Contents

Preface

1. Introduction 1
 1.1 Computational statistical physics: some landmarks 1
 1.1.1 Some orders of magnitude 2
 1.1.2 Aims of molecular simulation 3
 1.2 Microscopic description of physical systems 6
 1.2.1 Interactions 6
 1.2.2 Dynamics of isolated systems 13
 1.2.3 Thermodynamic ensembles 20
 1.3 Free energy and its numerical computation 33
 1.3.1 Absolute free energy 34
 1.3.2 Relative free energies 37
 1.3.3 Free energy and metastability 44
 1.3.4 Computational techniques 51
 1.4 Summary of the mathematical tools and structure of the book 59

2. Sampling methods 61
 2.1 Markov chain methods 63
 2.1.1 Some background material on the theory of Markov chains 64
 2.1.2 The Metropolis-Hastings algorithm 67
 2.1.3 Hybrid Monte-Carlo 72
 2.1.4 Generalized Metropolis-Hastings variants 74
 2.2 Continuous stochastic dynamics 77
Free Energy Computations: A Mathematical Perspective

2.2.1 Mathematical background on Markovian continuous processes 78
2.2.2 Overdamped Langevin process 86
2.2.3 Langevin process .. 88
2.2.4 Overdamped limit of the Langevin dynamics 97

2.3 Convergence of sampling methods 105
2.3.1 Sampling errors ... 105
2.3.2 Rate of convergence for stochastic processes 113

2.4 Methods for alchemical free energy differences 118
2.4.1 Free energy perturbation 119
2.4.2 Bridge sampling ... 132

2.5 Histogram methods ... 138
2.5.1 Principle of histogram methods 138
2.5.2 Extended bridge sampling 142

3. Thermodynamic integration and sampling with constraints 149
3.1 Introduction: The alchemical setting 150
3.1.1 General strategy ... 150
3.1.2 Numerical application 152
3.2 The reaction coordinate case: configurational space sampling 154
3.2.1 Reaction coordinate and free energy 154
3.2.2 The mean force .. 163
3.2.3 Sampling measures on submanifolds of \(\mathbb{R}^n \) 168
3.2.4 Sampling measures on submanifolds of \(\mathbb{R}^n \): discretization .. 180
3.2.5 Computing the mean force 188
3.2.6 On the efficiency of constrained sampling 200

3.3 The reaction coordinate case: Phase space sampling 203
3.3.1 Constrained mechanical systems 204
3.3.2 Phase space measures for constrained systems ... 209
3.3.3 Hamilton and Poisson formalisms with constraints .. 219
3.3.4 Constrained Langevin processes 227
3.3.5 Numerical implementation 232
3.3.6 Thermodynamic integration with constrained Langevin processes 242

4. Nonequilibrium methods 259
4.1 The Jarzynski equality in the alchemical case 260
 4.1.1 Markovian nonequilibrium simulations 260
 4.1.2 Importance weights of nonequilibrium simulations 262
 4.1.3 Practical implementation .. 266
 4.1.4 Degeneracy of weights ... 269
 4.1.5 Error analysis ... 275
4.2 Generalized Jarzynski-Crooks fluctuation identity 284
 4.2.1 Derivation of the identity 285
 4.2.2 Relationship with standard equalities in the physics and chemistry literature .. 291
 4.2.3 Numerical strategies .. 293
4.3 Nonequilibrium stochastic methods in the reaction coordinate case .. 296
 4.3.1 Overdamped nonequilibrium dynamics 296
 4.3.2 Hamiltonian and Langevin nonequilibrium dynamics 305
 4.3.3 Numerical results .. 323
4.4 Path sampling strategies .. 324
 4.4.1 The path ensemble .. 324
 4.4.2 Sampling switching paths ... 327
5. Adaptive methods ... 339
 5.1 Adaptive algorithms: A general framework 340
 5.1.1 Updating formulas ... 343
 5.1.2 Extended dynamics ... 350
 5.1.3 Discretization methods ... 353
 5.1.4 Classical examples of adaptive methods 365
 5.1.5 Numerical illustration ... 369
 5.2 Convergence of the adaptive biasing force method 372
 5.2.1 Presentation of the studied ABF dynamics 372
 5.2.2 Precise statements of the convergence results 377
 5.2.3 Proofs ... 390
6. Selection ... 405
 6.1 Replica selection framework .. 407
 6.1.1 Weighted replica ensembles 407
 6.1.2 Resampling strategies .. 413
Free Energy Computations: A Mathematical Perspective

6.1.3 Discrete-time version 419
6.1.4 Numerical application 422
6.2 Selection in adaptive methods 424
 6.2.1 Motivation for the selection term 424
 6.2.2 Numerical application 428

Appendix A Most important notation used throughout this book 431
 A.1 General notation 431
 A.2 Physical spaces and energies 433
 A.3 Spaces with constraints, projection operators 434
 A.4 Measures .. 436
 A.5 Free energy 438

Bibliography ... 441

Index ... 455