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1A Experimental observations

We are interesting in complex fluids, whose
non-Newtonian behaviour is due to some
microstructures.

Cover page of Science, may 1994 Journal of Statistical Physics, 29 (1982) 813-848
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1A Experimental observations

More precisely, we study the case when the
microstructures are:

1. very numerous (statistical mechanics),

2. small and light (Brownian effects),

3. within a Newtonian solvent.

This is not the case for all non-Newtonian fluids with
microstructures (granular materials).

A prototypical example is dilute solution of polymers.
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1A Experimental observations

Some examples of complex fluids:

• food industry: mayonnaise, egg white, jellies
• materials industry: plastic (especially during

forming), polymeric fluids
• biology-medicine: blood, synovial liquid
• civil engineering: fresh concrete, paints
• environment: snow, muds, lava
• cosmetics: shaving cream, toothpaste, nail polish

T. Lelièvre, Workshop Stress tensor effects on fluid mechanics, January 2010 – p. 6



1A Experimental observations

Shearing experiments in a rheometer:
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1A Experimental observations

At stationary state:
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1A Experimental observations

A simple dynamics effect: the velocity overshoot for
the start-up of shear flow.
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1A Experimental observations

These are two typical non-Newtonian effects : the
open syphon effect and the rod climbing effect.
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1B Multiscale modeling

Momentum equations (incompressible fluid):

ρ (∂t + u.∇)u = −∇p+ div(σ) + fext,

div(u) = 0.

Newtonian fluids (Navier-Stokes equations):

σ = η
(
∇u + (∇u)T

)
,

Non-Newtonian fluids:

σ = η
(
∇u + (∇u)T

)
+ τ ,

τ depends on the history of the deformation.
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1B Multiscale modeling

Methods
of the integral
using the decreasing

 

Phenomenological modelling

Stochastic models

Microscopic models (kinetic theory)

Macroscopic simulations

Integral models Differential models

Finite Element
Discretization

memory function

FEM (fluid)

Monte Carlo (polymers)

Micro−macro simulations

using principles of fluid mechanics 

Differential models : Dτ
Dt = f(τ ,∇u),

Integral models : τ =
∫ t
−∞m(t− t′)St(t′) dt′.

(Macroscopic approach: R. Keunings & al., B. van den Brule & al., M. Picasso & al.)
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1B Multiscale modeling

?

Taille du système (nombre d’atomes)

T
em

ps
 c

ar
ac

té
ris

tiq
ue

s

10 1010
62 23

1 s

  10    s
   −12

   −9
  10   s

moléculaire
Echelle

macroscopique
Echelle
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1B Multiscale modeling

à l’équilibre thermodynamique local
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1B Multiscale modeling

Modèles hiérarchiques
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1B Multiscale modeling

Phénomènes hors d’équilibre
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1B Multiscale modeling

Phénomènes hors d’équilibre

Modèles multi−échelles
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1C Microscopic models for polymer chains

Micro-macro models require a microscopic model
couped to a macroscopic description: difficulties wrt
timescales and length scales.

The coupling requires some concepts from statistical
mechanics: compute macroscopic quantities (stress,
reaction rates, diffusion constants) from microscopic
descriptions.

One needs a coarse description of the
microstructures. How to model a microstructure
evolving in a solvent ? Answer : molecular dynamics
and the Langevin equations.

In Section 1C, we assume that the velocity field of the
solvent is given (and is zero in a first stage).
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1C Microscopic models for polymer chains

Microscopic model: N particles (atoms, groups of
atoms) with positions (q1, ..., qN ) = q ∈ R3N , interacting
through a potential V (q1, ..., qN ). Typically,

V (q1, ..., qN ) =
∑

i<j

Vpaire(qi, qj)+
∑

i<j<k

Vtriplet(qi, qj , qk)+. . .

For a polymer chain, for example, a fine description
would be to model the conformation by the position of
the carbon atoms (backbone atoms). The potential V
typically includes some terms function of the dihedral
angles along the backbone.
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1C Microscopic models for polymer chains

Molecular dynamics (solvent at rest): Langevin
dynamics

{
dQt = M−1Pt dt,

dPt = −∇V (Qt) dt−ζM−1Pt dt+
√

2ζβ−1dWt,

where Pt is the momentum, M is the mass tensor, ζ is
a friction coefficient and β−1 = kT .

Origin of the Langevin dynamics: description of a
colloidal particle in a liquid (Brown).
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1C Microscopic models for polymer chains

The Langevin dynamics is a thermostated Newton
dynamics: The fluctuation (

√
2ζβ−1dWt) dissipation

(−ζM−1Pt dt) terms are such that the
Boltzmann-Gibbs measure is left invariant:

ν(dp, dq) = Z
−1

exp

(
−β
(

pTM−1p

2
+ V (q)

))
dpdq.

To explain this in a simpler context, let us make the
following simplification M/ζ → 0:

dQt = −∇V (Qt)ζ
−1 dt+

√
2ζ−1β−1dWt.

This dynamics leaves invariant the Boltzmann-Gibbs
measure: µ(dq) = Z−1 exp (−βV (q)) dq.
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1C Micro models: some probabilistic background

The Stochastic Differential Equation

dQt = −∇V (Qt)ζ
−1 dt+

√
2ζ−1β−1dWt

is discretized by the Euler scheme (with time step ∆t):

Qn+1 − Qn = −∇V (Qn)ζ
−1 ∆t+

√
2ζ−1β−1∆tGn

where (Gin)1≤ile3,n≥0 are i.i.d. Gaussian random
variables with zero mean and variance one. Indeed

(W (n+1)∆t −W n∆t)n≥0
L
=

√
∆t(Gn)n≥0.
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1C Micro models: some probabilistic background

The Itô formula. Let φ be a smooth test function. Then

dφ(Qt) = ∇φ(Qt) · dQt+∆φ(Qt)ζ
−1β−1 dt.

Proof (dimension 1):

dXt = b(Xt) dt+ σ(Xt) dWt

Xn+1 −Xn = b(Xn)∆t+ σ(Xn)
√

∆tGn

and thus

φ(Xn+1) = φ
(
Xn + b(Xn)∆t+ σ(Xn)

√
∆tGn

)

= φ(Xn) + φ′(Xn)(b(Xn)∆t+ σ(Xn)
√

∆tGn)

+
1

2
φ′′(Xn)σ

2(Xn)∆tG
2
n + o(∆t).
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1C Micro models: some probabilistic background

Then, summing over n and in the limit ∆t→ 0,

φ(Xt) = φ(X0) +

∫ t

0
φ′(Xs)(b(Xs)ds+ σ(Xs) dWs)

+
1

2

∫ t

0
σ2(Xs)φ

′′(Xs) ds,

= φ(X0) +

∫ t

0
φ′(Xs)dXs+

1

2

∫ t

0
σ2(Xs)φ

′′(Xs) ds,

which is exactly

dφ(Xt) = φ′(Xt)dXt +
1

2
σ2(Xt)φ

′′(Xt) dt.
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1C Micro models: some probabilistic background

The Fokker-Planck equation. At fixed time t, Qt has a
density ψ(t,q). The function ψ satisfies the PDE:

ζ∂tψ = div(∇V ψ + β−1∇ψ).

Proof (dimension 1):

dXt = b(Xt) dt+ σ(Xt) dWt,

and we show that Xt
L
= ψ(t, x) dx with

∂tψ = ∂x (−bψ + ∂x(σψ)) .

We recall the Itô formula:

φ(Xt) = φ(X0) +

∫ t

0
φ′(Xs)dXs +

1

2

∫ t

0
σ2(Xs)φ

′′(Xs) ds.
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1C Micro models: some probabilistic background

By definition of ψ, IE(φ(Xt)) =
∫
φ(x)ψ(t, x) dx. Thus, we

have
∫
φψ(t, ·) =

∫
φψ(0, ·)+

∫ t

0

∫
φ′bψ(s, ·)ds+1

2

∫ t

0

∫
σ2φ′′ψ(s, ·)ds.

We have used the fact that

IE

∫ t

0
φ′(Xs)dXs = IE

∫ t

0
φ′(Xs)b(Xs) ds+ IE

∫ t

0
φ′(Xs)σ(Xs) dWs

=

∫ t

0
IE(φ′(Xs)b(Xs)) ds

since
IE
∫ t
0 φ

′(Xs)σ(Xs) dWs ≃ IE
∑n

k=0 φ
′(Xk)σ(Xk)

√
∆tGk = 0.
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1C Micro models: some probabilistic background

Thus the Boltzmann-Gibbs measure

µ(dq) = Z−1 exp(−βV (q)) dq

is invariant for the dynamics

dQt = −∇V (Qt)ζ
−1 dt+

√
2ζ−1β−1dWt.

Proof: We know that Qt has a density ψ which
satisfies:

ζ∂tψ = div(∇V ψ + β−1∇ψ).

If ψ(0, ·) = exp(−βV ), then ∀t ≥ 0, ψ(t, ·) = exp(−βV ).

A similar derivation can be done for the Langevin
dynamics.
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1C Microscopic models for polymer chains

Back to polymers. Which description ? The fine
description is not suitable for micro-macro coupling
(computer cost, time scale). We need to coarse-grain.
Idea : consider blobs (1 blob ≃ 20 CH2 groups).
The basic model (the dumbbell model): only two blobs.
The conformation is given by the “end-to-end vector”.

1
2

3

n
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1C Microscopic models for polymer chains

Coarse-graining at equilibrium: use the image of the
Boltzmann-Gibbs measure by the end-to-end vector
mapping (“collective variable”):

ξ :

{
R3N → R3

q = (q1, . . . ,qN ) 7→ x = qN − q1

namely:

ξ ∗
(
Z−1 exp(−βV (q)) dq

)
= exp(−βΠ(x)) dx.

Thus

Π(x) = −β−1 ln

(∫
exp(−βV (q))δξ(q)−x(dq)

)
.

Coarse-graining for polymers: W. Briels, V.G. Mavrantzas.
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1C Microscopic models for polymer chains

Typically, two forces F = ∇Π are used:

F(X) = HX Hookean dumbbell,

F(X) =
HX

1 − ‖X‖2/(bkT/H)
FENE dumbbell,

(FENE = Finite Extensible Nonlinear Elastic).

Notice that this effective potential Π (“free energy”) is
correct wrt statistical properties at equilibrium:∫
φ(x) exp(−βΠ(x)) dx = Z−1

∫
φ(ξ(q)) exp(−βV (q)) dq.

We are now in position to write the basic model (the
Rouse model).
References: R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager, Dynamic of Polymeric

Liquids, Wiley / M. Doi, S.F. Edwards, The theory of polymer dynamics, Oxford Science

Publication) / H.C. Öttinger, Stochastic processes in polymeric fluids, Springer.
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1C Microscopic models for polymer chains

Forces on bead i (i = 1 or 2) of coordinate vector Xi
t in

a velocity field u(t,x) of the solvent (Langevin equation
with negligible mass):

• Drag force:

−ζ
(
dXi

t

dt
− u(t,Xi

t)

)
,

• Entropic force between beads 1 and 2

(X =
(
X2 − X1

)
):

F(X) = HX Hookean dumbbell,

F(X) =
HX

1 − ‖X‖2/(bkT/H)
FENE dumbbell,
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1C Microscopic models for polymer chains

• “Brownian force”: Fib(t) such that

∫ t

0
Fib(s) ds =

√
2kTζ Bi

t

with Bi
t a Brownian motion.

We introduce the end-to-end vector Xt =
(
X2
t − X1

t

)
and

the position of the center of mass Rt = 1
2

(
X1
t + X2

t

)
.

We have:
{
dX1

t = u(t,X1
t ) dt+ ζ−1F(Xt) dt+

√
2kTζ−1dB1

t

dX2
t = u(t,X2

t ) dt− ζ−1F(Xt) dt+
√

2kTζ−1dB2
t
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1C Microscopic models for polymer chains

By linear combinations of the two Langevin equations
on X1 and X2, one obtains:




dXt =
(
u(t,X2

t ) − u(t,X1
t )
)
dt− 2

ζ
F(Xt) dt+ 2

√
kT

ζ
dW1

t ,

dRt =
1

2

(
u(t,X1

t ) + u(t,X2
t )
)
dt+

√
kT

ζ
dW2

t ,

where W 1
t = 1√

2

(
B2
t −B1

t

)
and W 2

t = 1√
2

(
B1
t +B2

t

)
.

Approximations:

• u(t,Xi
t) ≃ u(t,Rt) + ∇u(t,Rt)(X

i
t − Rt),

• the noise on Rt is zero.
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1C Microscopic models for polymer chains

We finally get




dXt = ∇u(t,Rt)Xt dt−
2

ζ
F(Xt) dt+

√
4kT

ζ
dWt,

dRt = u(t,Rt) dt.

Eulerian version:

dXt(x) + u(t,x).∇Xt(x) dt =

∇u(t,x)Xt(x) dt− 2

ζ
F(Xt(x)) dt+

√
4kT

ζ
dWt.

Xt(x) is a function of time t, position x, and probability
variable ω.
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1C Microscopic models for polymer chains

Discussion of the modelling (1/2).

Discussion of the coarse-graining procedure:
• The construction of Π has been done for zero

velocity field (u = 0). How do the two operations :
u 6= 0 and “coarse-graining” commute ?

• Imagine u = 0. The dynamics

dXt = −2

ζ
F(Xt) dt+

√
4kT

ζ
dWt

is certainly correct wrt the sampled measure
(exp(−βΠ)). But what can be said about the
correctness of the dynamics ?
F. Legoll, TL, http://fr.arXiv.org/abs/0906.4865
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1C Microscopic models for polymer chains

Discussion of the modelling (2/2).

Discussion of the approximations:
• The expansion used on the velocity requires some

regularity on u: the term ∇u leads to some
mathematical difficulties in the mathematical
analysis.

• If the noise on Rt is not neglected, a diffusion term
in space (x-variable) in the Fokker-Planck equation
gives more regularity.
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1C Microscopic models for polymer chains

We have presented a suitable model for dilute solution
of polymers.

Similar descriptions (kinetic theory) have been used to
model:

• rod-like polymers and liquid crystals (Onsager,
Maier-Saupe),

• polymer melts (de Gennes, Doi-Edwards),
• concentrated suspensions (Hébraud-Lequeux),
• blood (Owens).
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1D Micro-macro models for polymeric fluids

To close the system, an expression of the stress
tensor τ in terms of the polymer chain configuration is
needed. This is the Kramers expression (assuming
homogeneous system):

n

τ (t,x) = np

(
− kTI + IE (Xt(x) ⊗ F(Xt(x)))

)
.
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1D Micro-macro models for polymeric fluids

How to derive this formula ? One approach is to use
the principle of virtual work. Another idea is to go back
to the definition of stress:

τn dS = IE
(
sgn(Xt · n)F(Xt)1{Xt intersects plane}

)
.

Since the system is assumed to be homogeneous,
given Xt, the probability that Xt intersects the plane is
Np

dS|Xt·n|
V .

n

Xt

|Xt · n|
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1D Micro-macro models for polymeric fluids

Thus we have:

τn dS = IE
(
sgn(Xt · n)F(Xt)1{Xt intersects plane}

)

= IE (sgn(Xt · n)F(Xt)IP(Xt intersects plane|Xt))

= npIE (sgn(Xt · n)F(Xt)|Xt · n|) dS
= npIE (Xt ⊗ F(Xt))n dS,

where np = Np/V .
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1D Micro-macro models for polymeric fluids

This is the complete coupled system:




ρ (∂t + u.∇)u = −∇p+ η∆u + div(τ ) + fext,

div(u) = 0,

τ = np

(
− kTI + IE (Xt ⊗ F(Xt))

)
,

dXt + u.∇xXt dt =
(
∇uXt − 2

ζF(Xt)
)
dt+

√
4kT
ζ dWt.

The S(P)DE is posed at each macroscopic point x.
The random process Xt is space-dependent: Xt(x).
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1D Micro-macro models for polymeric fluids

One can replace the SDE by the Fokker-Planck
equation, which rules the evolution of the density
probability function ψ(t,x,X) of Xt(x):

∂ψ

∂t
+ u · ∇xψ = − divX

(
(∇uX − 2

ζ
F(X))ψ

)
+

2kT

ζ
∆Xψ,

and then:

τ (t,x) = −np k TI + np

∫

Rd

(X ⊗ F(X))ψ(t,x,X) dX.
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1D Micro-macro models for polymeric fluids

Once non-dimensionalized, we obtain:




Re (∂t + u · ∇)u = −∇p+ (1 − ǫ)∆u + div(τ ) + fext,

div(u) = 0,

τ = ǫ
We (µIE(Xt ⊗ F(Xt)) − I),

dXt + u · ∇xXt dt =
(
∇u · Xt − 1

2We F(Xt)
)
dt+ 1√

Weµ
dWt,

with the following non-dimensional numbers:

Re =
ρUL

η
, We =

λU

L
, ǫ =

ηp
η

, µ =
L2H

kbT
,

and λ = ζ
4H : a relaxation time of the polymers,

ηp = npkTλ: the viscosity associated to the polymers,
U and L: characteristic velocity and length. Usually, L
is chosen so that µ = 1.
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1D Micro-macro models for polymeric fluids

Link with macroscopic models. the Hookean dumbbell
model is equivalent to the Oldroyd-B model: if
F(X) = X, τ satisfies:

∂τ

∂t
+ u.∇τ = ∇uτ + τ (∇u)T +

ǫ

We
(∇u + (∇u)T ) − 1

We
τ .

There is no macroscopic equivalent to the FENE
model. However, using the closure approximation

F(X) =
HX

1 − ‖X‖2/(bkT/H)
≃ HX

1 − IE‖X‖2/(bkT/H)

one ends up with the FENE-P model.
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1D Micro-macro models for polymeric fluids

The FENE-P model:




λ

(
∂τ

∂t
+ u · ∇τ −∇uτ − τ (∇u)T

)
+ Z(tr(τ ))τ

−λ
(
τ +

ηp
λ
I
)(( ∂

∂t
+ u · ∇

)
ln (Z(tr(τ )))

)
= ηp(∇u + (∇u)T ),

with

Z(tr(τ )) = 1 +
d

b

(
1 + λ

tr(τ )

d ηp

)
,

where d is the dimension.

Remark: The derivative ∂τ
∂t + u · ∇τ −∇uτ − τ (∇u)T is

called the Upper Convected derivative.
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1E Conclusion and discussion

This system coupling a PDE and a SDE can be solved
by adapted numerical methods. The interests of this
micro-macro approach are:

• Kinetic modelling is reliable and based on some
clear assumptions (macroscopic models usually derive from kinetic

models (e.g. Oldroyd B), sometimes via closure approximations, but some

microscopic models have no macroscopic equivalent (e.g. FENE)),
• It enables numerical explorations of the link

between microscopic properties and macroscopic
behaviour,

• The parameters of these models have a physical
meaning and can be evaluated,

• It seems that the numerical methods based on this
approach are more robust (?)
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1E Conclusion and discussion
However, micro-macro approaches are not the
solution:

• One of the main difficulties for the computation of
viscoelastic fluid is the High Weissenberg Number
Problem (HWNP). This problem is still present in
micro-macro models (highly refined meshes would
be needed ?).

• The computational cost is very high. Discretization
of the Fokker-Planck equation rather than the set
of SDEs may help, but this is restrained to
low-dimensional space for the microscopic
variables.

The main interest of micro-macro approaches as
compared to macro-macro approaches lies at the
modelling level.
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1E Conclusion and discussion

Macro-macro approach:




Du

Dt
= F(τ p,u),

Dτ p
Dt

= G(τ p,u).

Multiscale, or micro-macro approach:




Du

Dt
= F(τ p,u),

τ p = average over Σ,

DΣ

Dt
= Gµ(Σ,u).
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1E Conclusion and discussion

Pros and cons for the macro-macro and micro-macro
approaches:

MACRO MICRO-MACRO

modelling capabilities low high

current utilization industry laboratories

discretization discretization

by Monte Carlo of Fokker-Planck

computational cost low high moderate

computational bottleneck HWNP variance, HWNP dimension, HWNP
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2A Generalities

The main difficulties for mathematical analysis:
transport and (nonlinear) coupling.




Re
(
∂u

∂t
+ u · ∇u

)
= (1 − ǫ)∆u−∇p+ div(τ ) ,

div(u) = 0 ,

τ =
ǫ

We
(IE(X ⊗ F(X)) − I) ,

dX + u · ∇Xdt =

(
∇uX − 1

2We
F(X)

)
dt+

1√
We

dWt.

Similar difficulties with macro models (Oldroyd-B):

∂τ

∂t
+ u.∇τ = ∇uτ + τ (∇u)T +

ǫ

We
(∇u + (∇u)T ) − 1

We
τ .
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2A Generalities

The state-of-the-art mathematical well-posedness
analysis is local-in-time existence and uniqueness
results, both for macro-macro and micro-macro
models.
One exception (P.L Lions, N. Masmoudi) concerns models with
co-rotational derivatives rather than upper-convected
derivatives, for which global-in-time existence results
have been obtained. It consists in replacing

∂τ

∂t
+ u.∇τ −∇uτ − τ (∇u)T

by
∂τ

∂t
+ u.∇τ −W (u)τ − τW (u)T ,

where W (u) = ∇u−∇uT

2 .
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2A Generalities

These better results come from additional a priori
estimates based on the fact that(
W (u)τ + τW (u)T

)
: τ = 0.

For micro-macro models, it consists in using the SDE:

dXt+u·∇Xtdt =

(∇u −∇uT

2
Xt −

1

2We
F(Xt)

)
dt+

1√
We

dWt.

However, these models are not considered as good
models. For example, ψ ∝ exp(−Π) is a stationary
solution to the Fokker Planck equation whatever u.
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2A Generalities

Well-posedness results for micro-macro models:
• The uncoupled problem: SDE or FP.

• SDE in the FENE case (B. Jourdain, TL: OK for b ≥ 2),
• the case of non smooth velocity field, transport

term in the SDE or FP (C. Le Bris, P.L Lions).
• The coupled problem: PDE + SDE or PDE + FP.

• PDE+SDE: shear flow for Hookean or FENE
(C. Le Bris, B. Jourdain, TL / W. E, P. Zhang),

• PDE+FP: FENE case (M. Renardy / J.W. Barrett, C. Schwab,

E. Süli: (mollification) OK for b ≥ 10 / N. Masmoudi, P.L. Lions).

Another interesting (not only) theoretical issue is the
long-time behaviour.
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2A Generalities

Two simplifications: (i) the case of a plane shear flow.

�����
�����
�����
�����

�����
�����
�����
�����

y

velocity profile

In
flo

w

O
ut

flo
w

u

We keep the coupling, but we get rid of the transport
(since u.∇ = 0).
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2A Generalities

The equations in this case read (0 ≤ t ≤ T , y ∈ O = (0, 1)):




∂tu(t, y) − ∂yyu(t, y) = ∂yτ(t, y) + fext(t, y),

τ(t, y) = IE (Xt(y)F2(Xt(y), Yt(y))) = IE (Yt(y)F1(Xt(y), Yt(y)))

dXt(y) =
(
−1

2F1(Xt(y), Yt(y)) + ∂yu(t, y)Yt(y)
)
dt+ dVt,

dYt(y) =
(
−1

2F2(Xt(y), Yt(y))
)
dt+ dWt,

• F(Xt) = Xt = (Xt, Yt) (Hookean), or

• F(Xt) = Xt

1− ‖Xt‖
2

b

=

(
Xt

1−X2
t
+Y 2

t
b

, Yt

1−X2
t
+Y 2

t
b

)
(FENE),

where u(t, x, y) = (u(t, y), 0), τ =

[
∗ τ

τ ∗

]
,

and F(Xt) = (F1(Xt, Yt), F2(Xt, Yt)).
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2A Generalities

(ii) the case of a homogeneous velocity field:

u(t,x) = κ(t)x.

In this case, Xt does not depend on x and the polymer
does not influence the flow (since div(τ ) = 0).
Therefore, we simply have to study the following SDE:

dX =

(
κ(t)X − 1

2We
F(X)

)
dt+

1√
We

dWt.
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2A Generalities

The separation between the coupling term and the
transport term is actually somehow misleading: all
these terms are transport terms.
For Oldroyd-B

∂τ

∂t
+ u.∇τ −∇uτ − τ (∇u)T =

ǫ

We
(∇u + (∇u)T ) − 1

We
τ .

Let y(t, Y ) satisfy y(0, Y ) = Y and

dy(t, Y )

dt
= u(t, y(t, Y )).

Let us consider the deformation tensor
G(t, y(t, Y )) = ∂y

∂Y (t, Y ). Then G satisfies:

∂tG+ u · ∇G = ∇uG.
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2A Generalities
Thus, if σ(t, y) = G(t, y)σ0G

T (t, y), then

∂σ

∂t
+ u.∇σ −∇uσ − σ(∇u)T = 0.

Likewise, for the Fokker-Planck equation:

∂ψ

∂t
+u·∇xψ+divX (∇xuXψ) =

1

2We
divX (∇Π(X)ψ + ∇Xψ) ,

one can check that

d

dt

(
ψ(t, y(t, Y ), G(t, Y )X)

)

=
(
∂tψ + u · ∇xψ + divX (∇xuXψ)

)
(t, y(t, Y ), G(t, Y )X).

(Notice that divX (∇xuXψ) = ∇xuX · ∇Xψ.)
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2A Generalities

This fact is well-known in the literature (C. Liu, P. Zhang, L.

Chupin, ...) but is seems that it does not help to get better
existence results.

Remark: I am not aware of any numerical method
using this feature (characteristic method).
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2B Some existence results





Re
(
∂u

∂t
+ u · ∇u

)
= (1 − ǫ)∆u−∇p+ div(τ ) ,

div(u) = 0 ,

τ =
ǫ

We
(IE(Xt ⊗ F(Xt)) − I) ,

dXt + u · ∇Xtdt =

(
∇uXt −

1

2We
F(Xt)

)
dt+

1√
We

dWt.

Adopted approach :
• The SDEs are posed at each macroscopic point x

(we need a pointwise defined ∇u),
• The PDEs are posed in a distributional sense (we

need τ to be in L1
loc).
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2B Some existence results

Fundamental a priori estimate (F = ∇Π):

(1)
Re
2

∫

D
‖u‖2 + (1 − ǫ)

∫ t

0

∫

D
‖∇u‖2

=
Re
2

∫

D
‖u0‖2 − ǫ

We

∫ t

0

∫

D
IE(Xs ⊗ F(Xs)) : ∇u.

(2)

∫

D
IE(Π(Xt)) +

1

2We

∫ t

0

∫

D
IE(‖F(Xs)‖2)

=

∫

D
IE(Π(X0)) +

∫ t

0

∫

D
IE(F(Xs).∇uXs) +

1

2We

∫ t

0

∫

D
IE(∆Π(Xs)).

(1) +
ǫ

We
(2) =⇒ Re

2

d

dt

∫

D
‖u‖2 + (1 − ǫ)

∫

D
‖∇u‖2 +

ǫ

We

d

dt

∫

D
IE(Π(Xt))

+
ǫ

2We 2

∫

D
IE(‖F(Xt)‖2) =

ǫ

2We 2

∫

D
IE(∆Π(Xt)).
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2B Some existence results: Hookean

The Hookean dumbbell case in a shear flow: F(X) = X





∂tu(t, y) − ∂yyu(t, y) = ∂yτ(t, y) + fext(t, y),

τ(t, y) = IE (X(t, y)Y (t)) ,

dX(t, y) =
(
−1

2X(t, y) + ∂yu(t, y)Y (t)
)
dt+ dVt,

dY (t) = −1
2Y (t) dt+ dWt,

with appropriate initial and boundary conditions.

No problem to solve the SDE.

The process Yt can be computed externally. The
nonlinearity of the coupling term ∂yuYt disappears:
global-in-time existence result.
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2B Some existence results: Hookean

Notion of solution:

Let us be given u0 ∈ L2
y , fext ∈ L1

t (L2
y), X0 and (Vt,Wt).

(u,X) is said to be a solution if: u ∈ L∞
t (L2

y) ∩ L2
t (H

1
0,y)

and X ∈ L∞
t (L2

y(L
2
ω)) are s.t.,

in D′([0, T ) ×O),

∂tu(t, y) − ∂yyu(t, y) = ∂yIE (X(t, y)Y (t)) + fext(t, y),

for a.e. (y, ω), ∀t ∈ (0, T ),

Xt(y) = e−
t
2X0 +

∫ t

0
e

s−t
2 dVs +

∫ t

0
e

s−t
2 ∂yu(s, y)Ys ds,

where Yt = Y0 e
−t/2 +

∫ t
0 e

s−t
2 dWs.
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2B Some existence results: Hookean

Theorem 1 [B. Jourdain, C. Le Bris, TL 02]
Global-in-time existence and uniqueness.
Assuming u0 ∈ L2

y and fext ∈ L1
t (L

2
y), this problem

admits a unique solution (u,X) on (0, T ), ∀T > 0.
In addition, the following estimate holds:

‖u‖2
L∞

t (L2
y) + ‖u‖2

L2
t (H

1
0,y) + ‖Xt‖2

L∞
t (L2

y(L2
ω)) + ‖Xt‖2

L2
t (L

2
y(L2

ω))

≤ C
(
‖X0‖2

L2
y(L2

ω) + ‖u0‖2
L2

y
+ T + ‖fext‖2

L1
t (L

2
y)

)
.

Remarks:
• The “+T ” comes from Itô’s formula,
• For more regular data, one can obtain more

regular solutions.
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2B Some existence results: Hookean

Sketch of the proof
• a priori estimate,

1

2

Z

O
u(t, y)2 −

1

2

Z

O
u0(y)2 +

Z t

0

Z

O
(∂yu)2 = −

Z t

0

Z

O
IE(Xs(y)Ys)∂yu(s, y)

+

Z t

0

Z

O
fext(s, y)u(s, y),

1

2

Z

O
IE(X2

t (y)) −
1

2
=

Z t

0

Z

O
IE(Xs(y)Ys)∂yu(s, y) −

1

2

Z t

0

Z

O
IE(X2

s (y)) +
1

2
t,

• Galerkin method (space discretization in a finite
dimensional space V m), (fixed point to find a solution um to the

space-discretized problem),
• Convergence of the discretized problem.

Difficulty:
∫
O IE(YtX

m
t (y))∂yvi, where

Xm
t = e−

t
2X0 +

∫ t
0 e

s−t
2 dVs +

∫ t
0 e

s−t
2 ∂yu

m(s, y)Ys ds.
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2B Some existence results: Hookean

We use an explicit expression of τ (cf. Hookean Dumbbell =

Oldroyd B):
∫
O IE(YtX

m
t (y))w =

∫
O IE

(
Yt
∫ t
0 e

s−t
2 ∂yu

mYs ds
)
w

and ∂yu
m ⇀ ∂yu in L2

t (L
2
y),

• Uniqueness: the problem is essentially linear, so
the uniqueness of weak solution holds.
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2B Some existence results: FENE

The FENE dumbbell case in a shear flow:
F(X) = X

1−‖X‖2/b



∂tu(t, y) − ∂yyu(t, y) = ∂yτ(t, y) + fext(t, y),

τ(t, y) = IE

(
Xy

t Y
y

t

1− (X
y
t

)2+(Y
y
t

)2

b

)
,

dXy
t =

(
−1

2
Xy

t

1− (X
y
t
)2+(Y

y
t

)2

b

+ ∂yu(t, y)Y
y
t

)
dt+ dVt,

dY y
t =

(
−1

2
Y y

t

1− (X
y
t
)2+(Y

y
t

)2

b

)
dt+ dWt.

New difficulties:
• An explosive drift term in the SDE, which however

yields a bound on the stochastic processes,
• The system is nonlinear (due to the term ∂yuY

y
t ),

and both X and Y depend on the space variable.
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2B Some existence results: FENE

Two remarks:
• The global a priori estimate u ∈ L∞

t (L2
y)∩L2

t (H
1
0,y) is

not sufficient to pass to the limit in the nonlinear
term ∂yuY

y
t ,

• For a given regularity of ∂yu, what is the regularity
of τ ?
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2B Some existence results: FENE

Notion of solution:
Let us be given u0 ∈ H1

y , fext ∈ L2
t (L2

y), (X0, Y0) and (Vt,Wt).

(u,X, Y ) is said to be a solution if:
u ∈ L∞

t (H1
0,y) ∩ L2

t (H
2
y ) is s.t., in D′([0, T ) ×O),

∂tu(t, y) − ∂yyu(t, y) = ∂yIE

(
Xy
t Y

y
t

1 − (Xy
t )2+(Y y

t )2

b

)
+ fext(t, y),

and for a.e. (y, ω), ∀t ∈ (0, T ), R t

0

˛

˛

˛

˛

˛

1

1−
(X

y
s )2+(Y

y
s )2

b

˛

˛

˛

˛

˛

ds < ∞ and

Xy
t = X0 +

∫ t

0

(
−1

2

Xy
s

1 − (Xy
s )2+(Y y

s )2

b

+ ∂yuY
y
s

)
ds+ Vt,

Y yt = Y0 +

∫ t

0
−1

2

Y ys

1 − (Xy
s )2+(Y y

s )2

b

ds+Wt.
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2B Some existence results: FENE

Theorem 2 [B. Jourdain, C. Le Bris, TL 03]
Local-in-time existence and uniqueness.
Under the assumptions b > 6, fext ∈ L2

t (L
2
y) and

u0 ∈ H1
y , ∃T > 0 (depending on the data) s.t. the

system admits a unique solution (u,X, Y ) on [0, T ).
This solution is such that u ∈ L∞

t (H1
0,y) ∩ L2

t (H
2
y ). In

addition, we have:
• IP(∃t > 0, ((Xy

t )
2 + (Y yt )2) = b) = 0,

• (Xy
t , Y

y
t ) is adapted / FV,W

t .
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2B Some existence results: FENE

Sketch of the proof:
Existence of solution to the SDE
For g ∈ L1

loc (R+), b ≥ 2, the following system




dXg
t =

(
−1

2
Xg

t

1− (X
g
t
)2+(Y

g
t

)2

b

+ g(t)Y gt

)
dt+ dVt,

dY g
t =

(
−1

2
Y g

t

1− (X
g
t
)2+(Y

g
t

)2

b

)
dt+ dWt,

admits a unique strong solution, which is with values
in B = B(0,

√
b).

The proof follows from general results on multivalued SDE (E. Cépa) and the fact that

the FENE force is associated to a convex potential Π.
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2B Some existence results: FENE

More precisely, one can show that:
• As soon as b > 0, there exists a unique solution

with value in B.
• If 0 < b < 2, the stochastic process hits the

boundary of B in finite time: one can thus build
many solutions to the SDE.

• If b ≥ 2, the stochastic process does not hit the
boundary, and one thus has a unique strong
solution to the SDE. Yamada Watanabe theorem
then shows that there exists a unique weak
solution.
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2B Some existence results: FENE

Using Girsanov theorem, one can build a weak
solution to the SDE using the solution (Xt, Yt) for g = 0:





dXt =

(
−1

2
Xt

1− (Xt)
2+(Yt)

2

b

)
dt+ dVt,

dYt =

(
−1

2
Yt

1− (Xt)
2+(Yt)

2

b

)
dt+ dWt,

By Girsanov, under IPg defined by
dIPg

dIP

∣∣∣
Ft

= E
(∫ •

0 g(s)Ys dVs
)
t
=

exp
(∫ t

0 g(s)Ys dVs − 1
2

∫ t
0 (g(s)Ys)

2 ds
)
,

(Xt, Yt, Vt −
∫ t
0 g(s)Ys ds,Wt, IP

g) is a weak solution of the
SDE.
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2B Some existence results: FENE

Regularity of τ in space
We choose g(t) = ∂yu(t) (y is fixed). By Girsanov,
under IPy defined by
dIPy

dIP

∣∣∣
Ft

= E
(∫ •

0 ∂yu(s, y)Ys dVs
)
t
=

exp
(∫ t

0 ∂yuYs dVs − 1
2

∫ t
0 (∂yuYs)

2 ds
)
,

(Xt, Yt, Vt −
∫ t
0 ∂yuYs ds,Wt, IP

y) is a weak solution to the
initial SDE, so that:

τ = IE

(
Xy
t Y

y
t

1 − (Xy
t )2+(Y y

t )2

b

)
= IEy

(
XtYt

1 − X2
t +Y 2

t

b

)
,

= IE

((
XtYt

1 − X2
t +Y 2

t

b

)
E
(∫ •

0
∂yu(s, y)Ys dVs

)

t

)
.
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2B Some existence results: FENE

Therefore, one has (for a.e. y):

|τ | =

∣∣∣∣∣IE
((

XtYt

1 − X2
t +Y 2

t

b

)
E
(∫ •

0
∂yu(s, y)Ys dVs

)

t

)∣∣∣∣∣

≤ IE

((
1

X2
0 + Y 2

0

) q

q−1

) q−1
q

IE

(
E
(∫ •

0
∂yuYs dVs

)q

t

)1/q

≤ Cq exp

(
(q − 1)

∫ t

0
|∂yu(s, y)|2 ds

)

where Cq depends on b, q and IE

((
1

X2
0+Y 2

0

) q

q−1

)
.

One can derive the same kind of estimate on ∂yτ .
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2B Some existence results: FENE

Back to the coupled problem
• a priori estimates:

global-in-time

‖u‖L∞
t (L2

y) + ‖∂yu‖L2
t (L

2
y) + ‖Π(X,Y )‖L∞

t (L1
y(L1

ω))

+‖Υ(X,Y )‖L2
t (L

2
y(L2

ω)) ≤ C(T, ‖u0‖L2
y
, ‖fext‖L1

t (L
2
y))

where Π is the potential associated to the FENE force :

Π(x, y) = − b
2
ln
(
1 − x2+y2

b

)
and Υ(x, y) =

√
x2+y2

1−x2+y2

b

,

local-in-time

‖u‖L∞
t (H1

y ) + ‖u‖L2
t (H

2
y) ≤ C(‖∂yu0‖L2

y
, ‖fext‖L2

t (L
2
y)).

(we use H1 →֒ L∞: dimension 1 !)
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2B Some existence results: FENE

• Galerkin method (Picard theorem to find a solution um to the

space-discretized problem).

Remark: Using the first a priori estimate, the
space-discretized solution is defined on [0, T ].

• Convergence of the space-discretized problem.
Difficulty:
∫

O
IE

((
XtYt

1 − X2
t +Y 2

t

b

)
E
(∫ •

0
∂yu

mYs dVs

)

T

)
∂yvi

where vi is a test function. We need a strong
convergence of ∂yum (convergence a.e.) and
therefore, we need a L2

t (H
1
y ) estimate on ∂yu...

• Uniqueness follows from the estimates.
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2C Long-time behaviour

We are interested in the long-time behaviour of the
coupled system. More precisely, we want to prove
exponential convergence of (u, τ ) to (u∞, τ∞), or (u, ψ)
to (u∞, ψ∞).

Outline:
• preliminary: the decoupled case: FP (entropy

methods) and SDE (coupling methods),
• the coupled case: PDE-SDE and PDE-FP.
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2C Long-time behaviour: FP

When dealing with the FP equation itself, a classical
approach is the following (see e.g. A. Arnold, P. Markowich, G.Toscani

and A. Unterreiter, Comm. Part. Diff. Eq., 2001):

∂ψ

∂t
= divX

((
−κX +

1

2We
∇Π(X)

)
ψ

)
+

1

2We
∆Xψ.

Let h be a convex function s.t. h(1) = h′(1) = 0 and

H(t) =

∫
h

(
ψ

ψ∞

)
ψ∞(X) dX,

where ψ∞ is defined as a stationary solution. The
relative entropy H is zero iff ψ = ψ∞. Some examples
of admissible functions h: h(x) = x ln(x) − x+ 1 or
h(x) = (x− 1)2.
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2C Long-time behaviour: FP

Differentiating H w.r.t. t, one obtains (using the fact that ψ∞ is a

stationary solution)

d

dt

∫
h

(
ψ

ψ∞

)
ψ∞ = − 1

2We

∫
h′′
(
ψ

ψ∞

) ∣∣∣∣∇
(
ψ

ψ∞

)∣∣∣∣
2

ψ∞.

Then, one uses a functional inequality: ∀φ ≥ 0,
∫
φ = 1,

∫
h

(
φ

ψ∞

)
ψ∞ ≤ C

∫
h′′
(

φ

ψ∞

) ∣∣∣∣∇
(

φ

ψ∞

)∣∣∣∣
2

ψ∞,

to show exponential decay of H,

H(t) ≤ H(0) exp(−t/(2CWe)).
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2C Long-time behaviour: FP

Example 1: If h(x) = (x− 1)2, one needs a Poincaré
inequality: ∀f,

∫
|∇f |2 ψ∞ <∞,∫ ∣∣∣∣f −
∫
fψ∞

∣∣∣∣
2

ψ∞ ≤ C

∫
|∇f |2 ψ∞,

with f = ψ/ψ∞− 1, and obtains convergence in L2-norm.

Example 2: If h(x) = x ln(x) − x+ 1, one needs a
log-Sobolev inequality: ∀f,

∫
|∇f |2 ψ∞ <∞,

∫
f2 ln

(
f2

∫
f2ψ∞

)
ψ∞ ≤ C

∫
|∇f |2 ψ∞,

with f =
√
ψ/ψ∞, and obtains convergence in L1-norm.

Remark: (LSI) implies (PI), but L2 ⊂ L1 ln(L1).
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2C Long-time behaviour: FP

The case κ = 0:

In the case κ = 0, we have ψ∞ ∝ exp(−Π) which
satisfies the detailed balance:

(
−κX +

1

2We
∇Π

)
ψ∞ +

1

2We
∇ψ∞ = 0.

and not only div (•) = 0. In this case, one can actually
“directly” prove that:

H(t) ≤ H(0) exp(−t/(2CWe))

without using the functional inequality, but using the
fact that: (1/h′′)′′ ≤ 0, Π is α-convex, ψ∞ satisfies the
detailed balance. Proof: compute H′′(t).
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2C Long-time behaviour: FP

The exponential decay H(t) ≤ H(0) exp(−t/(2CWe))
then implies that the functional inequality holds:

∫
h

(
φ

ψ∞

)
ψ∞ ≤ C

∫
h′′
(

φ

ψ∞

) ∣∣∣∣∇
(

φ

ψ∞

)∣∣∣∣
2

ψ∞,

for φ = ψ∞(t = 0).
Proof: expansion of the inequality H(t) ≤ H(0) exp(−t/(2CWe )) around t = 0.

Thus we obtain that a LSI or a PI holds with respect to
a density ψ∞ if − ln(ψ∞) is α-convex (with C ≤ 1

2α).
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2C Long-time behaviour: FP

The case κ 6= 0:
If κ is skew-symmetric, ψ∞ ∝ exp(−Π) is a stationary
solution so that, by using the LSI inequality w.r.t. ψ∞,
H(t) ≤ H(0) exp(−t/2C). Here, ψ∞ does not satisfy the
detailed balance.

To treat other cases, we need the perturbation result:
Lemma 1 Suppose that

• a LSI holds for ψ∞ ∝ exp(−Π),

• Π̃ is a bounded function,

then a LSI holds for the density ψ̃∞ ∝ exp(−Π + Π̃).

Moreover, CLSI(ψ̃∞) ≤ CLSI(ψ∞) exp(2osc(Π̃)) where
osc(Π̃) = sup(Π̃) − inf(Π̃).

The same lemma holds for PI.
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2C Long-time behaviour: FP

If κ is symmetric, we have again an explicit expression
for a stationary solution:

ψ∞(X) ∝ exp(−Π(X) + We XTκX).

For FENE dumbbells, Lemma 1 shows that a LSI
holds for ψ∞, and therefore, one obtains
H(t) ≤ H(0) exp(−t/2C).

For Hookean dumbbells, OK if∫
exp(−Π(X) + We XTκX) <∞.

For a general κ, exponential decay is obtained if ψ∞ is

a stationary solution such that osc
(
ln
(

ψ∞

exp(−Π)

))
<∞.

For FENE dumbbell, we will prove that there exists
such a stationary solution if κ+ κT is small enough.T. Lelièvre, Workshop Stress tensor effects on fluid mechanics, January 2010 – p. 92



2C Long-time behaviour: FP

Convergence of the stress tensor: in this decoupled
framework, we can deduce from the exponential
convergence of ψ to ψ∞ (Csiszar-Kullback inequality):

∫
|ψ − ψ∞| ≤ C exp(−λt)

and the fact that there exists a polynomial P (t) s.t.

IE(Xt ⊗∇Π(Xt)) ≤ P (t)

that τ converges exponentially fast to τ∞. Proof: use Hölder

inequality.

The polynomial growth in time of IE(Xt ⊗∇Π(Xt)) holds
for Hookean (for κ ∈ Lp

t , 1 ≤ p <∞) or FENE dumbbells (for

κ ∈ L2
t + L∞

t and b sufficiently large).
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2C Long-time behaviour: SDE

Thinking of the Monte-Carlo / Euler discretized
problem, let us now try to do the same on the SDE (here,

we suppose u = 0. This can be generalized to an exponentially fast decaying ∇u):

dXt = − 1

2We
∇Π(Xt) dt+

1√
We

dWt.

Let us introduce

dX∞
t = − 1

2We
∇Π(X∞

t ) dt+
1√
We

dWt,

with X∞
0 ∼ ψ∞(X) dX.
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2C Long-time behaviour: SDE

Then (using α-convexity of Π),

d|Xt − X∞
t |2 = − 1

2We
(∇Π(Xt) −∇Π(X∞

t )) . (Xt − X∞
t ) dt

≤ − α

2We
|Xt − X∞

t |2,

and therefore IE(φ(Xt)) − IE(φ(X∞
t )) goes exponentially

fast to 0 (for φ Lipschitz-continuous e.g.).

Since IE(φ(Xt)) =
∫
φ(X)ψ(t,X) dX and

IE(φ(X∞
t )) =

∫
φ(X)ψ∞(X) dX, this also means

exponentially fast (weak) convergence of ψ(t,X) to
ψ∞(X).

Here again, the α-convexity of Π plays a crucial role.
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2C Long-time behaviour: PDE-SDE

Let us now consider the coupled system.
If we consider the coupled PDE-SDE system (with
zero boundary conditions on u), we have the following
estimate:

Re
2

d

dt

∫

D
|u|2 + (1 − ǫ)

∫

D
|∇u|2 +

ǫ

We

d

dt

∫

D
IE(Π(Xt))

+
ǫ

2We 2

∫

D
IE(‖F(Xt)‖2) =

ǫ

2We 2

∫

D
IE(∆Π(Xt)).

The r.h.s. is positive: it seems difficult to use such
kinds of estimate to study the limit t→ ∞.
It is actually possible to combine this kind of estimate
with the former SDE approach, but for Hookean
dumbbells in shear flow.
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2C Long-time behaviour: PDE-SDE





∂tu(t, y) − ∂yyu(t, y) = ∂yτ(t, y) + fext(t, y),

τ(t, y) = IE (X(t, y)Y (t)) ,

dX(t, y) =
(
−1

2X(t, y) + ∂yu(t, y)Y (t)
)
dt+ dVt,

dY (t) = −1
2Y (t) dt+ dWt,

IC: u(0, y) = u0(y), (X0(y), Y0(y)), BC: u(t, 0) = f0(t) → a0,
u(t, 1) = f1(t) → a1, as t→ ∞.





−∂y,yu∞(y) = ∂yτ∞,

τ∞ = IE (X∞
t Y

∞
t ) ,

dX∞
t = (−1

2X
∞
t + ∂yu∞(y)Y∞

t ) dt+ dVt,

dY∞
t = −1

2Y
∞
t dt+ dWt,

u∞(y) = a0 + y(a1 − a0), (X∞
t , Y

∞
t ) is a stationary

Gaussian process not depending on y.
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2C Long-time behaviour: PDE-SDE

Lemma 2 Long-time behaviour for Hookean.
We assume that ∀y, Y0(y) is independent from Y∞

0 ,
f0, f1 ∈ W 1,1

loc (R+) and limt→∞ ḟ0(t) = limt→∞ ḟ1(t) = 0.
Then,

lim
t→∞

‖u(t, y) − u∞(y)‖L2
y

= 0,

lim
t→∞

‖Xt(y) −X∞
t ‖L2

y(L2
ω) + ‖Yt(y) − Y∞

t ‖L2
y(L2

ω) = 0,

lim
t→∞

‖IE(Xt(y)Yt(y)) − (a1 − a0)‖L1
y

= 0.

Remark: The convergence is exponential if the
convergences on f0, f1, ḟ0 and ḟ1 are exponential.

How to proceed for general geometry and nonlinear force ?
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2C Long-time behaviour: PDE-FP

The Fokker-Planck version of the coupled system is:

Re
(
∂u

∂t
+ u.∇u

)
= (1 − ǫ)∆u−∇p+ div τ

div(u) = 0

τ =
ǫ

We

(∫

Rd

(X ⊗∇Π(X))ψ dX − I
)

∂ψ

∂t
+u ·∇xψ = − divX

((
∇xuX − 1

2We
∇Π(X)

)
ψ

)
+

1

2We
∆Xψ.

We suppose x ∈ D (bounded domain of Rd) and that
Π(X) = π(‖X‖) (so that τ is symmetric).
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2C Long-time behaviour: PDE-FP

Let us start with the case u = 0 on ∂D.

We introduce the kinetic energy:

E(t) =
Re
2

∫

D
|u|2

and the entropy:

H(t) =

∫

D

∫

Rd

Πψ +

∫

D

∫

Rd

ψ ln(ψ) + C

=

∫

D

∫

Rd

ψ ln

(
ψ

ψ∞

)

with
ψ∞(X) ∝ exp(−Π(X)).
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2C Long-time behaviour: PDE-FP

Let us introduce F (t) = E(t) + ǫ
We H(t). One has, by

differentiating F w.r.t. time:

d

dt

(
Re
2

∫

D
|u|2 +

ǫ

We

∫

D

∫

Rd

ψ ln

(
ψ

ψ∞

))

= −(1 − ǫ)

∫

D
|∇u|2 − ǫ

2We 2

∫

D

∫

Rd

ψ

∣∣∣∣∇ ln

(
ψ

ψ∞

)∣∣∣∣
2

.

This yields a new energy estimate, which holds on R+.

First consequence: The stationary solutions of the
coupled problem are u = u∞ = 0 and
ψ = ψ∞ ∝ exp(−Π).
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2C Long-time behaviour: PDE-FP

Moreover, using the following inequalities:
• Poincaré inequality:

∫
|u|2 ≤ C

∫
|∇u|2

• Sobolev logarithmic inequality for ψ∞ (which holds
e.g. for α-convex potentials Π):

∫
ψ ln

(
ψ

ψ∞

)
≤ C

∫
ψ

∣∣∣∣∇ ln

(
ψ

ψ∞

)∣∣∣∣
2

we obtain dF
dt ≤ −CF so that:

Second consequence: The free energy F (and thus the
velocity u) decreases exponentially fast to 0 when t →
∞.
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2C Long-time behaviour: PDE-FP

Remark: If one considers a more general entropy

H(t) =

∫
h

(
ψ

ψ∞

)
ψ∞, one ends up with (written here

for a shear flow with Re = 1/2, We = 1, ǫ = 1/2):

dF

dt
= −

∫

D
|∂yu|2 −

1

2

∫

D

∫

R2

∣∣∣∣∇
(
ψ

ψ∞

)∣∣∣∣
2

h′′
(
ψ

ψ∞

)
ψ∞

−
∫

D

∫

R2

Y ψ ∂yu ∂XΠ

(
1 − h′

(
ψ

ψ∞

)
− h

(
ψ

ψ∞

)
ψ∞
ψ

)
.

Sufficient condition to have exponential decay:
h′(x) − h(x)/x = 0 i.e. h(x) = x ln(x).
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2C Long-time behaviour: PDE-FP

Convergence of the stress tensor:
• for FENE dumbbells: (b > 2)

∫ ∞

0

∫

D
|τ (t,x) − τ∞(x)| <∞.

• for Hookean dumbbells:
∫

D
|τ (t,x) − τ∞(x)| ≤ Ce−βt.

For FENE dumbbell, the difficulty comes from the fact
that we have only L2

x(L1
X) exponential convergence of

ψ to ψ∞, and X ⊗∇Π(X) is not L∞
X .
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2C Long-time behaviour: PDE-FP

Let us now consider the case u 6= 0 on ∂D (constant).
We introduce (Re = 1/2, We = 1, ǫ = 1/2)

E(t) =
1

2

∫

D
|u|2(t,x),

H(t) =

∫

D

∫

Rd

ψ(t,x,X) ln

(
ψ(t,x,X)

ψ∞(x,X)

)
,

F (t) = E(t) +H(t),

where u(t,x) = u(t,x) − u∞(x).

Here, (u∞, ψ∞) is a stationary solution (no a priori
explicit expressions).
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2C Long-time behaviour: PDE-FP

By differentiating F w.r.t. time, one obtains:

d

dt

(
1

2

∫

D
|u|2 +

∫

D

∫

Rd

ψ ln

(
ψ

ψ∞

))

= −
∫

D
|∇u|2 − 1

2

∫

D

∫

Rd

ψ

∣∣∣∣∇X ln

(
ψ

ψ∞

)∣∣∣∣
2

−
∫

D
u.∇u∞u −

∫

D

∫

Rd

u.∇x(lnψ∞)ψ

−
∫

D

∫

Rd

(∇X(lnψ∞) + ∇Π(X)) .∇uXψ,

where ψ(t,x,X) = ψ(t,x,X) − ψ∞(x,X). Difficulties:
(i) estimate these 3 additional terms, (ii) prove a LSI
w.r.t. to ψ∞.
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2C Long-time behaviour: PDE-FP

We consider the case of homogeneous stationary
flows: u∞(x) = ∇u∞x. ψ∞ is defined as a stationary
solution which does not depend on x.
Then, the only remaining term is:

−
∫

D

∫

Rd

(∇X(lnψ∞) + ∇Π(X)) .∇uXψ

= −
∫

D

∫

Rd

∇X ln

(
ψ∞

exp(−Π)

)
(X).∇uXψ

We need a L∞
X estimate on

∥∥∥∇X ln
(

ψ∞

exp(−Π)

)∥∥∥ ‖X‖.

If ∇u∞ is skew-symmetric, take ψ∞ ∝ exp(−Π) and one
obtains exponential decay.
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2C Long-time behaviour: PDE-FP

Let us now consider non-skew-symmetric ∇u∞.

For Hookean dumbbells, this term can be handled
using moment estimates (Arnold et al.).

For FENE dumbbells, a L∞
X estimate on∥∥∥∇X ln

(
ψ∞

exp(−Π)

)∥∥∥ is sufficient, and also yields a LSI

w.r.t. to ψ∞, by Lemma 1.

If ∇u∞ is symmetric, take ψ∞ ∝ exp(−Π + XT∇u∞X).
The only remaining term in the right hand side is

−
∫

D

∫

Rd

∇X ln

(
ψ∞

exp(−Π)

)
(X).∇uXψ

= −2

∫

D

∫

Rd

∇u∞X.∇uXψ.
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2C Long-time behaviour: PDE-FP

Then, for FENE dumbbells:
Theorem 3 In the case of a stationary potential
homogeneous flow (u∞(x) = κx with κ = κT ) in the
FENE model, if

CPI(D)|κ| + 4b2|κ|2 exp(4b|κ|) < 1,

then u converges exponentially fast to u∞ in L2
x norm

and the entropy
∫

D

∫

B
ψ ln

(
ψ

ψ∞

)
, where

ψ∞ ∝ exp(−Π(X) + X.κX), converges exponentially
fast to 0. Therefore ψ converges exponentially fast in
L2
x(L

1
X) norm to ψ∞.

The proof is based on the free energy estimate and on the perturbation result Lemma 1.
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2C Long-time behaviour: PDE-FP

For a general ∇u∞ = κ, for FENE dumbbells, we have:

Proposition 1 For FENE dumbbells, if κ is a traceless
matrix such that |κs| < 1/2, there exists a unique non
negative solution ψ∞ ∈ C2(B(0,

√
b)) of

− div

((
κX − 1

2
∇Π(X)

)
ψ∞(X)

)
+

1

2
∆ψ∞(X) = 0 in B(0,

√
b),

normalized by
∫
B(0,

√
b) ψ∞ = 1, and whose boundary

behavior is characterized by:

inf
B(0,

√
b)

ψ∞
exp(−Π)

> 0, sup
B(0,

√
b)

∣∣∣∣∇
(

ψ∞
exp(−Π)

)∣∣∣∣ <∞.
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2C Long-time behaviour: PDE-FP

Furthermore, it satisfies: ∀X ∈ B(0,
√
b),

∣∣∣∣∇
(

ln

(
ψ∞(X)

exp(−Π(X))

))
− 2κsX

∣∣∣∣ ≤
2
√
b |[κ,κT ]|

1 − 2|κs| ,

where κs = (κ+ κT )/2 and [., .] is the commutator
bracket: [κ,κT ] = κκT − κTκ.

The proof is based on an regularization procedure
around the boundary, and on a a priori estimate based
on a maximum principle on the equation satisfied by∣∣∣∇ ln

(
ψ∞(X)

exp(−Π(X)+XTκsX)

)∣∣∣
2

(Bernstein estimate).
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2C Long-time behaviour: PDE-FP

For the stationary solution ψ∞ we have obtained, using
the free energy estimate, we have:
Theorem 4 In the case of a stationary homogeneous
flow for the FENE model, if |κs| < 1

2 , ψ∞ is the
stationary solution built in Proposition 1 and

M2b2 exp(4bM) + CPI(D)|κs| < 1,

where M = 2|κs| + 2 |[κ,κT ]|
1−2|κs| , then u converges

exponentially fast to u∞ in L2
x norm and the entropy∫

D

∫

B
ψ ln

(
ψ

ψ∞

)
converges exponentially fast to 0.

Therefore ψ converges exponentially fast in L2
x(L

1
X)

norm to ψ∞.
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2C Long-time behaviour: PDE-FP

Open problems:
• Convergence of the stress tensor in the case u 6= 0

on ∂D ?
• Extend the results in the PDE-SDE framework ?
• What about the Monte-Carlo discretized system ?

General question: convergence to equilibrium for
Fokker-Planck equations, of the form

∂tψ = div(bψ + ∇ψ)

using a decomposition of b in gradient part, and
divergence free part.
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2 Mathematics analysis

2A Generalities

2B Some existence results

2C Long-time behaviour

2D Free-energy for macro models
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2D Free-energy for macro models

• Some macroscopic models have microscopic
interpretation.

• We have derived some entropy estimates for
micro-macro models

It is thus natural to try to recast the entropy estimate
for macroscopic models. For example, for the
Oldroyd-B model, one obtains:

d

dt

(
Re
2

∫

D
|u|2 +

ε

2We

∫

D
(− ln(det(A)) − d+ tr(A))

)

+(1 − ε)

∫

D
|∇u|2 +

ε

2We 2

∫

D
tr((I −A−1)2A) = 0,

where A = We
ε τ + I is the conformation tensor. In this

section, u = 0 on ∂D.
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2D Free-energy for macro models

Compared to the “classical” estimate:

d

dt

(
Re
2

∫

D
|u|2 +

ε

2We

∫

D
trA

)

+(1 − ε)

∫

D
|∇u|2 +

ε

2We 2

∫

D
tr(A− I) = 0,

the interest is that

d

dt

(
Re
2

∫

D
|u|2 +

ε

2We

∫

D
(− ln(det(A)) − d+ tr(A))

)
≤ 0

while we have no sign on

d

dt

(
Re
2

∫

D
|u|2 +

ε

2We

∫

D
trA

)
.
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2D Free-energy for macro models

Moreover, since for any symmetric positive matrix M
of size d× d,

0 ≤ − ln(detM) − d+ trM ≤ tr((I −M−1)2M)

we obtain from the free energy estimate exponential
convergence to equilibrium:

d

dt

(
Re
2

∫

D
|u|2 +

ε

2We

∫

D
(− ln(det(A)) − d+ tr(A))

)
≤ C exp(−λt).

This is the result we obtained on the micro-macro
Hookean dumbbells model, that we recast on the
macro-macro Oldroyd-B model.
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2D Free-energy for macro models

The Oldroyd-B case can be use as a guideline to
derive “free energy” estimates for other macroscopic
models that are not equivalent to the “simple”
micro-macro models we studied.
For example, for the FENE-P model

τ =
ε

We

(
A

1 − tr(A)/b
− I

)
,

∂A

∂t
+ u.∇A = ∇uA+A(∇u)T − 1

We

A

1 − tr(A)/b
+

1

We
I,

we have...
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2D Free-energy for macro models

d

dt

(
Re
2

∫

D
|u|2 +

ε

2We

∫

D
(− ln(detA) − b ln (1 − tr(A)/b))

)

+(1 − ε)

∫

D
|∇u|2

+
ε

2We 2

∫

D

(
tr(A)

(1 − tr(A)/b)2
− 2d

1 − tr(A)/b
+ tr(A−1)

)
= 0.

Using the fact for any symmetric positive matrix M of size d× d,

0 ≤ − ln(det(M)) − b ln (1 − tr(M)/b) + (b+ d) ln

„

b

b+ d

«

≤
„

tr(M)

(1 − tr(M)/b)2
−

2d

1 − tr(M)/b
+ tr(M−1)

«

.

we again obtain that the “free energy”
Re
2

∫
D |u|2 + ε

2We

∫
D (− ln(detA) − b ln (1 − tr(A)/b))

decreases exponentially fast to 0.
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2D Free-energy for macro models

The interest of this remark is twofold:
• Theoretically: Obtain new estimates for

macroscopic models (longtime behaviour,
existence and uniqueness result ?, etc...)

• Numerically: Analyze the stability of numerical
schemes / build more stable numerical schemes.
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3D Free-energy dissipative schemes for macro models

3E Variance reduction and reduced basis method
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3A Generalities

For numerics, the main difficulties both for
micro-macro and macro-macro models are:

• An inf-sup condition is needed between the
discretization space for τ and that for u (in the limit
ǫ→ 1). −→ use of special discretization spaces,
use stabilization methods

• The discretization of the advection terms needs to
be done properly. −→ use stabilization methods,
use numerical characteristic method.

• The discretization of the nonlinear term raises
difficulties.
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3A Generalities

For High Weissenberg, difficulties are observed
numerically in some geometries: instabilities,
convergence under mesh refinement. As applied
mathematicians, we would like to build safe numerical
schemes, e.g. schemes which do not bring spurious
“energy” (which one ?) in the system.

In the following, we focus on the specificities of
discretization for micro-macro models. Two
approaches: discretizing the Fokker-Planck equation,
or discretizing the SDEs.

The basic method is called CONNFFESSIT (Laso, Öttinger /

Hulsen, van Heel, van den Brule: BCF) (Calculation Of
Non-Newtonian Flow: Finite Elements and Stochastic
SImulation Technique.)
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3A Generalities

N
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Discretization in time : convergence of finite difference

Discretization in space : convergence of finite element

Discretization by Monte Carlo methods : generalization

approximations for solutions of PDEs : O(δy).

schemes for time-dependent ODEs or SDEs : O(∆t).

of the law of large number : O
(

1√
M

)
.

˛

˛

˛

˛

˛

˛

˛

˛

u(tn) − un
h

˛

˛

˛

˛

˛

˛

˛

˛

L2
y(L2

ω)

+

˛

˛

˛

˛

˛

˛

˛

˛

IE(XtnYtn ) −
1

M

M
X

j=1

X
j

h,nY
j

n

˛

˛

˛

˛

˛

˛

˛

˛

L1
y(L1

ω)

≤ C

„

δy + ∆t+
1

√
M

«

.
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3A Generalities

Numerical questions:
• The uncoupled problem: SDE or FP.

• SDE: Variance reduction by control variate
methods (M. Picasso), the FENE-P model as a
control variate (B. Jourdain, TL), RB (S. Boyaval, TL)

• FP: Finite-difference methods, spectral
methods, the bead-spring model
(high-dimensional problem) (C. Liu / Q. Du / C. Chauvière/

R. Owens / A. Lozinski).
• The coupled problem

• PDE+SDE: Convergence of the MC / Euler / FE
discretization (C. Le Bris, B. Jourdain, TL / P. Zhang),

• PDE+SDE: Dependency of the B.M on space
(C. Le Bris, B. Jourdain, TL).
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3B Convergence of the CONNFFESSIT method

We consider again Hookean dumbbell: F(X) = X in
shear flow





∂tu(t, y) − ∂yyu(t, y) = ∂yτ(t, y) + fext(t, y),

τ(t, y) = IE (X(t, y)Y (t)) ,

dX(t, y) =
(
−1

2X(t, y) + ∂yu(t, y)Y (t)
)
dt+ dVt,

dY (t) = −1
2Y (t) dt+ dWt,

with appropriate initial and boundary conditions.

Remember: The process Yt can be computed
externally. The nonlinearity of the coupling term ∂yuYt
disappears: global-in-time existence result.
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3B Convergence of the CONNFFESSIT method

The numerical scheme: IP1 finite element on u, Monte
Carlo discretization for τ , Euler schemes in time.

Spacestep: h = δy, timestep: ∆t, number of realizations: M .




1
∆t

∫
O
(
un+1
h − unh

)
vh +

∫
O ∂yu

n+1
h ∂yvh = −

∫
O τ

n
h∂yvh + Fext, ∀vh ∈ Vh,

τnh = 1
M

∑M
j=1

(
X
j,n
h Y

j,n
)
,

X
j,n+1
h = X

j,n
h +

(
−1

2X
j,n
h + ∂yu

n+1
h Y

j,n
)

∆t+
(
V j
tn+1

− V j
tn

)
,

Y
j,n+1

= Y
j,n

+
(
−1

2Y
j,n
)

∆t+
(
W j
tn+1

−W j
tn

)
.

We obtain a system of interacting particles.
Difficulties:

• the X
j
h,n are not independent (mean field interaction),

• unh is a random variable.
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3B Convergence of the CONNFFESSIT method

τ

U0 = 1

u

UI = 0

u : IP1

τ : IP0

h = δy

yI = 1

y0 = 0

τnh = 1
M

∑M
j=1(X

j,n
h Y j,n)
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3B Convergence of the CONNFFESSIT method

Theorem 5 [B. Jourdain, C. Le Bris, TL 02]
Convergence of the numerical scheme.
Assuming u0 ∈ H2

y , fext ∈ L1
t (H

1
y ), ∂tfext ∈ L1

t (L
2
y) and

∆t < 1
2 , we have (for Vh = IP1): ∀n < T

∆t ,

∣∣∣∣
∣∣∣∣u(tn) − unh

∣∣∣∣
∣∣∣∣
L2

y(L2
ω)

+

∣∣∣∣
∣∣∣∣IE(XtnYtn) − 1

M

M∑

j=1

X
j
h,nY

j
n

∣∣∣∣
∣∣∣∣
L1

y(L1
ω)

≤ C

(
δy + ∆t+

1√
M

)
.

Remark: [TL 02] One can actually show that the
convergence in space is optimal:∣∣∣∣

∣∣∣∣u(tn) − unh

∣∣∣∣
∣∣∣∣
L2

y(L2
ω)

≤ C

(
δy2 + ∆t +

1√
M

)
.
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3B Convergence of the CONNFFESSIT method

Sketch of the proof:
• IP1 discretization in space: O(δy),
• Euler discretization in time: O(∆t),

• Monte Carlo discretization: O
(

1√
M

)
.

Basic idea: use the following a priori estimate,
1

2

Z

O
u(t, y)2 −

1

2

Z

O
u0(y)2 +

Z t

0

Z

O
(∂yu)2 = −

Z t

0

Z

O
IE(Xs(y)Ys)∂yu(s, y)

+

Z t

0

Z

O
fext(s, y)u(s, y),

1

2

Z

O
IE(X2

t (y)) −
1

2
=

Z t

0

Z

O
IE(Xs(y)Ys)∂yu(s, y) −

1

2

Z t

0

Z

O
IE(X2

s (y)) +
1

2
t,

Main difficulty in the stability proof: we need that
∆t 1

M

∑M
j=1(Y

j
n)

2 < 1. We introduce a cut-off.
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3B Convergence of the CONNFFESSIT method

Let A > 0. We set Y j,n+1
= max(−A,min(A, Y j,n+1)), where

Y j,n+1 = Y j,n +

(
−1

2
Y j,n

)
∆t+

(
W j
tn+1

−W j
tn

)
.

Two types of result :
• A = ∞ : without cut-off,

• 0 < A <
√

3
5∆t : with cut-off.

The precise result is the following:
˛

˛

˛

˛

˛

˛

˛

˛

u(tn)−un
h1An

˛

˛

˛

˛

˛

˛

˛

˛

L2
y(L2

ω)

+

˛

˛

˛

˛

˛

˛

˛

˛

IE(XtnYtn )−
1

M

M
X

j=1

X
j

h,nY
j

n1An

˛

˛

˛

˛

˛

˛

˛

˛

L1
y(L1

ω)

≤ C

„

δy + ∆t+
1

√
M

«

,

with An =
{
∀k ≤ n, 1

M

∑M
j=1(Y

j
k)

2 < 13
20

1
∆t

}
.
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3B Convergence of the CONNFFESSIT method

Two types of results:
without cut-off:
A = ∞ : Y

j,n
= Y j,n but An  Ω,

with cut-off:

0 < A <
√

3
5∆t : An = Ω but Y

j,n 6= Y j,n.

without cut-off: An is s.t. for ∆t < 13
40 ,

IP(An) ≥ 1 − 1
∆t exp

(
−M

2

(
13

40∆t − 1 − ln
(

13
40∆t

)))
. Notice

that IP
(
A⌊ t

∆t⌋
)
−→ 1 as ∆t −→ 0, or as M −→ ∞.

with cut-off: one can show that the cut-off is used with
very small probability for a “reasonable” timestep.
Generalizations: T. Li and P. Zhang.
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3B The CONNFFESSIT method: variance reduction

One important question in Monte Carlo methods is
variance reduction.
Recall that for (Qn)n≥1 i.i.d. random variables, we have
(CLT)

1

N

N∑

n=1

f(Qn) ∈
[
IE(f(Q1)) ± 1.96

√
Var(f(Q1)

N

]
.

How to reduce the variance in multiscale models ?
One idea is to use control variate method with, as a
control variate (Bonvin, Picasso):

• the system at equilibrium,
• or a “close” model which has a macroscopic

equivalent.
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3B The CONNFFESSIT method: variance reduction

For example, for the FENE model, one writes:

IE

(
Xt ⊗ Xt

1 − ‖Xt‖2/b

)
= IE

(
Xt ⊗ Xt

1 − ‖Xt‖2/b
− X̃t ⊗ F̃(X̃t)

)

+ IE
(
X̃t ⊗ F̃(X̃t)

)
,

with suitable F̃ and X̃t, like

• (control variate at equilibrium) F̃ = F and
dX̃t + u · ∇X̃t dt = − 1

2We F̃(X̃t) dt+ 1√
We

dWt.

• (Hook. dumbbell as control variate) F̃(X̃) = X̃ and

dX̃t+u ·∇X̃t dt =
(
∇uX̃t − 1

2We F̃(X̃t)
)
dt+ 1√

We
dWt.

The Brownian motion driving X̃t needs to be the same
as the Brownian motion driving Xt.T. Lelièvre, Workshop Stress tensor effects on fluid mechanics, January 2010 – p. 135
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3C Dependency of the Brownian on the space variable

We consider Hookean dumbbells in a shear flow.



∂tu(t, y) − ∂yyu(t, y) = ∂yτ(t, y) + fext(t, y),

τ(t, y) = IE (X(t, y)Y (t)) ,

dX(t, y) =
(
−1

2X(t, y) + ∂yu(t, y)Y (t)
)
dt+ dVt,

dY (t) = −1
2Y (t) dt+ dWt.

Question: (Vt,Wt) or (Vt(y),Wt(y)) ?

- The convergence result still holds,
- The deterministic continuous solution (u, τ) does not
depend on the correlation in space of the Brownian mo-
tions,

but the variance of the numerical results is sensitive to
this dependency (Keunings / Bonvin, Picasso).
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3C Dependency of the Brownian on the space variable

Variance of u
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3C Dependency of the Brownian on the space variable

Variance of τ
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T. Lelièvre, Workshop Stress tensor effects on fluid mechanics, January 2010 – p. 139



3C Dependency of the Brownian on the space variable

Two cases: A B.M. not depending on space (Vt) and a
B.M. uncorrelated from one cell to another (Vt(y)).

Going from Vt to Vt(y)

Var(u) Variance increases (short time : ∗15 - long time : ∗1000)

Var(τ) Variance decreases (short time : /4 - long time : /2)

Can we “explain” this phenomenon ?
On u, the equation contains a derivative in space:

∫

O
∂tuh(t)vh+

∫

O
∂yuh(t)∂yvh = −

∫

O

1

R

R∑

j=1

(
X
j
h(t)Y

j
(t)
)
∂yvh+Fext.

If Vt(y) is a random process w.r.t. y, one derives this
process and it is therefore natural to expect large
variances. But on τ ? T. Lelièvre, Workshop Stress tensor effects on fluid mechanics, January 2010 – p. 140



3C Dependency of the Brownian on the space variable

Once discretized in space, we have (stationary solution) :

−MU(t) = YtBXt + bc,

dXt =

(
YtCU(t) + bcYt −

Xt

2

)
dt+ dVt,

Yt = e−
t
2Y0 +

∫ t

0
e

s−t
2 dWs,

with (on a uniform mesh)
• M matrix of ∆,
• B, C = −tB discretizations of div and ∇,
• bc : vectors depending on boundary conditions.

We want to compute Covar(U(t)) and Covar(Xt) where
Covar(v) := IE(v ⊗ v) − IE(v) ⊗ IE(v).
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3C Dependency of the Brownian on the space variable

With the (unnecessary) simplifying assumption Y 2
t = 1,

we have:

Covar(X(t)) = Covar

(
exp(At)X0 +

∫ t

0
exp(A(t− s))bcYs ds

+

∫ t

0
exp(A(t− s)) dVs

)
,

Covar(U(t)) = M−1BCovar (X(t)) (t(M−1B)),

with A = −CM−1B − 1
2Id. We have BC = M , and

CM−1B = Id− P where P is a projector on Ker(B).
Idea: ∇∆−1 div is a projector on irrotational fields.

exp(As) =

(
exp

(
−s

2

)
− exp

(
−3s

2

))
P + exp

(
−3s

2

)
Id.
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3C Dependency of the Brownian on the space variable

We can now understand the behaviour of the variance
on τ . In Covar(Xt), there is a term involving PdVs, i.e.

I∑

i=1

(Vi(tn+1) − Vi(tn))

(in the case of a uniform space step) with Vi(t) the
Brownian motion in the i-th cell of discretization. And it
is clear that :

Var

(
I∑

i=1

Gi

)
< Var

(
I∑

i=1

G

)

if Gi i.i.d., so that Covar(Xt) decreases using Vt(y).
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3C Dependency of the Brownian on the space variable

In the limit t −→ ∞, we finally obtain :

Covar(Xt) = 2bc ⊗ bc +
1

3
(K + PK + PKP ) ,

Covar(U(t)) =
1

3
M−1BK(t(M−1B)),

with

K =
1

t
IE(Vt ⊗ Vt),

the discrete space correlation matrix of Vt.
We can use these results to understand the behaviour
in the cases K = Id and K = J , and also to find the
optimal K in some sense.
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3C Dependency of the Brownian on the space variable

In the case of a uniform discretization in space, K = Id
in the case Vt and K = J in the case Vt(y) so that

t −→ ∞ Covar(Xt) Covar(U(t))

Vt 2bc ⊗ bc + J 0

Vt(y) 2bc ⊗ bc + 2δy
3 J + 1

3Id −1
3M

−1

Remark: in the limit δy → 0, with Vt(y), U becomes
deterministic !
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3C Dependency of the Brownian on the space variable

[B. Jourdain, C. Le Bris, TL, 04]:
• the variance of the results comes from an interplay

between the space discretized operators and the
dependency of the Brownian motion on space,

• the minimum of the variance of u is obtained for a
Brownian constant in space,

• the minimum of the variance of τ is NOT obtained
with some Brownian motions independent from
one cell to another. One can further reduce the
variance by using a Brownian motion Wt multiplied
alternatively by +1 or −1 from one cell to another.

Generalizations: R. Kupferman, Y. Shamai
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3D Free-energy dissipative schemes for macro models

Recall the free energy estimate for the Oldroyd-B
model:

d

dt

(
Re
2

∫

D
|u|2 +

ε

2We

∫

D
(− ln(det(A)) − d+ tr(A))

)

+(1 − ε)

∫

D
|∇u|2 +

ε

2We 2

∫

D
tr((I −A−1)2A) = 0,

where A = We
ε τ + I is the conformation tensor. In this

section, u = 0 on ∂D.

Aim: Analyze the stability of numerical schemes using
this free energy estimate. Indeed, if one is able to
build numerical scheme such that the free energy
Re
2

∫
D |u|2 + ε

2We

∫
D (− ln(det(A)) − d+ tr(A)) decreases

in time, one ensures “some” stability of the numerical
scheme.
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3D Free-energy dissipative schemes for macro models

The standard variational formulation for the Oldroyd-B
model (σ = A is the conformation tensor):

0 =

∫

D
Re
(
∂u

∂t
+ u · ∇u

)
· v + (1 − ε)∇u : ∇v − p div v

+
ε

We
σ : ∇v + q divu

+

(
∂σ

∂t
+ u · ∇σ

)
: φ− ((∇u)σ + σ(∇u)T ) : φ+

1

We
(σ − I) : φ

T. Lelièvre, Workshop Stress tensor effects on fluid mechanics, January 2010 – p. 149



3D Free-energy dissipative schemes for macro models

Taking as test functions (v, q,φ) =
(
u, p, ε

2We(I − σ−1)
)
,

one obtains the free energy estimate

d

dt
F + (1 − ε)

∫

D
|∇u|2 +

ε

2We2

∫

D
tr(σ + σ−1 − 2I) = 0.

where

F (u, p,σ) =
Re
2

∫

D
|u|2 +

ε

2We

∫

D
tr(σ − lnσ − I).

Moreover, using Poincaré inequality and the inequality
tr(σ − lnσ − I) ≤ tr(σ + σ−1 − 2I), one obtains
exponential decay of F to 0.
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3D Free-energy dissipative schemes for macro models

Question: Is it possible to find a numerical scheme
which yields similar estimates ?

Interest: Build more stable numerical schemes / get
an insight on some instabilities observed in numerical
simulations (?)

Difficulties: Time discretization, test functions in the
Finite Element space...
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3D Free-energy dissipative schemes for macro models

A numerical scheme for which everything works well:
Scott-Vogelius finite elements and characteristic
method. (un+1

h , pn+1
h ,σn+1

h ) ∈ (P2)
2 × P1,disc × (P0)

3

solution to:

0 =

∫

D
Re

(
un+1
h − unh

∆t
+ unh · ∇un+1

h

)
· v − pn+1

h div v + q divun+1
h

+ (1 − ε)∇un+1
h : ∇v +

ε

We
σn+1
h : ∇v +

1

We
(σn+1

h − I) : φ

+

(
σn+1
h − σnh ◦Xn(tn)

∆t

)
: φ−

(
(∇un+1

h )σn+1
h + σn+1

h (∇un+1
h )T

)
: φ,

{
d
dtX

n(t) = unh(X
n(t)), ∀t ∈ [tn, tn+1],

Xn(tn+1) = x.
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3D Free-energy dissipative schemes for macro models

One can prove that:
• for given (unh, p

n
h,σ

n
h) and σnh spd, there exists

Cn > 0 s.t. ∀0 < ∆t < Cn there exists a unique
solution (un+1

h , pn+1
h ,σn+1

h ) with σn+1
h spd.

• such a solution satisfy a discrete free energy
estimate:

Fn+1
h − Fnh +

∫

D

Re
2

|un+1
h − unh|2

+ ∆t

∫

D
(1 − ε)|∇un+1

h |2 +
ε

2We2 tr
(
σn+1
h + (σn+1

h )−1 − 2I
)
≤ 0

• And thus, there exists a C0 such that ∀0 < ∆t < C0,
there exists a unique solution (unh, p

n
h,σ

n
h) ∀n ≥ 0.
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3D Free-energy dissipative schemes for macro models

Key ingredients for the proof:

• Take as test functions (since σn+1
h ∈ (P0)

3):
(un+1

h , pn+1
h , ε

2We

(
I − (σn+1

h )−1)
)
.

• Treatment of the advection term (u · ∇)σ:
(
σn+1
h − σnh ◦Xn(tn)

)
: (σn+1

h )−1 = tr
(
[σnh ◦Xn(tn)][σn+1

h ]−1 − I
)

≥ ln det
(
[σnh ◦Xn(tn)][σn+1

h ]−1
)

= tr ln(σnh ◦Xn(tn)) − tr ln(σn+1
h )

σ, τ spd ⇒ tr(στ−1−I) ≥ ln det(στ−1) = tr (lnσ − ln τ )

• Strong incompressibility divuh = 0 and thus∫
D tr ln(σnh ◦Xn(tn)) =

∫
D tr ln(σnh).
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3D Free-energy dissipative schemes for macro models

Another possible discretization: Scott-Vogelius finite
elements and Discontinuous Galerkin Method.
(un+1

h , pn+1
h ,σn+1

h ) ∈ (P2)
2 × P1,disc × (P0)

3 solution to:

0 =
NK∑

k=1

∫

Kk

Re

(
un+1
h − unh

∆t
+ unh · ∇un+1

h

)
· v − pn+1

h div v + q divu

+ (1 − ε)∇un+1
h : ∇v +

ε

We
σn+1
h : ∇v +

1

We
(σn+1

h − I) : φ

+

(
σn+1
h − σnh

∆t

)
: φ− ((∇un+1

h )σn+1
h + σn+1

h (∇un+1
h )T ) : φ

+
NE∑

j=1

∫

Ej

unh · nEj
[[σn+1

h ]] : φ+
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3D Free-energy dissipative schemes for macro models

With this discretization a similar result can be proved
under the weak incompressibility constraint∫
q div(unh) = 0.

Summary: what we need for discrete free energy
estimates with piecewise constant σh:

Advection
for σh:

Characteristic DG

For uh: divuh = 0
( ⇒ det(∇xXn) ≡ 1 )
( ⇒ uh · n well de-
fined on {Ej} )

∫
D q divuh = 0, ∀q ∈
P0

and
uh·nwell defined on
{Ej}
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3D Free-energy dissipative schemes for macro models

These results can be extended to discontinuous
piecewise affine discretization for σ using the
projection operator πh with values in (P0)

3 s.t.

πh(φ)|Kk
= φ(θKk

),

where θKk
is the barycenter of the triangle Kk.

The properties we use:
• πh commutes with nonlinear functional (like −1)
• πh coincides with L2 orthogonal projection from

(P1,disc)
3 onto (P0)

3.
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3D Free-energy dissipative schemes for macro models

Stability for the log-formulation (Fattal, Kupferman):
ψ = ln(σ)





Re
(
∂u

∂t
+ u · ∇u

)
= −∇p+ (1 − ε)∆u+

ε

We
div eψ

divu = 0
∂ψ

∂t
+ (u · ∇)ψ = Ωψ −ψΩ + 2B +

1

We
(e−ψ − I)

with decomposition (σ spd):

∇u = Ω +B +Ne−ψ

Ω, N skew-symmetric, B symmetric and commutes
with e−ψ.
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3D Free-energy dissipative schemes for macro models

Since eψ naturally enforces spd-ness, one can prove
(for Scott-Vogelius FEM and characteristic or DG
method):

• ∀∆t > 0, there exists a solution (unh, p
n
h,ψ

n
h) ∀n ≥ 0.

(no CFL, but no uniqueness !)

Proof: use free energy estimate and Brouwer fixed
point theorem.

Is this related to the better stability properties that
have been reported for the log-formulation ?
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3E Variance reduction and reduced basis method

In the CONNFFESSIT method, we have to compute
expected values:

IE(Xt ⊗ F(Xt))

where Xt satisfies the SDE:

dXt+u·∇xXt dt =

(
∇u · Xt −

1

2We
F(Xt)

)
dt+

1√
We

dWt.

This Monte Carlo calculation has to be done for many
values of the velocity gradient.
Idea: Use this “many query” context to build a
variance reduction method.
Two building blocks: The control variate method and
the reduced basis method.
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3E Variance reduction and reduced basis method

Variance reduction by control variate: Instead of
approximating IE(Z), approximate

IE(Z − αY )

where Y is a zero-mean random variable, and α is a
deterministic parameter to be fixed. We want

Var(Z − αY ) ≪ Var(Z).

Optimal α = α∗ = Covar(Z,Y )
Var(Y ) so that

Var(Z − α∗Y ) = Var(Z)(1 − ρ(Z, Y )2) with

ρ(Z, Y ) =
Covar(Z, Y )√
Var(Y )Var(Z)

∈ [−1, 1].
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3E Variance reduction and reduced basis method

Optimal case: |ρ(Z, Y )| = 1 (i.e. Y = Z − IE(Z) !).

Worst case: ρ(Z, Y ) = 0 (uncorrelated Y and Z).

How to build a correlated random variable Y with zero
mean ?
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3E Variance reduction and reduced basis method

Reduced basis method Y. Maday, A.T. Patera: Assume one
has to solve − div(A(λ)∇u) = f for many values of the
parameter λ ∈ Λ.

Principle of the method:
• In an offline stage, build a reduced basis

XN = span(u(λ1), . . . , u(λN ))

for well chosen values of the parameter λ.
• In an online stage, look for a solution to the

original problem in XN .

T. Lelièvre, Workshop Stress tensor effects on fluid mechanics, January 2010 – p. 164



3E Variance reduction and reduced basis method

Some practical details in the PDE context:
• For a given reduced basis XN , the solution in XN

is computed using a Galerkin method.
• In the offline stage, the parameter values λi are

computed using a greedy algorithm: choose a
finite set Λtrial ⊂ Λ, and λ1 ∈ Λtrial. Then, for n ≥ 0

λn+1 ∈ arg sup
λ∈Λtrial

∆n(λ)

where ∆n(λ) is an a posteriori estimator of the
error made on the output, when approximating u(λ)
by un(λ) ∈ span(u(λ1), . . . , u(λn)).

This approach has proven to be useful in many
contexts, with relatively small N (N ∼ 10).
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3E Variance reduction and reduced basis method

The main tools used in the RB methodology are:
• Two-stage offline-online strategy (many-query

context, or real-time applications);
• Use some solutions at given values of the

parameter to build a reduced basis;
• A procedure to select the best linear combination

on a given reduced basis;
• A greedy algorithm to select offline the best

samples among a trial sample;
• An a posteriori estimator used online and offline to

evaluate the error;
We will use the same ideas to build a control variate to reduce
the variance for Monte Carlo estimations by empirical means of
parametrized random variables.
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3E Variance reduction and reduced basis method

Approximate IE(Zλ) by

EM ((Zλ − Y λ)i) =
1

M

M∑

i=1

(Zλi − Y λi ),

where (Zλi , Y
λ
i ) are i.i.d. We use as an a posteriori

estimator of the error the empirical variance

VM ((Zλ − Y λ)i) =
1

M

M∑

i=1

(Zλi − Y λ
i − EM ((Zλ − Y λ)i))

2.

Recall the optimal control variate: Y λ = Zλ − IE(Zλ).
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3E Variance reduction and reduced basis method

In the offline stage, optimal control variates are
computed:

Y λn = Zλn − EMlarge
((Zλn)i).

In the online stage, use as a control variate:

Ỹ λ =
N∑

n=1

α∗
nY

λn

where (α∗
n) = arg inf(αn) Var

(
Zλ −

∑N
n=1 αnY

λn

)
. The

optimal (α∗
n) are solution to a least square problem. In

practice the expected values are approximated online
using empirical means over Msmall ≪Mlarge i.i.d.
replicas (typically Mlarge = 100Msmall).
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3E Variance reduction and reduced basis method

The parameters λn in the offline stage are computed
using a greedy algorithm, in order to minimize the
variance.

Remark: There exists another version of the algorithm
specialized to the case when Zλ is a function of some
solution to a parametrized SDE.

Numerical results for the FENE model, the parameters
being the gradient of the velocity field.
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3E Variance reduction and reduced basis method

Max, med and min of the variance over the samples,
in the offline stage, over Λtrial (left) and in the online
stage, over Λ (right), as a function of the size of the
reduced basis.
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