Existence and Approximation of Global Weak Solutions to some Regularized Dumbbell Models for Dilute Polymers

John W. Barrett
Department of Mathematics, Imperial College, London, SW7 2AZ, UK

The work on the regularised macroscopic/microscopic model (appeared/accepted/submitted) is joint with

Endre Süli

OUCL, University of Oxford, Parks Road, Oxford OX1 3QD, UK

The work on the regularised Oldroyd-B model (in preparation - nearly finished) is joint with

Sébastien Boyaval

CERMICS, Ecole Nationale des Ponts et Chaussées 6 \& 8 avenue Blaise Pascal, Cité Descartes, 77455 Marne-la-Vallée Cedex 2, France

The Standard Dumbbell Polymer Model

Polymer chains, which are suspended in a solvent, are assumed not to interact with each other; i.e. a dilute polymer.

The solvent is an incompressible, viscous, isothermal Newtonian fluid in a bounded $\Omega \subset \mathbb{R}^{d}, d=2$ or 3 , with Lipschitz boundary $\partial \Omega$.

Set $\Omega_{T}:=\Omega \times(0, T], \quad \partial \Omega_{T}^{*}:=\partial \Omega \times(0, T]$.
Hence the Navier-Stokes equations in which the symmetric extra-stress tensor $\underset{\sim}{\tau}$
(i.e. the polymeric part of the Cauchy stress tensor), appears as a source term:

Find the velocity field $\underset{\sim}{u} \underset{\sim}{x}, t) \in \mathbb{R}^{d}$ and the pressure $p(\underset{\sim}{x}, t) \in \mathbb{R}$ of the solvent s.t.

$$
\begin{aligned}
& \partial u \\
& \frac{\sim}{\partial t}+\left(\underset{\sim}{u} \cdot \underset{\sim}{\nabla} \nabla_{x}\right) \underset{\sim}{u}-\nu \Delta_{x} \underset{\sim}{u}+\underset{\sim}{\nabla} \nabla_{x} p=\underset{\sim}{f}+\underset{\sim}{\nabla}{ }_{x} \cdot \underset{\sim}{\tau} \quad \text { in } \Omega_{T}, \\
& \underset{\sim}{\nabla} \cdot \underset{\sim}{u}=0 \quad \text { in } \Omega_{T}, \\
& \underset{\sim}{u}=\underset{\sim}{0} \quad \text { on } \partial \Omega_{T}^{*}, \\
& \underset{\sim}{u} \underset{\sim}{x}(x, 0)=\underset{\sim}{u} u_{\sim}^{0}(\underset{\sim}{x}) \quad \forall x \in \Omega ;
\end{aligned}
$$

where $\nu \in \mathbb{R}_{>0}$ is the given viscosity of the solvent, and $\underset{\sim}{f}$ is a given body force.

Here for simplicity, we assume a no slip boundary condition.

Noninteracting polymer chains modelled by using dumbbells. A dumbbell is a pair of beads connected with an elastic spring, and is characterized by its centre of mass, $\underset{\sim}{x}$, and its elongation vector $q(t)$. A very simple model.
$\psi(\underset{\sim}{x}, q, t) \in \mathbb{R}$ is a probability density function
(the probability at time t of there being a dumbbell with centre of mass at $\underset{\sim}{x}$ and elongation $\underset{\sim}{q}$)
and satisfies the Fokker-Planck equation

$$
\begin{aligned}
& \left.\left.\frac{\partial \psi}{\partial t}+\underset{\sim}{\underset{\sim}{u}} \cdot \underset{\sim}{\nabla} x\right) \psi+\underset{\sim}{\nabla} q \cdot(\underset{\sim}{\nabla} \underset{\sim}{(} \underset{\sim}{u}) \underset{\sim}{q} \psi\right) \\
& =\frac{1}{2 \lambda}{\underset{\sim}{\sim}}_{q} \cdot\left(\underset{\sim}{\nabla} q \psi+U^{\prime} \underset{\sim}{q} \psi\right) \quad \text { in } \Omega_{T} \times D, \\
& \frac{1}{2 \lambda}\left(\underset{\sim}{\nabla} q \psi+U^{\prime} \underset{\sim}{q} \psi\right) \cdot \underset{\sim}{n} \partial D=(\underset{\sim}{\nabla} \underset{\sim}{x} \underset{\sim}{u}) \underset{\sim}{q} \underset{\sim}{\psi} \cdot{\underset{\sim}{n}}_{\partial D} \\
& \psi(x, q, 0)=\psi^{0}(x, q) \geq 0 \\
& \begin{array}{l}
\text { on } \Omega_{T} \times \partial D, \\
\forall(\underset{\sim}{x}, \underset{\sim}{q}) \in \Omega \times D ;
\end{array}
\end{aligned}
$$

where $\underset{\sim}{n} \partial D$ is \perp to ∂D, and $\int_{D} \psi^{0}(\underset{\sim}{x}, \underset{\sim}{q}) \mathrm{d} \underset{\sim}{q}=1$ for a.e. $\underset{\sim}{x} \in \Omega$.
b.c. $\Rightarrow \quad \int_{D} \psi(\underset{\sim}{x}, \underset{\sim}{q}, t) \mathrm{d} \underset{\sim}{q}=1$ for a.e. $(\underset{\sim}{x}, t) \in \Omega_{T}$.

Here $\lambda>0$ is the elastic relaxation constant of the fluid.
$D \subset \mathbb{R}^{d}, d=2$ or 3: the set of admissible elongation vectors q.
U is the potential for the elastic force $\underset{\sim}{F}: D \mapsto \mathbb{R}^{d}$ of the dumbbell spring (U^{\prime} strictly monotonic increasing):

$$
\underset{\sim}{F}(\underset{\sim}{q}):=U^{\prime}\left(\frac{1}{2}|\underset{\sim}{q}|^{2}\right) \underset{\sim}{q} .
$$

On introducing the normalised Maxwellian:

$$
\begin{gathered}
M(\underset{\sim}{q}):=e^{-U\left(\frac{1}{2}|q|^{2}\right)} / \int_{D} e^{-U} \underset{\sim}{\mathrm{~d} q} \\
\Rightarrow \quad{\underset{\sim}{\nabla}}_{q} \cdot\left(\underset{\sim}{\nabla} q \psi+U^{\prime} \underset{\sim}{q} \psi\right) \equiv \underset{\sim}{\nabla} q \cdot\left(M \underset{\sim}{\nabla} q\left(\frac{\psi}{M}\right)\right) .
\end{gathered}
$$

EXAMPLES:

Hookean case: $\quad D=\mathbb{R}^{d}$,
$U(s)=s \quad \Rightarrow \quad U^{\prime}(s)=1 \quad$ and $\quad e^{-U\left(\frac{1}{2}|q|^{2}\right)}=e^{-\frac{1}{2}|q|^{2}} \sim$
b.c. on ∂D replaced by decay conditions as $\underset{\sim}{|q|} \rightarrow \infty$.

Note that $M \underset{\sim}{q}) \propto e^{-\frac{1}{2}|q|^{2}} \rightarrow 0$ as $\underset{\sim}{q} \mid \rightarrow \infty$.
FENE (Finitely Extensible Nonlinear Elastic) case:
$D=B\left(\underset{\sim}{0}, b^{\frac{1}{2}}\right)$,
$U(s)=-\frac{b}{2} \ln \left(1-\frac{2 s}{b}\right) \quad \Rightarrow \quad U^{\prime}(s)=\left(1-\frac{2 s}{b}\right)^{-1}$,
$M(\underset{\sim}{q}) \propto e^{-U\left(\frac{1}{2}|q|^{2}\right)}=\left(1-\frac{|q|^{2}}{b}\right)^{\frac{b}{2}} \Rightarrow M=0$ on ∂D.
Note that $b \rightarrow \infty \quad \Rightarrow \quad$ Hookean case.

Finally, the symmetric extra stress tensor, due to the dumbbells, on the RHS of the Navier-Stokes equations is

$$
\underset{\approx}{\tau}(\psi):=\mu(\underset{\approx}{C}(\psi)-\rho(\psi) \underset{\approx}{I}), \quad \text { Kramers expression. }
$$

Here $\mu \in \mathbb{R}_{>0}$ depends on the Boltzmann constant and temperature, $\underset{\sim}{I}$ is the unit $d \times d$ tensor, and

$$
\begin{aligned}
& \left.\underset{\sim}{C}(\psi) \underset{\sim}{x}, t):=\int_{D} \psi \underset{\sim}{x} \underset{\sim}{x}, \underset{\sim}{q}, t\right) U^{\prime}\left(\underset{\sim}{2}|q|^{2}\right) \underset{\sim}{q} q^{\top} \underset{\sim}{d} \\
& \text { and } \\
& \left.\rho(\psi)(\underset{\sim}{x}, t):=\int_{D} \psi \underset{\sim}{x} \underset{\sim}{x}, \underset{\sim}{q}\right) \underset{\sim}{\mathrm{d}} \underset{\sim}{ } .
\end{aligned}
$$

We denote the above coupled Navier-Stokes/Fokker-Planck system for $\underset{\sim}{u}(\underset{\sim}{x}, t)$ and $\psi(\underset{\sim}{x}, \underset{\sim}{q}, t)$ as (P).
(a Microscopic-Macroscopic Polymer Model)
The term that causes all the mathematical difficulties in establishing the existence of global-in-time weak solutions is the drag term

$$
\underset{\sim}{\nabla}{ }_{q} \cdot\left(\left({\underset{\sim}{\sim}}_{x} \underset{\sim}{u}\right) \underset{\sim}{q} \psi\right)
$$

in the Fokker-Planck equation

$$
\begin{aligned}
& \left.\frac{\partial \psi}{\partial t}+\underset{\sim}{(u} \cdot \underset{\sim}{\nabla}{\underset{\sim}{x}}_{x}\right) \psi+\underset{\sim}{\nabla} q \cdot \underset{\sim}{q} \cdot\left(\left({\underset{\sim}{*}}_{x} \underset{\sim}{u}\right) \underset{\sim}{q}\right) \\
& =\frac{1}{2 \lambda}{\underset{\sim}{\nabla}}_{q} \cdot\left(M \underset{\sim}{\underset{\sim}{\nabla}}{ }_{q}\left(\frac{\psi}{M}\right)\right) \quad \text { in } \Omega_{T} \times D .
\end{aligned}
$$

A mathematically simpler model is the Corotational model.
Splitting the tensor

$$
\underset{\sim}{\nabla} \underset{\sim}{\underset{\sim}{v}}=\underset{\sim}{D}(\underset{\sim}{v})+\underset{\sim}{v} \underset{\sim}{v} \underset{\sim}{v})
$$

into its symmetric and skew-symmetric parts

$$
\underset{\sim}{D}(\underset{\sim}{v})=\frac{1}{2}\left[\underset{\sim}{\nabla} x \underset{\sim}{v}+(\underset{\sim}{\nabla} \underset{\sim}{v})^{\top}\right], \quad \underset{\sim}{\omega}(\underset{\sim}{v})=\frac{1}{2}\left[\underset{\sim}{\nabla} \underset{\sim}{v} \underset{\sim}{v}-(\underset{\sim}{\nabla} x \underset{\sim}{v})^{\top}\right],
$$

the difficult drag term is written as

$$
\underset{\sim}{\nabla} q \cdot(\underset{\sim}{\zeta}(\underset{\sim}{u}) \underset{\sim}{u} \psi) .
$$

The two cases are then
(i) the noncorotational case $\underset{\sim}{\zeta} \underset{\sim}{v})=\underset{\sim}{\nabla} \underset{\sim}{v} \underset{\sim}{v}$,
or
(ii) the corotational cas
the original, difficult, case.
(ii) is mathematically easier, (physical justification ?).

In the Hookean case, as $U^{\prime}=1$, one can eliminate $\psi(\underset{\sim}{x}, \underset{\sim}{q}, t)$ leading to a closed macroscopic model (Oldroyd-B model) for $\underset{\sim}{u}(\underset{\sim}{x}, t), \rho(\underset{\sim}{x}, t)$ and $\underset{\sim}{\tau} \underset{\sim}{\tau}(\underset{\sim}{x}, t)$:
Navier-Stokes for $\underset{\sim}{u}$ with extra stress tensor $\underset{\sim}{\tau}$ plus

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\left(\underset{\sim}{u} \cdot \underset{\sim}{\nabla}{\underset{\sim}{x}}_{x}\right) \rho=0 \\
& \delta \tau \\
& \left.\lambda \underset{\sim}{\delta t}+\underset{\approx}{\tau}=\mu \lambda \rho[\underset{\sim}{\zeta(u)}+\underset{\approx}{[\zeta(u)}]^{\top}\right] \quad \text { in } \Omega_{T} ;
\end{aligned}
$$

where
is the upper-convected time derivative.
$\int_{D} \psi^{0}(\underset{\sim}{x}, \underset{\sim}{q}) \mathrm{d} \underset{\sim}{q}=1$ for a.e. $\underset{\sim}{x} \in \Omega \quad \Rightarrow \quad \rho(\underset{\sim}{x}, t) \equiv \equiv_{\text {Paris January 2009-p. } 12}^{1}$

Lions \& Masmoudi (2001) have shown the existence of global-in-time weak solutions to the COROTATIONAL Oldroyd-B model.

Lions \& Masmoudi (2007) have shown the existence of global-in-time weak solutions to the COROTATIONAL FENE model.
l.e. in both cases $\underset{\sim}{\zeta}(\underset{\sim}{v})=\underset{\sim}{\omega}(\underset{\sim}{v})=\frac{1}{2}\left[\nabla_{\approx} x \underset{\sim}{v}-(\underset{\sim}{\nabla} x \underset{\sim}{v})^{\top}\right]$.

To the best of our knowledge, there are NO proofs of existence of global-in-time weak solutions to (i) the original Oldroyd-B model,
(ii) the original FENE model,
i.e. $\underset{\sim}{\zeta}(\underset{\sim}{v})=\underset{\approx}{\nabla} x \underset{\sim}{v}$, in the literature.

There do exist various local-in-time results.

Throughout we will consider, for mathematical simplicity, a slightly different FENE model with $\underset{\sim}{x}$-diffusion in the Fokker-Planck equation, with a corresponding no flux boundary condition. In addition, we will work with $\widehat{\psi}:=\frac{\psi}{M}$, as opposed to ψ.

For a given $\varepsilon>0$.
$\left(\mathbf{P}_{\varepsilon}\right)$ Find $\underset{\sim}{u} \underset{\sim}{u}(\underset{\sim}{x}, t) \in \mathbb{R}^{d}$ and $p_{\varepsilon}(\underset{\sim}{x}, t) \in \mathbb{R}$ s.t.

$$
\begin{aligned}
& \partial u_{\varepsilon}
\end{aligned}
$$

$$
\begin{aligned}
& =\underset{\sim}{f}+\underset{\sim}{\nabla} \underset{\sim}{x} \cdot \underset{\sim}{\tau}\left(M \widehat{\psi}_{\varepsilon}\right) \quad \text { in } \Omega_{T}, \\
& \underset{\sim}{\nabla}{ }_{x} \cdot \underset{\sim}{u}=0 \\
& \underset{\sim}{u}{ }_{\varepsilon}=\underset{\sim}{0} \\
& \underset{\sim}{u_{\varepsilon}}(\underset{\sim}{x}, 0)=\underset{\sim}{u}(\underset{\sim}{0}(x) \\
& \text { in } \Omega_{T} \text {, } \\
& \text { on } \partial \Omega_{T}^{*} \text {, } \\
& \forall \underset{\sim}{x} \in \Omega ;
\end{aligned}
$$

where
and $\widehat{\psi}_{\varepsilon}(\underset{\sim}{x}, \underset{\sim}{q}, t) \in \mathbb{R}$ is s.t.

$$
\begin{aligned}
& \left.\left.M \frac{\partial \widehat{\psi}_{\varepsilon}}{\partial t}+\underset{\sim}{\left(u_{\varepsilon}\right.} \cdot \underset{\sim}{\nabla} x\right)\left(M \underset{\sim}{\nabla_{\varepsilon}}\right)+\underset{\sim}{\nabla} q \cdot \underset{\sim}{\sim} \cdot \underset{\sim}{\zeta}\left(u_{\varepsilon}\right) \underset{\sim}{q} M \widehat{\psi_{\varepsilon}}\right) \\
& =\frac{1}{2 \lambda}{\underset{\sim}{\sim}}_{q} \cdot\left(M \underset{\sim}{\nabla}{ }_{q} \widehat{\psi}_{\varepsilon}\right)+\varepsilon M \Delta_{x} \widehat{\psi}_{\varepsilon} \quad \text { in } \Omega_{T} \times D, \\
& M\left[\frac{1}{2 \lambda} \underset{\sim}{\nabla} q \widehat{\psi}_{\varepsilon}-\underset{\sim}{\left[\zeta\left(u_{\varepsilon}\right)\right.} \underset{\sim}{q]} \underset{\sim}{\widehat{\psi}}\right] \cdot \underset{\sim}{n_{\partial D}}=0 \quad \text { on } \Omega_{T} \times \partial D, \\
& \varepsilon M \underset{\sim}{\nabla}{\underset{\sim}{x}}^{x} \widehat{\psi}_{\varepsilon} \cdot{\underset{\sim}{n}}_{\partial \Omega}=0 \\
& M \underset{\sim}{\widehat{\psi}_{\varepsilon}}(\underset{\sim}{x}, q, 0)=\psi^{0}(\underset{\sim}{x}, q) \geq 0 \\
& \text { on } \partial \Omega_{T}^{*} \times D \text {, } \\
& \forall(x, q) \in \Omega \times D ;
\end{aligned}
$$

where $\underset{\sim}{n} \partial D$ is \perp to ∂D, and $\underset{\sim}{n} \partial \Omega$ is \perp to $\partial \Omega$.

The inclusion of $\varepsilon M \Delta_{x} \widehat{\psi}_{\varepsilon}$ can be justified.
It does appear in the derivation of the model, but is usually dropped because ε is very small.

Corresponding Oldroyd-B model in the Hookean case for $\underset{\sim}{u} \varepsilon(\underset{\sim}{x}, t), \rho_{\varepsilon}(\underset{\sim}{x}, t)$ and $\underset{\sim}{\tau} \underset{\sim}{\tau}(\underset{\sim}{x}, t)$:

Navier-Stokes for $\underset{\sim}{u}$ with extra stress tensor $\underset{\sim}{\tau} \varepsilon$ plus

$$
\int_{D} \psi^{0}(\underset{\sim}{x}, \underset{\sim}{q}) \mathrm{d} q \underset{\sim}{q}=1 \text { for a.e. } \underset{\sim}{x} \in \Omega \quad \Rightarrow \quad \rho_{\varepsilon}(\underset{\sim}{x}, t) \equiv \underset{\text { Paris } J}{1 .}
$$

$$
\begin{aligned}
& \left.\frac{\partial \rho_{\varepsilon}}{\partial t}+\underset{\sim}{\underset{\sim}{u}}{ }_{\varepsilon} \cdot \underset{\sim}{\nabla} x\right) \rho_{\varepsilon}-\varepsilon \Delta_{x} \rho_{\varepsilon}=0 \quad \text { in } \Omega_{T}, \\
& \lambda\left(\frac{\delta \tau_{\varepsilon}}{\frac{\tilde{\sigma}}{\delta t}-\varepsilon \Delta_{x} \tau_{\varepsilon}} \underset{\approx}{ }\right)+\underset{\approx}{\tau_{\varepsilon}} \\
& \left.=\mu \lambda \rho_{\varepsilon}\left[\underset{\sim}{\zeta}\left(u_{\varepsilon}\right)+\underset{\sim}{\sim} \underset{\sim}{\sim}\left(u_{\varepsilon}\right)\right]^{\top}\right] \quad \text { in } \Omega_{T} .
\end{aligned}
$$

Formal Energy Bounds for $\left(\mathrm{P}_{\varepsilon}\right)$:
Testing the Navier-Stokes equation with $\underset{\sim}{u}{ }_{\varepsilon}$, integrating over $\Omega \Rightarrow$

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left[\int_{\Omega}|\underset{\sim}{u}|^{2} \mathrm{~d} x\right]+\nu \int_{\Omega}\left|\nabla_{\sim}^{x} \underset{\sim}{x}{\underset{\sim}{e}}^{u_{\varepsilon}}\right|^{2} \underset{\sim}{\mathrm{~d}} x-\int_{\Omega} \underset{\sim}{f} \cdot \underset{\sim}{u} \underset{\sim}{u} \\
& =-\int_{\Omega} \tau\left(M \underset{\sim}{\psi_{\varepsilon}}\right): \underset{\sim}{\nabla}{\underset{\sim}{x}}^{u_{\varepsilon}} \underset{\sim}{\mathrm{d}} \underset{\sim}{x} \\
& =-\mu \int_{\Omega} C(M \underset{\approx}{\approx}): \underset{\approx}{\nabla_{x}}{\underset{\sim}{x}}^{u_{\varepsilon}} \mathrm{d} x \\
& \left.\leq\left.\frac{\nu}{2} \int_{\Omega}\left|\nabla_{\approx} \underset{\sim}{x}\right|_{\sim}\right|^{2} \underset{\sim}{\mathrm{~d}} x+\frac{\mu^{2}}{2 \nu} \int_{\Omega} \right\rvert\, C\left(\left.M \underset{\approx}{\left.\widehat{\psi_{\varepsilon}}\right)}\right|^{2} \underset{\sim}{\mathrm{~d} x} .\right.
\end{aligned}
$$

We will consider the Oldroyd-B model separately
(i.e. the Hookean case, $D=\mathbb{R}^{d}$).

Here we consider only the FENE macroscopic/microscopic model:
$D=B\left(\underset{\sim}{0}, b^{\frac{1}{2}}\right), \quad U(s)=-\frac{b}{2} \ln \left(1-\frac{2 s}{b}\right) \quad \Rightarrow$
$M(\underset{\sim}{q}) \propto\left(1-\frac{|q|^{2}}{b}\right)^{\frac{b}{2}}$ and $\quad M=0$ on ∂D.
We will assume throughout that $b>2$, which implies that

$$
\int_{D} M\left[1+U^{2}+\left|U^{\prime}\right|^{2}\right] \underset{\sim}{\mathrm{d} q}<\infty .
$$

Introducing the weighted Sobolev norm (degenerate weight M)

$$
\begin{aligned}
& \|\widehat{\varphi}\|_{H^{1}(\Omega \times D ; M)}:= \\
& \qquad\left\{\int_{\Omega \times D} M\left[|\widehat{\varphi}|^{2}+\left|\nabla_{\sim}{ }_{q} \widehat{\varphi}\right|^{2}+\left|\nabla_{\sim} \nabla_{x} \widehat{\varphi}\right|^{2}\right] \underset{\sim}{\mathrm{d} q} \underset{\sim}{\mathrm{~d} x}\right\}^{\frac{1}{2}}
\end{aligned}
$$

we set

$$
\begin{aligned}
\widehat{X} & \equiv H^{1}(\Omega \times D ; M) \\
& :=\left\{\widehat{\varphi} \in L_{\mathrm{loc}}^{1}(\Omega \times D):\|\widehat{\varphi}\|_{H^{1}(\Omega \times D ; M)}<\infty\right\}
\end{aligned}
$$

One can show, for example, that $C^{\infty}(\overline{\Omega \times D})$ is dense in \widehat{X},
the embedding $L^{2}(\Omega \times D ; M) \hookrightarrow H^{1}(\Omega \times D ; M)$ is compact.

For all $\hat{\varphi} \in \widehat{X}$, we have that

$$
\left.\begin{array}{rl}
\int_{\Omega} \mid C(M \widehat{\sim} & \hat{\varphi})\left.\right|^{2} \mathrm{~d} x \\
& =\int_{\Omega} \sum_{i=1}^{d} \sum_{j=1}^{d}\left(\int_{D} M \underset{\varphi}{\widehat{\varphi}} U^{\prime} q_{i} q_{j} \underset{\sim}{\mathrm{~d} q}\right)^{2} \mathrm{~d} x \\
& \leq d\left(\int_{D} M\left|U^{\prime}\right|^{2} \mid \underset{\sim}{|q|^{4}} \underset{\sim}{\mathrm{~d}} \underset{\sim}{\sim}\right)\left(\int_{\Omega \times D} M|\widehat{\varphi}|^{2} \mathrm{~d} q \mathrm{~d} x\right. \\
\sim
\end{array}\right) .
$$

Multiplying the Fokker-Planck equation with $\widehat{\psi_{\varepsilon}}$, integrating over $\Omega \times D \Rightarrow$

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left[\int_{\Omega \times D} M\left|\widehat{\psi}_{\varepsilon}\right|^{2} \underset{\sim}{\sim} \underset{\sim}{\operatorname{d}} \underset{\sim}{\mathrm{~d}}\right] \\
& +\frac{1}{2 \lambda} \int_{\Omega \times D} M\left|{\underset{\sim}{\nabla}}_{q} \widehat{\psi}_{\varepsilon}\right|^{2} \mathrm{~d} \underset{\sim}{\sim} \underset{\sim}{d} \\
& +\varepsilon \int_{\Omega \times D} M\left|\nabla_{\sim} \widehat{\psi}_{\varepsilon}\right|^{2} \underset{\sim}{\mathrm{~d} q} \mathrm{~d} x \\
& \left.=\int_{\Omega \times D} M \underset{\sim}{\underset{\sim}{\zeta}\left(u_{\varepsilon}\right)} \underset{\sim}{q} \underset{\sim}{{\underset{\psi}{\psi}}_{\varepsilon}}\right) \cdot \underset{\sim}{\nabla}{ }_{q} \widehat{\psi}_{\varepsilon} \mathrm{d} \underset{\sim}{q} \mathrm{~d} \underset{\sim}{x} .
\end{aligned}
$$

Corotational case (skew-symmetric $\underset{\sim}{\zeta}$)

$$
\underset{\approx}{\zeta(v)}=\underset{\sim}{\underset{\sim}{\omega}} \underset{\sim}{v(v)} \quad \Rightarrow \quad \underset{\sim}{q} \underset{\sim}{q} \underset{\sim}{\omega}(v) \underset{\sim}{v} \underset{\sim}{q}=0 \quad \underset{\sim}{\forall q} \in \mathbb{R}^{d} .
$$

Hence we have for all $\widehat{\varphi} \in \widehat{X}$ and $\underset{\sim}{v} \in\left[W^{1, \infty}(\Omega)\right]^{d}$ that

$$
\begin{aligned}
& \left.\left.\int_{\Omega \times D} M \underset{\sim}{\omega} \underset{\sim}{\omega} \underset{\sim}{v}\right) q \underset{\sim}{\varphi}\right) \cdot{\underset{\sim}{\sim}}_{q} \widehat{\varphi} \mathrm{~d} q \underset{\sim}{\mathrm{~d}} \underset{\sim}{x} \\
& \left.=\frac{1}{2} \int_{\Omega \times D} M \underset{\sim}{\omega} \underset{\sim}{\omega}(\underset{\sim}{v}) \underset{\sim}{q}\right) \cdot{\underset{\sim}{\nabla}}_{q}\left(\widehat{\varphi}^{2}\right) \underset{\sim}{d} \underset{\sim}{\operatorname{d}} x \\
& \left.=\frac{1}{2} \int_{\Omega \times \partial D} M \underset{\sim}{\underset{\sim}{\omega}(\underset{\sim}{v})} \underset{\sim}{q}\right) \cdot{\underset{\sim}{n}}^{n_{\partial D}} \widehat{\varphi}^{2} \mathrm{~d} s \underset{\sim}{\mathrm{~d} x} \\
& \left.+\frac{1}{2} \int_{\Omega \times D} M\left(\underset{\sim}{q} q^{\top} \underset{\sim}{\omega} \underset{\sim}{v}\right) \underset{\sim}{q}\right) U^{\prime} \widehat{\varphi}^{2} \underset{\sim}{d} \underset{\sim}{d} x=0,
\end{aligned}
$$

since $\quad \underset{\sim}{n} \partial D=\frac{\underset{\sim}{q}}{\mid \underset{\sim}{q}}, \quad \underset{\sim}{\nabla} q M=-M U^{\prime} \underset{\sim}{q} \quad$ and $\quad \operatorname{trace}(\underset{\sim}{\sim} \underset{\sim}{\sim}(v))=0$.

Hence in the Corotational case, we have the formal estimates:

$$
\begin{aligned}
& \frac{d}{d t}\left[\int_{\Omega}\left|u_{\sim}\right|^{2} \mathrm{~d} x\right]+\nu \int_{\Omega}\left|\nabla_{\sim}^{x} \underset{\sim}{x}{\underset{\sim}{u}}^{u^{2}}\right|^{2} \underset{\sim}{\mathrm{~d}} x-\frac{1}{2} \int_{\Omega} \underset{\sim}{f} \cdot \underset{\sim}{u}{\underset{\sim}{\varepsilon}}^{\mathrm{d}} \underset{\sim}{x} \\
& \leq \frac{\mu^{2}}{\nu} \int_{\Omega}\left|C\left(M \underset{\sim}{\widehat{\psi}_{\varepsilon}}\right)\right|^{2} \underset{\sim}{\mathrm{~d}} x \leq C \int_{\Omega \times D} M\left|\widehat{\psi}_{\varepsilon}\right|^{2} \underset{\sim}{\mathrm{~d}} \underset{\sim}{\mathrm{~d}} x ; \\
& \frac{d}{d t}\left[\int_{\Omega \times D} M\left|\widehat{\psi}_{\varepsilon}\right|^{2} \underset{\sim}{\mathrm{~d}} \underset{\sim}{\mathrm{~d}} \underset{\sim}{x}\right]+\frac{1}{\lambda} \int_{\Omega \times D} M\left|\underset{\sim}{\mid} \nabla_{q} \widehat{\psi}_{\varepsilon}\right|^{2} \underset{\sim}{\mathrm{~d}} \underset{\sim}{\mathrm{~d}} \underset{\sim}{x} \\
& +2 \varepsilon \int_{\Omega \times D} M\left|\underset{\sim}{\nabla} \underset{x}{ } \widehat{\psi}_{\varepsilon}\right|^{2} \underset{\sim}{\mathrm{~d} q} \underset{\sim}{\mathrm{~d}} x=0 .
\end{aligned}
$$

The above can be made rigorous, and one can easily establish the existence of global-in-time weak solutions for $\left(\mathrm{P}_{\varepsilon}\right)$ in the Corotational case.

One can also easily construct Finite Element approximations, and prove convergence to (P_{ε}) in the Corotational case; see B. \& Süli (2009).

The Noncorotational case.
The trick is to choose the testing procedure so as to cancel the extra stress term in the Navier-Stokes equation with the drag term in the Fokker-Planck equation;
see e.g. B., Schwab \& Süli (2005);
Jourdain, Lelièvre, Le Bris \& Otto (2006); Lin, Liu \& Zhang (2007).
As before for the Navier-Stokes equations tested with $\underset{\sim}{u}$, we have that

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left[\left.\int_{\Omega}|\underset{\sim}{u}|^{2}\right|^{2} \mathrm{~d} x\right]+\nu \int_{\Omega}\left|\nabla_{\approx} \underset{\sim}{x} \underset{\sim}{u}\right|^{2} \mathrm{~d} x \\
& =\int_{\Omega} f \cdot \underset{\sim}{u} u_{\varepsilon} \mathrm{d} x-\mu \int_{\Omega} C\left(M \widehat{\psi}_{\varepsilon}\right): \underset{\approx}{\nabla_{x}} \underset{\sim}{u}{\underset{\sim}{e}}^{\mathrm{d}} \underset{\sim}{x} .
\end{aligned}
$$

Let $\mathcal{F}(s):=s(\ln s-1)+1 \in \mathbb{R}_{\geq 0} \quad$ for $s \geq 0$.
Multiplying the Fokker-Planck equation with $\mathcal{F}^{\prime}\left(\widehat{\psi}_{\varepsilon}\right) \equiv \ln \widehat{\psi}_{\varepsilon}$, assumes that $\widehat{\psi}_{\varepsilon}>0$, integrating over $\Omega \times D \Rightarrow$

$$
\begin{aligned}
& \frac{d}{d t}\left[\int_{\Omega \times D} M \mathcal{F}\left(\widehat{\psi}_{\varepsilon}\right) \underset{\sim}{d} \underset{\sim}{d} \underset{\sim}{x}\right] \\
& +\frac{1}{2 \lambda} \int_{\Omega \times D} M \underset{\sim}{\underset{\sim}{\nabla}}{ }_{q} \widehat{\psi}_{\varepsilon} \cdot \underset{\sim}{\nabla} \nabla_{q}\left[\mathcal{F}^{\prime}\left(\widehat{\psi_{\varepsilon}}\right)\right] \underset{\sim}{\mathrm{d}} \underset{\sim}{\mathrm{~d} x} \\
& +\varepsilon \int_{\Omega \times D} M \underset{\sim}{\nabla} \underset{x}{ } \widehat{\psi}_{\varepsilon} \cdot{\underset{\sim}{\nabla}}_{x}\left[\mathcal{F}^{\prime}\left(\widehat{\psi}_{\varepsilon}\right)\right] \mathrm{d} q \underset{\sim}{\mathrm{~d} x} \\
& =\int_{\Omega \times D} M \underset{\sim}{\psi_{\varepsilon}}\left[\left(\nabla_{\sim} \underset{\sim}{x}{\underset{\sim}{e}}_{\varepsilon}^{u}\right) \underset{\sim}{q]} \cdot \underset{\sim}{\nabla} \nabla_{q}\left[\mathcal{F}^{\prime}\left(\widehat{\psi}_{\varepsilon}\right)\right] \underset{\sim}{\mathrm{d}} \underset{\sim}{\mathrm{~d} x} .\right.
\end{aligned}
$$

Note that $\mathcal{F}^{\prime \prime}(s)=s^{-1}>0$ for $s>0$.

Noting that $\quad \widehat{\psi}_{\varepsilon} \underset{\sim}{\underset{\sim}{~}}{ }_{q}\left[\mathcal{F}^{\prime}\left(\widehat{\psi}_{\varepsilon}\right)\right]=\underset{\sim}{\nabla}{ }_{q} \widehat{\psi}_{\varepsilon}, \quad \underset{\sim}{\nabla}{ }_{q} M=-M U^{\prime} \underset{\sim}{q}$, $M=0$ on $\partial D \quad$ and $\quad{\underset{\sim}{x}} \cdot{\underset{\sim}{u}}^{u}=0 \quad \Rightarrow$

$$
\begin{aligned}
& \int_{\Omega \times D} M \underset{\sim}{\widehat{\psi}_{\varepsilon}}\left[\left(\nabla_{\approx} \underset{\sim}{x} \underset{\sim}{u}\right) \underset{\sim}{q]} \cdot \underset{\sim}{\nabla} q\left[\mathcal{F}^{\prime}\left(\widehat{\psi_{\varepsilon}}\right)\right] \mathrm{d} q \underset{\sim}{\mathrm{~d} x}\right. \\
& =\int_{\Omega \times D} M[(\underset{\sim}{\nabla} \underset{\sim}{x} \underset{\sim}{u}) \underset{\sim}{q}) \cdot \underset{\sim}{\nabla} q \widehat{\sim}_{\varepsilon} \mathrm{d} q \underset{\sim}{d} \\
& =\int_{\Omega \times D} M U^{\prime} \underset{\sim}{q} \cdot\left[\left(\underset{\sim}{\nabla} \underset{\sim}{x} \underset{\sim}{u_{\varepsilon}}\right) \underset{\sim}{q}\right] \underset{\sim}{\widehat{\psi}_{\varepsilon}} \mathrm{d} q \underset{\sim}{\mathrm{~d} x} \\
& =\int_{\Omega} C\left(M \widehat{\psi}_{\varepsilon}\right): \underset{\approx}{\nabla} \underset{\sim}{x}{\underset{\sim}{u}}^{u_{\varepsilon}} \mathrm{d} x,
\end{aligned}
$$

on recalling that

$$
\underset{\sim}{C}(M \underset{\sim}{\widehat{\psi}})(\underset{\sim}{x}, t)=\int_{D} M \underset{\sim}{\psi_{\varepsilon}}(\underset{\sim}{x}, \underset{\sim}{q}, t) U^{\prime}\left(\left.\underset{\sim}{1}|\underset{\sim}{2}|\right|^{2}\right) \underset{\sim}{q} q^{\top} \underset{\sim}{d} .
$$

To make the above rigorous, and for computational purposes, we replace the convex $\mathcal{F} \in C^{\infty}\left(\mathbb{R}_{>0}\right)$ for any $\delta \in(0,1)$ and $L>1$ by the convex $\mathcal{F}_{\delta}^{L} \in C^{2,1}(\mathbb{R})$:

$$
\begin{aligned}
& \mathcal{F}_{\delta}^{L}(s) \quad:= \begin{cases}\frac{s^{2}-\delta^{2}}{2 \delta}+(\ln \delta-1) s+1 & s \leq \delta \\
\mathcal{F}(s) \equiv s(\ln s-1)+1 & \delta \leq s \leq L, \\
\frac{s^{2}-L^{2}}{2 L}+(\ln L-1) s+1 & L \leq s\end{cases} \\
& \Rightarrow \quad\left[\mathcal{F}_{\delta}^{L}\right]^{\prime}(s)= \begin{cases}\frac{s}{\delta}+\ln \delta-1 & s \leq \delta \\
\ln s & \delta \leq s \leq L, \\
\frac{s}{L}+\ln L-1 & L \leq s\end{cases} \\
& \Rightarrow \quad\left[\mathcal{F}_{\delta}^{L}\right]^{\prime \prime}(s)= \begin{cases}\delta^{-1} & s \leq \delta \\
s^{-1} & \delta \leq s \leq L . \\
L^{-1} & L \leq s\end{cases}
\end{aligned}
$$

Let

$$
\beta_{\delta}^{L}(s):=\left[\left[\mathcal{F}_{\delta}^{L}\right]^{\prime \prime}(s)\right]^{-1}= \begin{cases}\delta & s \leq \delta \\ s & \delta \leq s \leq L \\ L & L \leq s\end{cases}
$$

Let $\left\{\underset{\sim}{\underset{\sim}{u}, \delta} L \underset{\psi_{\varepsilon, \delta}}{L}\right\}$ solve $\left(\mathrm{P}_{\varepsilon, \delta}^{L}\right)$, which is $\left(\mathrm{P}_{\varepsilon}\right)$ with the drag term

$$
\left.\underset{\sim}{\nabla} q \cdot((\underset{\sim}{\nabla} \underset{\sim}{x} \underset{\sim}{u}) \underset{\sim}{u}) \underset{\psi_{\varepsilon}}{q}\right)
$$

replaced by

$$
\underset{\sim}{\nabla} \underset{\sim}{ } \cdot\left(\left(\underset{\sim}{\nabla} \underset{\sim}{x}{\underset{\sim}{\varepsilon}}_{\underset{\varepsilon}{u} \delta}^{L}\right) \underset{\sim}{q} M \beta_{\delta}^{L}\left(\widehat{\psi}_{\varepsilon, \delta}^{L}\right)\right) .
$$

Multiplying Fokker-Planck in $\left(\mathrm{P}_{\varepsilon, \delta}^{L}\right)$ with $\left[\mathcal{F}_{\delta}^{L}\right]^{\prime}\left(\widehat{\psi}_{\varepsilon, \delta}^{L}\right)$, integrating over $\Omega \times D$,
noting that $\quad \beta_{\delta}^{L}\left(\widehat{\psi}_{\varepsilon, \delta}^{L}\right) \underset{\sim}{\nabla}{ }_{q}\left[\left[\mathcal{F}_{\delta}^{L}\right]^{\prime}\left(\widehat{\psi}_{\varepsilon, \delta}^{L}\right)\right]=\underset{\sim}{\nabla}{ }_{q} \widehat{\psi}_{\varepsilon, \delta}^{L}$,
$\underset{\sim}{\nabla} q M=-M U^{\prime} \underset{\sim}{q} \quad$ and $\quad \underset{\sim}{\nabla} x \cdot{\underset{\sim}{v}}_{\sim}^{L}, \delta=0 \quad \Rightarrow$

$$
\frac{d}{d t}\left[\int_{\Omega \times D} M \mathcal{F}_{\delta}^{L}\left(\widehat{\psi}_{\varepsilon, \delta}^{L}\right) \underset{\sim}{\mathrm{d}} \underset{\sim}{\mathrm{~d}} \underset{\sim}{\mathrm{~d}}\right]
$$

$$
+\frac{1}{2 \lambda} \int_{\Omega \times D} M \underset{\sim}{\underset{\sim}{\nabla}}{ }_{q} \widehat{\psi}_{\varepsilon, \delta}^{L} \cdot{\underset{\sim}{\nabla}}_{q}\left[\left[\mathcal{F}_{\delta}^{L}\right]^{\prime}\left(\widehat{\psi}_{\varepsilon, \delta}^{L}\right)\right] \mathrm{d} q \underset{\sim}{\mathrm{~d}} x
$$

$$
+\varepsilon \int_{\Omega \times D} M \underset{\sim}{\nabla}{ }_{x} \widehat{\psi}_{\varepsilon, \delta}^{L} \cdot{\underset{\sim}{\nabla}}_{x}\left[\left[\mathcal{F}_{\delta}^{L}\right]^{\prime}\left(\widehat{\psi}_{\varepsilon, \delta}^{L}\right)\right] \underset{\sim}{\mathrm{d}} \underset{\sim}{\mathrm{~d} x}
$$

$$
=\int_{\Omega \times D} M \beta_{\delta}^{L}\left(\widehat{\psi}_{\varepsilon, \delta}^{L}\right)\left[\left(\underset{\sim}{\nabla} \underset{\sim}{x} \underset{\sim}{u}{\underset{\sim}{\varepsilon}, \delta}_{L}^{)} \underset{\sim}{q]} \cdot \underset{\sim}{\nabla}{\underset{\sim}{\nabla}}_{q}\left[\left[\mathcal{F}_{\delta}^{L}\right]^{\prime}\left(\widehat{\psi}_{\varepsilon, \delta}^{L}\right)\right] \underset{\sim}{\mathrm{d} q} \underset{\sim}{\mathrm{~d} x}\right.\right.
$$

$$
=\int_{\Omega} C\left(M \underset{\sim}{\psi_{\varepsilon, \delta}^{L}}\right): \underset{\approx}{\nabla}{ }_{x}{\underset{\sim}{\sim}}_{\varepsilon, \delta}^{L} \mathrm{~d} x
$$

Note that $\left[\mathcal{F}_{\delta}^{L}\right]^{\prime \prime} \geq L^{-1}$, and

$$
\mathcal{F}_{\delta}^{L}(s) \geq \begin{cases}\frac{s^{2}}{2 \delta} & \text { if } s \leq 0 \\ \frac{s^{2}}{4 L}-C(L) & \text { if } s \geq 0\end{cases}
$$

Let $\mathcal{G}: \widehat{X}^{\prime} \mapsto \widehat{X}$, (duality with respect to the M weight)
be s.t. $\mathcal{G} \widehat{\eta}$ is the unique solution of

$$
\begin{aligned}
& \int_{\Omega \times D} M\left[(\mathcal{G} \widehat{\eta}) \widehat{\varphi}+\underset{\sim}{\nabla} q(\mathcal{G} \widehat{\eta}) \cdot{\underset{\sim}{\nabla}}_{q} \widehat{\varphi}+\underset{\sim}{\nabla} \underset{x}{ }(\mathcal{G} \widehat{\eta}) \cdot{\underset{\sim}{*}}_{\nabla} \widehat{\varphi}\right] \underset{\sim}{\mathrm{d} q} \mathrm{~d} x \\
& \quad=\langle M \widehat{\eta}, \widehat{\varphi}\rangle_{\widehat{X}} \quad \forall \widehat{\varphi} \in \widehat{X},
\end{aligned}
$$

where $\langle M \cdot, \cdot\rangle_{\widehat{X}}$ is the duality pairing between \widehat{X} and \widehat{X}^{\prime}.

Let

$$
\begin{aligned}
& \underset{\sim}{H}:=\left\{\underset{\sim}{w} \in\left[L^{2}(\Omega)\right]^{d}: \underset{\sim}{\nabla}{\underset{x}{x}}^{\underset{\sim}{w}} \underset{\sim}{w}=0\right\}, \\
& \underset{\sim}{V}:=\left\{\underset{\sim}{w} \in\left[H_{0}^{1}(\Omega)\right]^{d}: \underset{\sim}{\nabla}{ }_{x} \cdot \underset{\sim}{w}=0\right\},
\end{aligned}
$$

$\underset{\sim}{V}{ }^{\prime}$ the dual of $\underset{\sim}{V}$ and $\langle\cdot, \cdot\rangle_{V}$ the duality pairing between $\underset{\sim}{V}$ and $\underset{\sim}{V}$.
Let $\underset{\sim}{S}: \underset{\sim}{V} \mapsto \underset{\sim}{V}$ be s.t. $\underset{\sim}{S} \underset{\sim}{v}$ is the unique solution of the Helmholtz-Stokes problem

Hence $\|\underset{\sim}{S} \cdot\|_{H^{1}(\Omega)}$ is a norm on $\underset{\sim}{V}$.

Assumptions:

$\partial \Omega \in C^{0,1}, \quad \underset{\sim}{u}{ }^{0} \in \underset{\sim}{H}, \quad M^{\frac{1}{2}} \widehat{\psi}^{0} \equiv M^{-\frac{1}{2}} \psi^{0} \in L^{2}(\Omega \times D)$ with $\widehat{\psi}^{0} \geq 0$ and $\quad \underset{\sim}{f} \in L^{2}\left(0, T ;{\underset{\sim}{V}}^{\prime}\right)$.

Noncorotational case, assuming that $\widehat{\psi}^{0} \leq L$, we obtain

$$
\begin{aligned}
& \sup _{t \in(0, T)}\left[\int_{\Omega}\left|{\underset{\sim}{\sim}}_{\varepsilon, \delta}^{L}\right|^{2} \mathrm{~d} x \underset{\sim}{\sim}\right]+\nu \int_{\Omega_{T}}\left|\nabla_{\approx} \underset{\sim}{x} \underset{\sim}{u} u_{\delta, \delta}^{L}\right|^{2} \mathrm{~d} x \underset{\sim}{x} \mathrm{~d} t \leq C, \\
& \sup _{t \in(0, T)}\left[\int_{\Omega \times D} M\left|\left[\widehat{\psi}_{\varepsilon, \delta}^{L} \delta\right]-\right|^{2} \underset{\sim}{\operatorname{d}} \underset{\sim}{\mathrm{~d} x}\right] \leq C \delta,
\end{aligned}
$$

where C is a constant depending on the data $\underset{\sim}{u} 0, \widehat{\psi}^{0}$ and $\underset{\sim}{f}$ (dependence suppressed from now on);

In addition, testing
the Fokker-Planck equation with (a) $\widehat{\psi}_{\varepsilon, \delta}^{L}$ and (b) $\mathcal{G} \frac{\partial \widehat{\psi}_{\varepsilon, \delta}^{L}}{\partial t}$, and the Navier-Stokes equation with $\underset{\sim}{S} \frac{\partial u_{\varepsilon, \delta}^{L}}{\partial t}$;
we obtain that

$$
\begin{aligned}
& \int_{0}^{T}\left\|\frac{\partial \sim}{\partial t} u_{\varepsilon, \delta}^{L}\right\|_{V^{\prime}}^{\frac{4}{d}} \mathrm{~d} t+\sup _{t \in(0, T)}\left[\int_{\Omega \times D} M\left|\widehat{\psi}_{\varepsilon, \delta}^{L}\right|^{2} \underset{\sim}{\mathrm{~d}} \underset{\sim}{\mathrm{~d} x}\right] \\
& +\frac{1}{\lambda} \int_{0}^{T} \int_{\Omega \times D} M\left|\underset{\sim}{\nabla}{ }_{q} \widehat{\psi}_{\varepsilon, \delta}^{L}\right|^{2} \underset{\sim}{\mathrm{~d}} q \mathrm{~d} x \mathrm{~d} t \\
& +\varepsilon \int_{0}^{T} \int_{\Omega \times D} M\left|{\underset{\sim}{\nabla}}_{x} \widehat{\psi}_{\varepsilon, \delta}^{L}\right|^{2} \underset{\sim}{\sim} \underset{\sim}{d} \mathrm{~d} x \mathrm{~d} t \\
& \left.+\left.\sup _{t \in(0, T)}\left[\int_{\Omega} \mid C \underset{\approx}{C(M} \widehat{\psi}_{\varepsilon, \delta}^{L}\right)\right|^{2} \underset{\sim}{\mathrm{~d} x}\right] \\
& +\int_{0}^{T}\left\|\frac{\partial \widehat{\psi}_{\varepsilon, \delta}^{L}}{\partial t}\right\|_{\hat{X}^{\prime}}^{\frac{4}{d}} \mathrm{~d} t \leq C(L, T) \text {. }
\end{aligned}
$$

The testing (a) and (b) require the cut-off $\beta_{\delta}^{L}(\cdot)$, as opposed to $\beta_{\delta}(\cdot)$, in the drag term of the Fokker-Planck equation.

One can pass to the limit $\delta \rightarrow 0$, to obtain e.g. that

$$
\begin{aligned}
& \quad M^{\frac{1}{2}} \widehat{\psi}_{\varepsilon, \delta}^{L} \rightarrow M^{\frac{1}{2}} \widehat{\psi}_{\varepsilon}^{L} \geq 0 \quad \text { strongly in } L^{2}\left(0, T ; L^{2}(\Omega \times D)\right), \\
& M^{\frac{1}{2}} \beta_{\delta}^{L}\left(\widehat{\psi}_{\varepsilon, \delta}^{L}\right) \rightarrow M^{\frac{1}{2}} \beta^{L}\left(\widehat{\psi}_{\varepsilon}^{L}\right) \quad \text { strongly in } L^{2}\left(0, T ; L^{2}(\Omega \times D)\right) ; \\
& \text { where }
\end{aligned}
$$

$$
\beta^{L}(s):=\left\{\begin{array}{ll}
s & s \leq L \\
L & L \leq s
\end{array} .\right.
$$

The above can be made rigorous, and one can establish the existence of global-in-time weak solutions for $\left(\mathrm{P}_{\varepsilon}^{L}\right)$ in the noncorotational case.

Noncorotational case for given $\varepsilon \in(0,1]$ and $L>1$:
$\left(\mathrm{P}_{\varepsilon}^{L}\right)$ Find $\underset{\sim}{u_{\varepsilon}^{L}} \in L^{\infty}\left(0, T ;\left[L^{2}(\Omega)\right]^{d}\right) \cap L^{2}(0, T ; \underset{\sim}{V}) \cap W^{1, \frac{4}{d}}(0, T ; \underset{\sim}{V})$ and $\widehat{\psi}_{\varepsilon}^{L} \in L^{2}(0, T ; \widehat{X}) \cap W^{1, \frac{4}{d}}\left(0, T ; \widehat{X}^{\prime}\right)$, with $\widehat{\psi}_{\varepsilon}^{L} \geq 0$, $M^{\frac{1}{2}} \widehat{\psi}_{\varepsilon}^{L} \in L^{\infty}\left(0, T ; L^{2}(\Omega \times D)\right)$ and $\underset{\sim}{C}\left(M \widehat{\psi}_{\varepsilon}^{L}\right) \in L^{\infty}\left(0, T ;\left[L^{2}(\Omega)\right]^{d \times d}\right)$, such that $\quad \underset{\sim}{u} L(\cdot, 0)={\underset{\sim}{u}}^{0}(\cdot), \quad \widehat{\psi}_{\varepsilon}^{L}(\cdot, \cdot, 0)=\widehat{\psi}^{0}(\cdot, \cdot) \quad$ and

$$
\begin{aligned}
& \int_{0}^{T}\left\langle\frac{\partial u_{\varepsilon}^{L}}{\partial t}, w \sim\right\rangle_{V} \mathrm{~d} t
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{T}\langle\underset{\sim}{f f} \underset{\sim}{w}\rangle_{V} \mathrm{~d} t-\mu \int_{\Omega_{T}} C(M \underset{\sim}{\widehat{\psi}} \underset{\sim}{L}): \underset{\sim}{\nabla} \underset{\sim}{w} \underset{\sim}{d} \mathrm{~d} t \\
& \forall \underset{\sim}{w} \in L^{\frac{4}{4-d}}(0, T ; \underset{\sim}{V}) ;
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{T}\left\langle M \frac{\partial \widehat{\psi}_{\varepsilon}^{L}}{\partial t}, \widehat{\varphi}\right\rangle_{\widehat{X}} \mathrm{~d} t \\
& +\int_{0}^{T} \int_{\Omega \times D} M\left[\varepsilon \underset{\sim}{\nabla} \nabla_{x} \widehat{\psi}_{\varepsilon}^{L}-{\underset{\sim}{u}}_{u_{\varepsilon}^{L}}^{\widehat{\psi}_{\varepsilon}^{L}}\right] \cdot \underset{\sim}{\nabla} \underset{\sim}{x} \widehat{\sim} \underset{\sim}{\mathrm{~d}} \underset{\sim}{\mathrm{~d}} \mathrm{~d} t \\
& +\int_{0}^{T} \int_{\Omega \times D} M\left[\frac{1}{2 \lambda} \nabla_{\sim}{ }_{q} \widehat{\psi}_{\varepsilon}^{L}-\left(\underset{\sim}{\nabla} \underset{\sim}{\nabla_{\sim}}{\underset{\sim}{x}}_{L}^{L}\right) \underset{\sim}{q} \beta^{L}\left(\widehat{\psi}_{\varepsilon}^{L}\right)\right] \cdot \underset{\sim}{\nabla}{ }_{q} \underset{\sim}{\widehat{\varphi}} \underset{\sim}{\mathrm{~d}} \underset{\sim}{\mathrm{~d}} \mathrm{~d} \mathrm{~d} t \\
& =0 \quad \forall \widehat{\varphi} \in L^{\frac{4}{4-d}}(0, T ; \widehat{X}) .
\end{aligned}
$$

In addition, we have that

$$
\sup _{t \in(0, T)}\left[\int_{\Omega}\left|u_{\sim}^{L}\right|^{2} \mathrm{~d} x\right]+\nu \int_{\sim} \underset{\Omega_{T}}{ }\left|\nabla_{\approx} x{\underset{\sim}{x}}_{u_{\varepsilon}^{L}}^{L}\right|^{2} \mathrm{~d} x \mathrm{~d} t \leq C
$$

i.e. independent of ε and L; see B. \& Süli (2008).

For the Corotational case one can consider a very general numerical approximation, as it is easy to mimic the testing procedure for $\left(\mathrm{P}_{\varepsilon}\right)$. Not so easy for the Noncorotational case, which we state specifically here.

Finite Element Approximation:

Let Ω be a convex polytope (for ease of exposition).
Let \mathcal{T}_{x}^{h} be a partitioning of Ω into open ACUTE simplices κ_{x}.
$\bar{\Omega} \equiv \bigcup_{\kappa_{x} \in \mathcal{T}_{x}^{h}} \overline{\kappa_{x}}, \quad h_{\kappa_{x}}:=\operatorname{diam}\left(\kappa_{x}\right), \quad h_{x}:=\max _{\kappa_{x} \in \mathcal{T}_{x}^{h}} h_{\kappa_{x}}$.
Let \mathcal{T}_{q}^{h} be a partitioning of $D \equiv B\left(\underset{\sim}{0}, b^{\frac{1}{2}}\right)$ into open ACUTE simplices κ_{q}, with possibly one curved edge/face ($d=2 / 3$).
$\bar{D} \equiv \bigcup_{\kappa_{q} \in \mathcal{T}_{q}^{h}} \overline{k_{q}}, \quad h_{\kappa_{q}}:=\operatorname{diam}\left(\kappa_{q}\right), \quad h_{q}:=\max _{\kappa_{q} \in \mathcal{T}_{q}^{h}} h_{\kappa_{q}}$.
Assume both partitionings, \mathcal{T}_{x}^{h} and \mathcal{T}_{q}^{h}, are quasi-uniform.
(Acute \equiv Non-obtuse, i.e. right angles allowed.)
\mathbb{P}_{k}^{x} and \mathbb{P}_{k}^{q} polynomials of degree k or less in $\underset{\sim}{x}$ and $\underset{\sim}{q}$, respectively.

The lowest order Taylor-Hood element for the pressure/velocity:

$$
\begin{aligned}
& R_{h}:=\left\{\eta_{h} \in C(\bar{\Omega}):\left.\eta_{h}\right|_{\kappa_{x}} \in \mathbb{P}_{1}^{x} \quad \forall \kappa_{x} \in \mathcal{T}_{x}^{h}\right\}, \\
& \underset{\sim}{W}{ }_{h}:=\underset{\sim}{\underset{\sim}{w}}{ }_{h} \in[C(\bar{\Omega})]^{d}:\left.\underset{\sim}{w}{\underset{\sim}{x}}_{h}\right|_{\kappa_{x}} \in\left[\mathbb{P}_{2}^{x}\right]^{d} \quad \forall \kappa_{x} \in \mathcal{T}_{x}^{h} \\
& \text { and } \left.\quad \underset{\sim}{w} w_{h}=0 \text { on } \partial \Omega\right\} \subset\left[H_{0}^{1}(\Omega)\right]^{d},
\end{aligned}
$$

R_{h} and $\underset{\sim}{W}$ satisfy the LBB inf-sup condition

Hence for all $\underset{\sim}{v} \in \underset{\sim}{V}, \exists\{\underset{\sim}{v} h\}_{h>0}, \underset{\sim}{v} h \in \underset{\sim}{V} h$, such that

$$
\lim _{h \rightarrow 0}\left\|\underset{\sim}{v}-\underset{\sim}{v}{\underset{\sim}{x}}^{v}\right\|_{H^{1}(\Omega)}=0 .
$$

Set

$$
\begin{aligned}
\widehat{X}_{h}^{x} & :=\left\{\widehat{\varphi}_{h}^{x} \in C(\bar{\Omega}):\left.\widehat{\varphi}_{h}^{x}\right|_{\kappa_{x}} \in \mathbb{P}_{1}^{x} \quad \forall \kappa_{x} \in \mathcal{T}_{x}^{h}\right\} \subset R_{h}, \\
\widehat{X}_{h}^{q} & :=\left\{\widehat{\varphi}_{h}^{q} \in C(\bar{D}):\left.\widehat{\varphi}_{h}^{q}\right|_{\kappa_{q}} \in \mathbb{P}_{1}^{q} \quad \forall \kappa_{q} \in \mathcal{T}_{q}^{h}\right\} \\
\widehat{X}_{h} & :=\widehat{X}_{h}^{x} \otimes \widehat{X}_{h}^{q} \subset H^{1}(\Omega \times D) \subset \widehat{X} .
\end{aligned}
$$

To mimic the energy bound, we require $\forall \underset{\sim}{v}{\underset{\sim}{c}}^{\underset{\sim}{V}}{ }_{h}, \widehat{\varphi}_{h} \in \widehat{X}_{h}$ that

$$
\left.\left.\int_{\Omega}\left(\underset{\sim}{\nabla} \underset{\sim}{x} \cdot \underset{\sim}{v} v_{h}\right) \underset{\sim}{x}\right) \underset{\sim}{x} \underset{\sim}{\widehat{\varphi}} \underset{\sim}{x} \underset{\sim}{q}\right) \mathrm{d} \underset{\sim}{x}=0 \quad \text { for any } \underset{\sim}{q} \in \bar{D} .
$$

Mimic the testing procedure for $\left(\mathrm{P}_{\varepsilon, \delta}^{L}\right)$ in the Noncorotational case: $\underset{\sim}{u}{ }_{\varepsilon, \delta}^{L}$ for Navier-Stokes, $\left[\mathcal{F}_{\delta}^{L}\right]^{\prime}\left(\widehat{\psi}_{\varepsilon, \delta}^{L}\right)$ for Fokker-Planck.
Finite element discretization of the Noncorotational case is tricky as

$$
\left[\mathcal{F}_{\delta}^{L}\right]^{\prime}\left(\widehat{\varphi}_{h}\right) \notin \widehat{X}_{h} \quad \text { for } \widehat{\varphi}_{h} \in \widehat{X}_{h} .
$$

Let $\pi_{h}: C(\overline{\Omega \times D}) \mapsto \widehat{X}_{h}$ be the interpolation operator s.t.

$$
\left(\pi_{h} \widehat{\varphi}\right)\left(\underset{\sim}{P}{ }_{i}^{(x)}, \underset{\sim}{P}{ }_{j}^{(q)}\right)=\widehat{\varphi}\left(\underset{\sim}{P}{ }_{i}^{(x)},{\underset{\sim}{j}}_{j}^{(q)}\right)
$$

for all vertices $\left\{\underset{\sim}{P}{ }_{i}^{(x)}\right\}_{i=1}^{I_{x}}$ of \mathcal{T}_{x}^{h} and $\left\{\underset{\sim}{P}{ }_{j}^{(q)}\right\}_{j=1}^{I_{q}}$ of \mathcal{T}_{q}^{h}.
We require also the local interpolation operators

$$
\left.\pi_{h, \kappa_{x} \times \kappa_{q}} \equiv \pi_{h}\right|_{\kappa_{x} \times \kappa_{q}} \quad \forall \kappa_{x} \in \mathcal{T}_{x} \quad \forall \kappa_{q} \in \mathcal{T}_{q} .
$$

We extend these to vector functions, denoted by $\underset{\sim}{\pi} h$ and $\underset{\sim}{\pi_{,}, \kappa_{x} \times \kappa_{q}}$.

For any $\widehat{\varphi}_{h} \in \widehat{X}_{h}$, and for all $\kappa_{x} \in \mathcal{T}_{x} \quad \kappa_{q} \in \mathcal{T}_{q}$

$$
\left.\left.\underset{\approx}{\Xi_{\delta}^{L,(x)}}\left(\widehat{\varphi}_{h}\right)\right|_{\kappa_{x} \times \kappa_{q}} \in\left[\mathbb{P}_{1}^{q}\right]^{d \times d},\left.\quad \underset{\sim}{\Xi_{\delta}^{L,(q)}}\left(\widehat{\varphi}_{h}\right)\right|_{\kappa_{x} \times \kappa_{q}} \in\left[\mathbb{P}_{1}^{x}\right]\right]^{d \times d}
$$

are s.t.

$$
\begin{aligned}
& \pi_{h, \kappa_{x} \times \kappa_{q}}\left[{\underset{\approx}{\delta}}_{\Xi_{\delta}^{L,(x)}}\left(\widehat{\varphi}_{h}\right) \underset{\sim}{\nabla_{x}}\left[\pi_{h}\left[\left[\mathcal{F}_{\delta}^{L}\right]^{\prime}\left(\widehat{\varphi}_{h}\right)\right]\right]\right]={\underset{\sim}{~}}_{x} \widehat{\varphi}_{h}, \\
& \pi_{h, \kappa_{x} \times \kappa_{q}}\left[\Xi_{\Xi_{\delta}^{L,(q)}}\left(\widehat{\varphi}_{h}\right) \underset{\sim}{\nabla}{ }_{q}\left[\pi_{h}\left[\left[\mathcal{F}_{\delta}^{L}\right]^{\prime}\left(\widehat{\varphi}_{h}\right)\right]\right]\right]={\underset{\sim}{~}}_{q} \widehat{\varphi}_{h} .
\end{aligned}
$$

$\underset{\approx}{\Xi} \delta$, $(x)\left(\widehat{\varphi}_{h}\right)$ and $\underset{\approx}{\Xi} \delta^{L,(q)}\left(\widehat{\varphi}_{h}\right)$ are approximations of
$\beta_{\delta}^{L}\left(\widehat{\varphi}_{h}\right) \underset{\sim}{I} \equiv\left[\left[\mathcal{F}_{\delta}^{L}\right]^{\prime \prime}\left(\widehat{\varphi}_{h}\right)\right]^{-1} \underset{\sim}{I}=\left\{\begin{array}{lll}\delta \underset{\sim}{I} & \text { if } & \widehat{\varphi}_{h} \leq \delta \\ \widehat{\varphi_{h}} \underset{\sim}{I} & \text { if } & \widehat{\varphi}_{h} \in[\delta, L] . \\ L \underset{\sim}{I} & \text { if } & \widehat{\varphi}_{h} \geq L\end{array}\right.$.
So the above are discrete analogues of $\beta_{\delta}^{L}(\widehat{\varphi}) \nabla_{x}\left[\left[\mathcal{F}_{\delta}^{L}\right]^{\prime}(\widehat{\varphi})\right]=\nabla_{x} \widehat{\varphi}$ and $\beta_{\delta}^{L}(\widehat{\varphi}){\underset{\sim}{2}}_{q}\left[\left[\mathcal{F}_{\delta}^{L}\right]^{\prime}(\widehat{\varphi})\right]={\underset{\sim}{~}}_{q} \widehat{\varphi}$.

Note that for all $\underset{\sim}{v} \in \underset{\sim}{V}$ and $\underset{\sim}{w}, \underset{\sim}{z} \in\left[H^{1}(\Omega)\right]^{d}$

$$
\begin{aligned}
& \int_{\Omega}((\underset{\sim}{v} \cdot \underset{\sim}{\nabla} \underset{\sim}{x} \underset{\sim}{w}) \cdot \underset{\sim}{z} \underset{\sim}{d} \\
& \equiv \frac{1}{2} \int_{\Omega}[((\underset{\sim}{v} \cdot \underset{\sim}{\nabla} \underset{\sim}{x}) \underset{\sim}{w}) \cdot \underset{\sim}{z}-((\underset{\sim}{v} \cdot \underset{\sim}{\nabla} \underset{\sim}{x}) \underset{\sim}{z}) \cdot \underset{\sim}{w}] \underset{\sim}{d}
\end{aligned}
$$

for $\underset{\sim}{v} h \in \underset{\sim}{V} h, \underset{\sim}{w} w_{h}, \underset{\sim}{z} h \in \underset{\sim}{W}{ }_{h}$.
Note that the above vanishes if $\underset{\sim}{w}={\underset{\sim}{h}}_{h}$, which is not necessarily true for the direct approximation

$$
\left.\int_{\Omega}\left(\left(\underset{\sim}{v_{h}} \cdot \underset{\sim}{\nabla} \nabla_{x}\right) \underset{\sim}{w}\right) \cdot \underset{\sim}{w_{h}}\right) \underset{\sim}{z} \underset{\sim}{d}, \quad \text { as } \underset{\sim}{V} \not V_{h} \not \subset \underset{\sim}{V} .
$$

Let $0=t_{0}<t_{1}<\cdots<t_{N-1}<t_{N}=T$ be a partitioning of $[0, T]$ into time steps $\Delta t_{n}=t_{n}-t_{n-1}, n=1 \rightarrow N$.

$$
\Delta t:=\max _{n=1 \rightarrow N} \Delta t_{n}
$$

We assume that

$$
\Delta t_{n} \leq C \Delta t_{n-1}, \quad n=2 \rightarrow N, \quad \text { as } \Delta t \rightarrow 0_{+}
$$

Let

$$
\underset{\sim}{f}{ }^{n}(\cdot):=\frac{1}{\Delta t_{n}} \int_{t_{n-1}}^{t_{n}} \underset{\sim}{f}(\cdot, t) \mathrm{d} t, \quad n=1 \rightarrow N
$$

where we now assume that $\underset{\sim}{f} \in L^{2}\left(0, T ;\left(\left[H_{0}^{1}(\Omega)\right]^{d}\right)^{\prime}\right)$ as opposed to $\underset{\sim}{f} \in L^{2}(0, T ; \underset{\sim}{V})$ as $\underset{\sim}{V} \not \subset \not \subset \underset{\sim}{V}$, but $\underset{\sim}{V} h \subset\left[H_{0}^{1}(\Omega)\right]^{d}$.

Approximation of the Initial Data:
Let $\underset{\sim}{\underset{\varepsilon}{u}, \delta, h} \operatorname{Lin}_{\sim}^{V}{ }_{h}$ and $\widehat{\psi}_{\varepsilon, \delta, h}^{L, 0} \in \widehat{X}_{h}$ be such that
 where Δt_{0} is such that $\Delta t_{1} \leq C \Delta t_{0}$ as $\Delta t \rightarrow 0$.

It follows from our assumptions on $\underset{\sim}{u}$ and ψ^{0} that

$$
\begin{gathered}
\int_{\Omega}\left[|\underset{\sim}{u} \underset{\varepsilon, \delta, h}{L, 0}|^{2}+\Delta t_{0}\left|\underset{\sim}{\mid}{\underset{\sim}{x}}_{x} \underset{\sim}{u}{\underset{\sim}{\varepsilon, \delta, h}}_{L, 0}\right|^{2}\right] \underset{\sim}{\mathrm{d} x} \leq C \\
\text { and } \quad 0 \leq \underset{\psi_{\varepsilon, \delta, h}^{L} \leq L}{L, 0}
\end{gathered}
$$

Our numerical approximation of $\left(\mathrm{P}_{\varepsilon, \delta}^{L}\right)$ is then:

$\left(\mathbf{P}_{\varepsilon, \delta, h}^{L, \Delta t}\right)$ For $n=1 \rightarrow N$, given $\left\{\underset{\sim}{u} \underset{\varepsilon, \delta, h}{L, n-1}, \widehat{\psi}_{\varepsilon, \delta, h}^{L, n-1}\right\} \in \underset{\sim}{V}{ }_{h} \times \widehat{X}_{h}$, find $\left\{\underset{\sim}{u} \underset{\varepsilon, \delta, h}{L, n}, \widehat{\psi}_{\varepsilon, \delta, h}^{L, n}\right\} \in \underset{\sim}{V}{ }_{h} \times \widehat{X}_{h}$ s.t.

$$
\begin{aligned}
& \int_{\Omega \times D} M \pi_{h}\left[\frac{\widehat{\psi}_{\varepsilon, \delta, h}^{L, n}-\widehat{\psi}_{\varepsilon, \delta, h}^{L, n-1}}{\Delta t_{n}} \widehat{\varphi}_{h}+\underset{\sim}{\varepsilon} \nabla_{x} \widehat{\psi}_{\varepsilon, \delta, h}^{L, n} \cdot{\underset{\sim}{\nabla}}_{x} \widehat{\varphi}_{h}\right] \underset{\sim}{\mathrm{d}} \underset{\sim}{\mathrm{~d}} \underset{\sim}{x} \\
& +\frac{1}{2 \lambda} \int_{\Omega \times D} M \pi_{h}\left[\nabla_{\sim}{ }_{q} \widehat{\psi}_{\varepsilon, \delta, h}^{L, n} \cdot{\underset{\sim}{\nabla}}_{q} \widehat{\varphi}_{h}\right] \underset{\sim}{\mathrm{d} q} \underset{\sim}{\mathrm{~d}} x
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{\Omega \times D} M \underset{\sim}{u} \underset{\varepsilon, \delta, h}{L, n} \cdot \underset{\sim}{\pi} \underset{h}{ }\left[\underset{\sim}{\Xi} \underset{\delta}{L,(x)}\left(\widehat{\psi}_{\varepsilon, \delta, h}^{L, n}\right) \underset{\sim}{\nabla} \underset{x}{ } \widehat{\varphi}_{h}\right] \underset{\sim}{\mathrm{d} q} \underset{\sim}{\mathrm{~d}} \underset{\sim}{x} \quad \forall \widehat{\varphi}_{h} \in \widehat{X}_{h} .
\end{aligned}
$$

Here π_{h} and $\underset{\sim}{\pi}{ }_{h}$ are really $\pi_{h, \kappa_{x} \times \kappa_{q}}$ and $\underset{\sim}{\pi_{h, \kappa_{x} \times \kappa_{q}}}$ on each $\kappa_{x} \times \kappa_{q}$ of $\Omega \times D$.

Hence the approximations $\underset{\sim \varepsilon, \delta, h}{L, n}$ and $\widehat{\psi}_{\varepsilon, \delta, h}^{L, n}$ at time level t_{n} to the velocity field and the probability distribution satisfy a coupled nonlinear system.

Scheme satisfies a discrete analogue of the above energy bound, choose $\underset{\sim}{w}{ }_{h} \equiv \underset{\sim}{u}{\underset{\sim}{c, \delta, h}}_{L, n}$ and $\widehat{\varphi}_{h} \equiv \pi_{h}\left[\left[\mathcal{F}_{\delta}^{L}\right]^{\prime}\left(\widehat{\psi}_{\varepsilon, \delta, h}^{L, n}\right)\right]$.

Exploiting this, existence of $\underset{\sim}{u} \varepsilon_{\varepsilon, \delta, h}^{L, n}$ and $\widehat{\psi}_{\varepsilon, \delta, h}^{L, n}$ at time level t_{n} follows for any $\Delta t_{n}>0$ from a Brouwer fixed point theorem.

To prove convergence, we need more stability bounds.
We require the L^{2} projector $Q_{h}: \underset{\sim}{V} \mapsto \underset{\sim}{V} h$ defined by

$$
\int_{\Omega}\left(\underset{\sim}{v}-\underset{\sim}{Q_{h}} \underset{\sim}{v}\right) \cdot \underset{\sim}{w} w_{h} \mathrm{~d} x=0 \quad \forall \underset{\sim}{x} h \in \underset{\sim}{V_{h}} .
$$

Ω convex and \mathcal{T}_{x}^{h} quasi-uniform $\Rightarrow \underset{\sim}{Q_{h}}$ is uniformly H^{1} stable; that is,

$$
\left\|\underset{\sim}{\|} Q_{h} \underset{\sim}{v}\right\|_{H^{1}(\Omega)} \leq C \underset{\sim}{v} \|_{H^{1}(\Omega)} \quad \underset{\sim}{v} \in \underset{\sim}{V} .
$$

In addition, we require $\widetilde{Q}_{h}^{M}: \widehat{X} \mapsto \widehat{X}_{h}$ such that
$\int_{\Omega \times D} M \pi_{h}\left[\left(\widetilde{Q}_{h}^{M} \widehat{\psi}\right) \widehat{\varphi}_{h}\right] \underset{\sim}{\mathrm{d}} \underset{\sim}{\mathrm{d} x}=\int_{\Omega \times D} M \widehat{\psi} \widehat{\varphi}_{h} \underset{\sim}{\mathrm{~d}} \underset{\sim}{\mathrm{~d}} x \quad \forall \widehat{\varphi}_{h} \in \widehat{X}_{h}$.
One can show that

$$
\left\|\widetilde{Q}_{h}^{M} \widehat{\psi}\right\|_{\widehat{X}}^{2} \leq C\|\widehat{\psi}\|_{\widehat{X}}^{2} \quad \forall \widehat{\psi} \in \widehat{X}
$$

For these stability results, choose

$$
\begin{aligned}
& \widehat{\varphi}_{h} \equiv \widehat{\psi}_{\varepsilon, \delta, h}^{L, n}, \quad \widehat{\varphi}_{h} \equiv \widetilde{Q}_{h}^{M}\left[\mathcal{G}\left(\frac{\widehat{\psi}_{\varepsilon, \delta, h}^{L, n}-\widehat{\psi}_{\varepsilon, \delta, h}^{L, n-1}}{\Delta t_{n}}\right)\right] \\
& {\underset{\sim}{w}}_{w_{h}} \equiv \underset{\sim}{Q_{h}}\left[\underset{\sim}{S}\left(\frac{{\underset{\sim}{u}}_{\sim, \delta, h}^{L, n}-{\underset{\sim}{\varepsilon}}_{\varepsilon, \delta, h}^{L, n-1}}{\Delta t_{n}}\right)\right] .
\end{aligned}
$$

Finally, one can prove that a subsequence of $\left\{\left\{\underset{\sim}{u}{\underset{\varepsilon}{\varepsilon, \delta, h}}_{L}, \widehat{\psi}_{\varepsilon, \delta, h}^{L}\right\}\right\}_{\delta>0, h>0, \Delta t>0}$ converges to $\left\{\underset{\sim}{u} \underset{\varepsilon}{L}, \widehat{\psi}_{\varepsilon}^{L}\right\}$ as $\delta, h, \Delta t \rightarrow 0_{+}$, where $\left\{\underset{\sim}{u}{\underset{\varepsilon}{e}}_{L}^{\widehat{\psi}_{\varepsilon}^{L}}\right\}$ solves $\left(\mathrm{P}_{\varepsilon}^{L}\right)$,
but with the convective term $\underset{\sim}{u} L \cdot{\underset{\sim}{\nabla}}_{x} \widehat{\psi}_{\varepsilon}^{L}$ replaced by $\underset{\sim}{u}{ }_{\varepsilon}^{L} \cdot{\underset{\sim}{\nabla}}_{x}\left[\beta^{L}(\widehat{\psi} \varepsilon)\right]$.

Recall Hookean \Rightarrow macroscopic Oldroyd-B model:
$\left(\mathbf{P}_{\varepsilon}\right)$ Find $\underset{\sim}{u}{\underset{\sim}{e}}^{(x, t)} \in \mathbb{R}^{d}, p_{\varepsilon}(\underset{\sim}{x}, t) \in \mathbb{R}$ and $\underset{\sim}{\tau} \varepsilon(\underset{\sim}{x}, t) \in[\mathbb{R}]_{S}^{d \times d}$ s.t.

$$
\text { in } \Omega_{T},
$$

$$
\text { in } \Omega_{T},
$$

$$
\text { on } \partial \Omega_{T}^{*} \text {, }
$$

$$
\forall x \in \Omega,
$$

$$
\left.+\left[\left(\underset{\sim}{\nabla} \underset{\sim}{u} u_{\varepsilon}\right) \underset{\sim}{\tau} \underset{\varepsilon}{\tau_{\varepsilon}}+\underset{\sim}{\tau_{\varepsilon}} \underset{\approx}{\nabla} \underset{\sim}{\nabla} u_{\varepsilon}\right)^{\top}\right] \quad \text { in } \Omega_{T},
$$

$$
\underset{\approx}{\tau} \underset{\sim}{\tau}(\underset{\sim}{x}, 0)=\underset{\sim}{\tau} \underset{\sim}{0}(x)
$$

$$
\begin{aligned}
& \partial u_{\varepsilon}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{\nabla} \cdot \underset{\sim}{\sim} u_{\varepsilon}=0 \\
& {\underset{\sim}{\varepsilon}}^{u_{\varepsilon}}=\underset{\sim}{0} \\
& \underset{\sim}{u_{\varepsilon}}(\underset{\sim}{x}, 0)=\underset{\sim}{u}(\underset{\sim}{0}(x)
\end{aligned}
$$

Setting $\underset{\approx}{\sigma_{\varepsilon}}:=(\underset{\sim}{\tau} \varepsilon+\mu \underset{\approx}{I}) \Rightarrow$
$\left(\mathbf{P}_{\varepsilon}\right)$ Find $\underset{\sim}{u} \varepsilon(\underset{\sim}{x}, t) \in \mathbb{R}^{d}, p_{\varepsilon}(\underset{\sim}{x}, t) \in \mathbb{R}$ and $\underset{\sim}{\sigma} \underset{\sim}{\sigma}(\underset{\sim}{x}, t) \in[\mathbb{R}]_{S}^{d \times d}$ s.t.

$$
\text { in } \Omega_{T}
$$

$$
\text { in } \Omega_{T}
$$

$$
\text { on } \partial \Omega_{T}^{*},
$$

$$
\forall \underset{\sim}{\forall x} \in \Omega,
$$

$$
\begin{aligned}
& \partial \sigma_{\varepsilon}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\approx}{\sigma_{\varepsilon}}(\underset{\sim}{x}, 0)=\underset{\sim}{\sigma}{ }_{\sim}^{0}(\underset{\sim}{x})
\end{aligned}
$$

$$
\begin{aligned}
& \partial u_{\varepsilon} \\
& \frac{\tilde{\sim}}{\partial t}+(\underset{\sim}{u} \cdot \underset{\sim}{\nabla}) \underset{\sim}{x}{\underset{\sim}{\varepsilon}}^{u_{\varepsilon}} \nu \Delta \underset{\sim}{u} u_{\varepsilon}+\underset{\sim}{\nabla} p_{\varepsilon}=\underset{\sim}{f}+\underset{\sim}{\nabla} \cdot \underset{\sim}{\sigma} \\
& \underset{\sim}{\nabla} \cdot \underset{\sim}{\sim}{\underset{\sim}{e}}^{u_{\varepsilon}}=0 \\
& {\underset{\sim}{\sim}}_{u_{\varepsilon}}=\underset{\sim}{0} \\
& \underset{\sim}{u_{\varepsilon}}(\underset{\sim}{x}, 0)=\underset{\sim}{u}(\underset{\sim}{0}(x)
\end{aligned}
$$

Formal Energy Bounds for $\left(\mathrm{P}_{\varepsilon}\right)$: Hu \& Lelièvre (2007)
Testing the Navier-Stokes equation with $\underset{\sim}{u}$, integrating over $\Omega \Rightarrow$

Testing the stress equation with $\frac{1}{2}\left(\underset{\sim}{I}-\mu \mathcal{F}^{\prime \prime}(\underset{\sim}{\sigma} \varepsilon)\right)$, integrating over $\Omega \Rightarrow$ (assumes $\underset{\sim}{\sigma} \varepsilon$ is positive definite, as $\mathcal{F}(s):=s(\ln s-1)+1 \Rightarrow \mathcal{F}^{\prime \prime}(s)=s^{-1}$)

$$
\begin{aligned}
& -\frac{\mu \varepsilon}{2} \int_{\Omega} \nabla \underset{\approx}{\sigma} \sigma_{\varepsilon}:: \underset{\approx}{\nabla}\left[\mathcal{F}^{\prime \prime}(\underset{\sim}{\sigma})\right] \mathrm{d} x=\int_{\Omega} \underset{\sim}{\sigma}: \underset{\approx}{\nabla} \underset{\sim}{\sim} \underset{\sim}{u} \underset{\sim}{d} x .
\end{aligned}
$$

For Finite Element Approximations of (P) mimicing the above formal energy estimate - see Boyaval, Lelièvre \& Mangoubi (2009). Based on piecewise constant approximation for $\underset{\sim}{\sigma}$, i.e.

$$
\left.\underset{\approx}{S} h:=\underset{\approx}{0}{\underset{\approx}{h}}_{h} \in\left[L^{\infty}(\Omega)\right]_{S}^{d \times d}:\left.\underset{\approx}{\phi_{h}}\right|_{\kappa} \in\left[\mathbb{P}_{0}\right]_{S}^{d \times d} \quad \forall \kappa \in \mathcal{T}^{h}\right\}
$$

Hence $\quad{\underset{\sim}{\sigma}}_{h}^{n} \in \underset{\sim}{S}{ }_{h}^{0} \Rightarrow \frac{1}{2}\left(\underset{\sim}{I}-\mu \mathcal{F}^{\prime \prime}(\underset{\sim}{\sigma} n)\right) \in \underset{\sim}{\sigma_{h}^{0}}$.
However, one has to ensure that $\underset{\sim}{\sigma_{h}^{n}}$ is positive definite.
For $\underset{\sim}{f} \equiv \underset{\sim}{0}$ and uniform time steps Δt, BLM show that for initial data $\left\{\underset{\sim}{u} 0, \sigma_{\sim}^{0}\right\}$ with $\underset{\sim}{\sigma_{h}^{0}}$ symmetric positive definite, then $\exists C_{1}(\underset{\sim}{u}, \underset{\sim}{u}, \underset{\sim}{\sigma})$ such that for any $\Delta t<C_{1}$ $\{\underset{\sim}{u}, \underset{\sim}{n} \underset{\sim}{\sigma}\}$ exists, is unique and $\underset{\sim}{\sigma_{h}^{n}}$ is positive definite.
B. \& Boyaval (2009) show that $\underset{\sim}{\sigma_{h}^{n}}$ is positive definite, via regularization, for general $\underset{\sim}{f}$ and any time steps, $\Delta t_{n}, n=1 \rightarrow N$.

A regular partitioning: $\bar{\Omega}:=\bigcup_{\kappa \in \mathcal{T}_{h}} \bar{\kappa}$.

$$
\begin{aligned}
& \underset{\sim}{W} W_{h}:=\left\{\underset{\sim}{w}{\underset{\sim}{w}}_{h} \in[C(\bar{\Omega})]^{d}:\left.\underset{\sim}{w}{ }_{h}\right|_{\kappa} \in\left[\mathbb{P}_{2}\right]^{d} \quad \forall \kappa \in \mathcal{T}^{h}\right. \\
& \text { and } \left.\quad w_{h}=0 \text { on } \partial \Omega\right\} \subset\left[H_{0}^{1}(\Omega)\right]^{d}, \\
& R_{h}^{0}:=\left\{\eta_{h} \in L^{\infty}(\Omega):\left.\eta_{h}\right|_{\kappa} \in \mathbb{P}_{0} \quad \forall \kappa \in \mathcal{T}^{h}\right\}, \\
& \left.\underset{\sim}{V_{h}^{0}}:=\left\{\underset{\sim}{v} v_{h} \in \underset{\sim}{W} W_{h}: \int_{\Omega}(\underset{\sim}{\nabla} \cdot \underset{\sim}{v}) \eta_{h}\right) \underset{\sim}{d} x=0 \quad \forall \eta_{h} \in R_{h}^{0}\right\}, \\
& \left.\underset{\approx}{S_{h}^{0}}:=\underset{\approx}{\left\{\phi_{h}\right.} \in\left[L^{\infty}(\Omega)\right]_{S}^{d \times d}:\left.\underset{\approx}{\phi_{h}}\right|_{\kappa} \in\left[\mathbb{P}_{0}\right]_{S}^{d \times d} \quad \forall \kappa \in \mathcal{T}^{h}\right\} .
\end{aligned}
$$

$\underset{\sim}{W}{ }_{h} \times R_{h}^{0}$ satisfy the LBB inf-sup condition. $\quad \operatorname{tr}\left(\underset{\sim}{(} S_{h}^{0}\right) \subset R_{h}^{0}$.
Recall $\quad \beta_{\delta}(s) \equiv\left[\mathcal{F}_{\delta}^{\prime \prime}(s)\right]^{-1}:=\left\{\begin{array}{ll}s & \delta \leq s \\ \delta & s \leq \delta\end{array}\right.$.
$\left(\mathbf{P}_{\delta, h}^{\Delta t}\right)$ For $n=1 \rightarrow N$, given $\left\{\underset{\sim}{u} \underset{\delta, h}{n-1}, \underset{\approx}{\sigma}{ }_{\delta, h}^{n-1}\right\} \in \underset{\sim}{V} \underset{h}{0} \times \underset{\approx}{S_{h}^{0}}$,
find $\{\underset{\sim}{\underset{\delta}{u}, h} \underset{\sim}{n}, \underset{\sim}{\sigma}, h\} \in \underset{\sim}{V}{ }_{h}^{0} \times \underset{\sim}{S}{ }_{\sim}^{0}$ s.t.

$$
\begin{aligned}
& +\sum_{j=1}^{N_{E}} \int_{E_{j}}|\underset{\sim}{u} \underset{\sim}{n-1} \cdot \underset{\sim}{n}| \llbracket \underset{\sim}{\sigma_{\delta, h}^{n} \rrbracket_{\rightarrow \underset{\sim}{u}, h}^{n-1}} \underset{\approx}{\underset{\sim}{~}} \underset{\sim}{+u_{\delta, h}^{n-1}} \mathrm{~d} s=0 \quad \underset{\approx}{\forall \phi_{h}} \underset{\sim}{\underset{\sim}{S}}{ }_{h}^{0} .
\end{aligned}
$$

Discontinuous Galerkin approximation of the stress convection term.

For any $\delta \in\left(0, \frac{1}{2}\right]$ and
 we prove existence of $\left\{\underset{\sim}{u}{ }_{\delta, h}^{n}, \underset{\sim}{\sigma} \underset{\delta, h}{n}\right\} \in \underset{\sim}{V}{ }_{h}^{0} \times \underset{\sim}{S}{ }_{h}^{0}, n=1 \rightarrow N$. Moreover $\{\underset{\sim}{u} n, h, \underset{\sim}{n}, \underset{\sim}{n}\}_{n=0}^{N}$ satisfy a discrete analogue of the δ regularized energy inequality, this yields that

$$
\begin{gathered}
\max _{n=0 \rightarrow N} \int_{\Omega}\left[\left.\left|u_{\sim}^{n}\right|_{\sim}^{n}\right|^{2}+\operatorname{tr}\left(\left|\sigma_{\delta, h}^{n}\right|\right)+\delta^{-1} \operatorname{tr}\left(\left|\left[\sigma_{\delta, h}^{n}\right]-\right|\right)\right] \\
\\
+\sum_{n=1}^{\sigma_{T}} \Delta t_{n} \int_{\Omega} \operatorname{tr}\left(\left[\beta_{\delta}\left(\underset{\approx}{\left(\sigma_{\delta, h}^{n}\right)}\right]^{-1}\right) \leq C\right.
\end{gathered}
$$

Hence the following subsequence results:

$$
\underset{\sim}{u_{\delta, h}^{n}} \rightarrow \underset{\sim}{u}, \quad \underset{\sim}{n}, \quad \underset{\sim}{u_{\delta, h}^{n}}, \underset{\approx}{\beta}\left(\underset{\sim}{\sigma_{\delta, h}^{n}}\right) \rightarrow \underset{\sim}{\sigma_{h}^{n}} \quad \text { as } \quad \delta \rightarrow 0_{+}
$$

As $\left[\beta_{\delta}(\underset{\sim}{\sigma} \delta, h)\right]^{-1} \beta_{\delta}\left(\underset{\sim}{\sigma} \sigma_{h, h}^{n}\right)=\underset{\sim}{I}$, we have also that $\underset{\sim}{\sigma} h$ is positive definite.
Ω a convex polytope, an Acute Quasi-Uniform partitioning:

$$
\begin{aligned}
& \text { and } \quad \underset{\sim}{w}=0 \text { on } \partial \Omega\} \subset\left[H_{0}^{1}(\Omega)\right]^{d}, \\
& R_{h}^{1}:=\left\{\eta_{h} \in C(\bar{\Omega}):\left.\eta_{h}\right|_{\kappa} \in \mathbb{P}_{1} \quad \forall \kappa \in \mathcal{T}^{h}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \left.\underset{\approx}{S_{h}^{1}}:=\underset{\approx}{\underset{\sim}{\phi}}{ }_{h} \in[C(\bar{\Omega})]_{S}^{d \times d}:\left.\underset{\approx}{\phi_{h}}\right|_{\kappa} \in\left[\mathbb{P}_{1}\right]_{S}^{d \times d} \quad \forall \kappa \in \mathcal{T}^{h}\right\} .
\end{aligned}
$$

Lowest order Taylor-Hood element $\underset{\sim}{W}{ }_{h} \times R_{h}^{1}$ satisfies the LBB inf-sup condition. Also $\operatorname{tr}\left(\underset{\sim}{S}{ }_{h}^{1}\right) \subset R_{h}^{1}$.

Let $\pi_{h}: C(\bar{\Omega}) \mapsto R_{h}^{1}$ be the interpolation operator, extended to $\pi_{h}:[C(\bar{\Omega})]_{S}^{d \times d} \mapsto \underset{\sim}{S}{ }_{h}^{1}$

$$
\left(\mathbf{P}_{\varepsilon, \delta, h}^{L, \Delta t}\right) \text { For } n=1 \rightarrow N \text {, given }(\underset{\sim}{u} \underset{\varepsilon, \delta, h}{L, n-1}, \underset{\approx \delta, h}{L, n-1}) \in \underset{\sim}{V}{ }_{h}^{1} \times \underset{\approx}{S}{ }_{h}^{1},
$$ find $(\underset{\sim}{u} \underset{\varepsilon, \delta, h}{L, n}, \underset{\sim}{\sigma} \underset{\varepsilon, \delta, h}{L, n}) \in \underset{\sim}{V}{ }_{h}^{1} \times \underset{\approx}{S}{ }_{\hbar}^{1}$ s.t.

$$
\int_{\Omega}\left(\frac{u_{\varepsilon, \delta, h}^{L, n}-{\underset{\sim}{u}}_{L, \delta, h}^{L, n-1}}{\Delta t_{n}}\right) \cdot \stackrel{{\underset{\sim}{x}}_{h}}{\underset{\sim}{~} \underset{\sim}{x}}
$$

$$
\begin{aligned}
& \underset{\sim}{v} v_{h} \in \underset{\sim}{V}{ }_{h}^{1},
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{\Omega} \sum_{m=1}^{d} \sum_{p=1}^{d}\left[u_{\sim}^{L}, n-\delta, h\right]_{m} \Lambda_{\delta, m, p}^{L}(\underset{\approx}{\sigma} \underset{\varepsilon, \delta, h}{L, n}):{\underset{\sim}{\partial x_{p}}}_{\underset{\sim}{z}}^{\partial} \underset{\sim}{x}=0
\end{aligned}
$$

$\forall \underset{\approx}{\forall \phi_{h}} \in \underset{\approx}{S} S_{h}^{1}$.
$\left(\mathbf{P}_{\varepsilon}^{L}\right)$ Find ${\underset{\sim}{u}}_{\varepsilon}^{L} \in L^{\infty}\left(0, T ;\left[L^{2}(\Omega)\right]^{d}\right) \cap L^{2}(0, T ; \underset{\sim}{V}) \cap W^{1, \frac{4}{\vartheta}}\left(0, T ;{\underset{\sim}{V}}^{\prime}\right)$ and $\underset{\approx}{\sigma_{\varepsilon}^{L}} \in L^{\infty}\left(0, T ;\left[L^{2}(\Omega)\right]_{S}^{d \times d}\right) \cap L^{2}\left(0, T ;\left[H^{1}(\Omega)\right]_{S}^{d \times d}\right) \cap H^{1}\left(0, T ;\left(\left[H^{1}(\Omega)\right]_{S}^{d \times d}\right)^{\prime}\right)$ such that ${\underset{\sim}{u}}_{\underline{L}}^{L}(\cdot, 0)=\underset{\sim}{u}(\cdot), \underset{\sim}{\sigma}{ }_{\varepsilon}^{L}(\cdot, 0)=\underset{\sim}{\sigma^{0}}(\cdot)$ and

$$
\begin{aligned}
& \int_{0}^{T}\left\langle\frac{\partial u_{\varepsilon}^{L}}{\partial t}, \underset{\sim}{v}\right\rangle_{V} \mathrm{~d} t+\int_{\Omega_{T}}\left[\nu \underset{\sim}{\nabla} \underset{\sim}{u}{\underset{\sim}{e}}_{L}^{:} \underset{\sim}{\nabla} \underset{\sim}{v}+\left[\left({\underset{\sim}{u}}_{\varepsilon}^{L} \cdot \underset{\sim}{\nabla}\right) \underset{\sim}{u} u_{\varepsilon}^{L}\right] \cdot \underset{\sim}{v}\right] \underset{\sim}{\mathrm{d}} \mathrm{~d} t \\
& =\int_{0}^{T}\langle\underset{\sim}{f} \underset{\sim}{v}\rangle_{H_{0}^{1}(\Omega)} \mathrm{d} t-\int_{\Omega_{T}} \beta^{L}\left(\underset{\sim}{\sigma} \sigma_{\varepsilon}^{L}\right): \underset{\sim}{\nabla} \underset{\sim}{v} d t \quad \underset{\sim}{v} \in L^{\frac{4}{4-\vartheta}}(0, T ; \underset{\sim}{V}) ;
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\Omega_{T}}\left[2\left(\underset{\sim}{\nabla} \underset{\sim}{\sim}{\underset{\sim}{x}}_{L}^{L}\right) \beta^{L}\left(\underset{\approx}{\sigma_{\varepsilon}^{L}}\right)-\frac{1}{\lambda}\left(\underset{\approx}{\sigma_{\varepsilon}^{L}}-\mu \underset{\sim}{f}\right)\right]: \underset{\sim}{\phi} \underset{\sim}{d} \mathrm{~d} \mathrm{~d} t \\
& \forall \phi \in L^{2}\left(0, T ;\left[H^{1}(\Omega)\right]_{S}^{d \times d}\right) .
\end{aligned}
$$

