh T \/7ABtn
231 —|Qp 12/ A

, h
h D h tn+1
T (tn) = TE(| Qf, ®
R ( t 1—|@é;+1|2/b)

One can apply the same ideas as above to prove the boundedness
of 7% and possible the convergence of 7 to 7

31



XX

25

20

10

Convergence of the stochastic simulations for FENE
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Constrained Hookean vs FENE
(steady state shear flow)

b= 20

_ (0 ~v
k(t) = (O O)
Solid - Cons. Hook

Dashed - FENE

FP steady-state
simulations
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Constrained Hookean vs FENE

(shear flow)

b= 20

(t) = (g 100)

Solid - Cons. Hook.
Dashed - FENE

FP transient
simulations
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Constrained Hookean vs FENE

(shear flow)

b= 20

omfe

Solid - Cons. Hook.
Dashed - FENE

FP transient
simulations
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