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Introduction

The aim of molecular dynamics simulations is to understand the
relationships between the macroscopic properties of a molecular
system and its atomistic features. In particular, one would like to
evaluate numerically macroscopic quantities from models at the
microscopic scale.

Many applications in various fields: biology, physics, chemistry,
materials science.

Various models: discrete state space (kinetic Monte Carlo, Markov
State Model) or continuous state space (Langevin).

The basic ingredient: a potential V which associates to a
configuration (x1, ..., xN) = x ∈ R

3N an energy V (x1, ..., xN).
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Introduction

Typically, V is a sum of potentials modelling interaction between
two particles, three particles and four particles:

V =
∑

i<j

V1(x i , x j) +
∑

i<j<k

V2(x i , x j , xk) +
∑

i<j<k<l

V3(x i , x j , xk , x l ).

For example,
V1(x i , x j) = VLJ(|x i − x j |)
where
VLJ(r) = 4ǫ

(

(

σ
r

)12 −
(

σ
r

)6
)

is

the Lennard-Jones potential.
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Introduction

Newton equations of motion:

{

dX t = M−1Pt dt,
dPt = −∇V (X t) dt,
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Introduction
Newton equations of motion + thermostat: Langevin dynamics:

{

dX t = M−1Pt dt,

dPt = −∇V (X t) dt − γM−1Pt dt +
√

2γβ−1dW t ,

where γ > 0. Langevin dynamics is ergodic wrt

µ(dx)⊗ Z−1
p exp

(

−β ptM−1p
2

)

dp with

dµ = Z−1 exp(−βV (x)) dx ,

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.
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Introduction
Newton equations of motion + thermostat: Langevin dynamics:

{

dX t = M−1Pt dt,

dPt = −∇V (X t) dt − γM−1Pt dt +
√

2γβ−1dW t ,

where γ > 0. Langevin dynamics is ergodic wrt

µ(dx)⊗ Z−1
p exp

(

−β ptM−1p
2

)

dp with

dµ = Z−1 exp(−βV (x)) dx ,

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.

In the following, we focus on the over-damped Langevin (or
gradient) dynamics

dX t = −∇V (X t) dt +
√

2β−1dW t ,

which is also ergodic wrt µ.
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Introduction

These dynamics are used to compute macroscopic quantities:

(i) Thermodynamic quantities (averages wrt µ of some
observables): stress, heat capacity, free energy,...

Eµ(ϕ(X )) =

∫

Rd

ϕ(x)µ(dx) ≃ 1

T

∫ T

0

ϕ(X t) dt.

(ii) Dynamical quantities (averages over trajectories): diffusion
coefficients, viscosity, transition rates,...

E(F((X t)t≥0)) ≃
1

N

N
∑

m=1

F((Xm
t )t≥0).

Difficulties: (i) high-dimensional problem (N ≫ 1); (ii) X t is a
metastable process and µ is a multimodal measure.
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Metastability: energetic and entropic barriers
A two-dimensional schematic picture
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−→ • Slow convergence of trajectorial averages
• Transitions between metastable states are rare events
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A toy example in material sciences
The 7 atoms Lennard Jones cluster in 2D.

(a) C0, V = −12.53 (b) C1, V = −11.50 (c) C2, V = −11.48

(d) C3, V = −11.40

Figure: Low energy conformations of the Lennard-Jones cluster.

−→ simulation
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Simulations of biological systems
Unbinding of a ligand from a protein

(Diaminopyridine-HSP90, Courtesy of SANOFI)

Elementary time-step for the molecular dynamics = 10−15
s

Dissociation time = 0.5 s

Challenge: bridge the gap between timescales
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Introduction

Outline of the talk:

1. Adaptive biasing techniques: These are numerical methods to
compute thermodynamic quantities, and in particular free
energy differences.
Mathematical tool: Entropy techniques and Logarithmic

Sobolev Inequalities.

2. The Parallel Replica dynamics: This is one instance of an
algorithm to generate efficiently metastable dynamics.
Mathematical tool: Quasi Stationary Distributions.

Underlying question: how to properly define and quantify
metastability ? Various answers: (i) rate of convergence to
equilibrium; (ii) exit time from metastable states; (iii) decorrelation
time; (iv) asymptotic variance of estimators.
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Free energy and adaptive biasing techniques
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Adaptive biasing techniques

We suppose in this part that we know a slow variable of
dimension 1: ξ(X t), where ξ : Rd → T is a so-called reaction
coordinate.

This reaction coordinate will be used to bias the dynamics
(adaptive importance sampling technique).

For example, in the 2D simple examples: ξ(x , y) = x .
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Adaptive biasing techniques
Let us introduce two probability measures associated to µ and ξ:

• The image of the measure µ by ξ:

ξ∗µ (dz) = exp(−βA(z)) dz

where the free energy A is defined by:

A(z) = −β−1 ln

(

∫

Σ(z)
e−βV δξ(x)−z(dx)

)

,

with Σ(z) = {x , ξ(x) = z} is a (smooth) submanifold of Rd ,
and δξ(x)−z(dx) dz = dx .

• The probability measure µ conditioned to ξ(x) = z :

µΣ(z)(dx) =
exp(−βV (x)) δξ(x)−z(dx)

exp(−βA(z))
.
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Adaptive biasing techniques

In the simple case ξ(x , y) = x , we have:

• The image of the measure µ by ξ:

ξ∗µ (dx) = exp(−βA(x)) dx

where the free energy A is defined by:

A(x) = −β−1 ln

(
∫

e−βV (x ,y)dy

)

,

and Σ(x) = {(x , y), y ∈ R}.
• The probability measure µ conditioned to ξ(x , y) = x :

µΣ(x)(dy) =
exp(−βV (x , y)) dy

exp(−βA(x))
.
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Adaptive biasing techniques

The bottom line of adaptive methods is the following: for “well
chosen” ξ the potential V − A ◦ ξ is less rugged than V . Indeed, by
construction ξ∗ exp(−β(V − A ◦ ξ)) = 1T.

Problem: A is unknown ! Idea: use a time dependent potential of
the form

Vt(x) = V (x)− At(ξ(x))

where At is an approximation at time t of A, given the
configurations visited so far.

Hopes:

• build a dynamics which goes quickly to equilibrium,

• compute free energy profiles.

Wang-Landau, ABF, metadynamics: Darve, Pohorille, Hénin, Chipot, Laio, Parrinello, Wang, Landau,...
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Adaptive biasing techniques
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A 2D example of a free energy biased trajectory: energetic barrier.
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Adaptive biasing techniques
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A 2D example of a free energy biased trajectory: entropic barrier.
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The ABF method

How to update At ? Two methods depending on wether A′
t

(Adaptive Biasing Force) or At (Adaptive Biasing Potential) is
approximated.

For the Adaptive Biasing Force (ABF) method, the idea is to use
the formula

A′(z) =

∫
(∇V · ∇ξ

|∇ξ|2 − β−1
div

( ∇ξ
|∇ξ|2

))

e−βV δξ(x)−z(dx)
∫

e−βV δξ(x)−z(dx)

=

∫

f dµΣ(z) = Eµ(f (X )|ξ(X ) = z).

The mean force A′(z) is the mean of f with respect to µΣ(z).
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The ABF method
In the simple case ξ(x , y) = x , remember that

A(x) = −β−1 ln

(
∫

e−βV (x ,y)dy

)

,

so that

A′(x) =

∫

∂xV e−βV (x ,y) dy
∫

e−βV (x ,y) dy

=

∫

∂xV dµΣ(x).

Notice that actually, whatever At is,

A′(z) =

∫

f e−β(V−At◦ξ) δξ(x)−z(dx)
∫

e−β(V−At◦ξ) δξ(x)−z(dx)

.
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The ABF method
Thus, we would like to simulate:

{

dX t = −∇(V − A ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′(z) = Eµ (f (X )|ξ(X ) = z)

but A is unknown...
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The ABF method

The ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .
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The ABF method

The ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .

The associated (nonlinear) Fokker-Planck equation writes:























∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫

f ψ δξ(x)−z(dx)
∫

ψ δξ(x)−z(dx)

,

where X t ∼ ψ(t, x) dx . −→ simulation
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The ABF method

The ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .

The associated (nonlinear) Fokker-Planck equation writes:























∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫

f ψ δξ(x)−z(dx)
∫

ψ δξ(x)−z(dx)

,

where X t ∼ ψ(t, x) dx . −→ simulation

Questions: Does A′
t converge to A′ ? What did we gain compared

to the original gradient dynamics ?
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Longtime convergence and entropy (1)

Recall the original gradient dynamics:

dQt = −∇V (Qt) dt +
√

2β−1dW t .

The associated (linear) Fokker-Planck equation writes:

∂tφ = div
(

∇Vφ+ β−1∇φ
)

.

where Qt ∼ φ(t,q) dq.

The metastable behaviour of Qt is related to the multimodality of
µ, which can be quantified through the rate of convergence of φ to
φ∞ = Z−1 exp(−βV ).

A classical approach for partial differential equations (PDEs):
entropy techniques.
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Longtime convergence and entropy (2)

Notice that the Fokker-Planck equation rewrites

∂tφ = β−1
div

(

φ∞∇
(

φ

φ∞

))

.

Let us introduce the entropy:

E (t) = H(φ(t, ·)|φ∞) =

∫

ln

(

φ

φ∞

)

φ.

We have (Csiszár-Kullback inequality):

‖φ(t, ·)− φ∞‖L1 ≤
√

2E (t).
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Longtime convergence and entropy (3)

dE

dt
=

∫

ln

(

φ

φ∞

)

∂tφ

= β−1

∫

ln

(

φ

φ∞

)

div

(

φ∞∇
(

φ

φ∞

))

= −β−1

∫
∣

∣

∣

∣

∇ ln

(

φ

φ∞

)
∣

∣

∣

∣

2

φ =: −β−1I (φ(t, ·)|φ∞).

If V is such that the following Logarithmic Sobolev inequality
(LSI(R)) holds: ∀φ pdf,

H(φ|φ∞) ≤ 1

2R
I (φ|φ∞)

then E (t) ≤ E (0) exp(−2β−1Rt) and thus φ converges to φ∞
exponentially fast with rate β−1R .

Metastability ⇐⇒ small R
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Convergence of ABF (1)
A convergence result [TL, M. Rousset, G. Stoltz, Nonlinearity 2008]: Recall the
ABF Fokker-Planck equation:







∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫

f ψ δξ(x)−z (dx)
∫

ψ δξ(x)−z (dx)
.

Suppose:

(H1) “Ergodicity” of the microscopic variables: the conditional
probability measures µΣ(z) satisfy a LSI(ρ),

(H2) Bounded coupling:
∥

∥∇Σ(z)f
∥

∥

L∞ <∞,
then

‖A′
t − A′‖L2 ≤ C exp(−β−1 min(ρ, r)t).

The rate of convergence is limited by:

• the rate r of convergence of ψ =
∫

ψ δξ(x)−z(dx) to ψ∞,

• the LSI constant ρ (the real limitation).
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Convergence of ABF (2)

In summary:

• Original gradient dynamics: exp(−β−1Rt) where R is the LSI
constant for µ;

• ABF dynamics: exp(−β−1ρt) where ρ is the LSI constant for
the conditioned probability measures µΣ(z).

If ξ is well chosen, ρ≫ R : the free energy can be computed very
efficiently.

Two ingredients of the proof:

(1) The marginal ψ(t, z) =
∫

ψ(t, x) δξ(x)−z(dx) satisfies a closed
PDE:

∂tψ = β−1∂z,zψ on T,

and thus, ψ converges towards ψ∞ ≡ 1, with exponential speed
C exp(−4π2β−1t). (Here, r = 4π2).
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Convergence of ABF (3)

(2) The total entropy can be decomposed as [N. Grunewald, F. Otto, C. Villani,

M. Westdickenberg, Ann. IHP, 2009]:

E = EM + Em

where
The total entropy is E = H(ψ|ψ∞),

The macroscopic entropy is EM = H(ψ|ψ∞),

The microscopic entropy is

Em =

∫

H
(

ψ(·|ξ(x) = z)
∣

∣

∣
ψ∞(·|ξ(x) = z)

)

ψ(z) dz .

We already know that EM goes to zero: it remains only to consider
Em...
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Discretization of ABF
Discretization of adaptive methods can be done using two
(complementary) approaches:

• Use empirical means over many replicas (interacting particle
system):

E(f (X t)|ξ(X t) = z) ≃
∑N

m=1 f (Xm,N
t ) δα(ξ(Xm,N

t )− z)
∑N

m=1 δ
α(ξ(Xm,N

t )− z)
.

This approach is easy to parallelize, flexible (selection
mechanisms) and efficient in cases with multiple reactive
paths. [TL, M. Rousset, G. Stoltz, 2007; C. Chipot, TL, K. Minoukadeh, 2010 ; TL,

K. Minoukadeh, 2010]

• Use trajectorial averages along a single path:

E(f (X t)|ξ(X t) = z) ≃
∫ t

0
f (X s) δ

α(ξ(X s)− z) ds
∫ t

0
δα(ξ(X s)− z) ds

.

The longtime behavior is much more difficult to analyze [Talk by

Fort]
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Back to the original problem
How to use free energy to compute canonical averages
∫

ϕdµ = Z−1
∫

ϕe−βV ?

• Importance sampling:

∫

ϕ dµ =

∫

ϕe−βA◦ξ Z−1
A e−β(V−A◦ξ)

∫

e−βA◦ξ Z−1
A e−β(V−A◦ξ)

.

• Conditioning:

∫

ϕ dµ =

∫

z

(

∫

Σ(z)
ϕ dµΣ(z)

)

e−βA(z) dz

∫

z

e−βA(z) dz

.

This requires the sampling of the conditional probability
measure µΣ(z) which can be done using projected Langevin
dynamics [TL, M. Rousset, G. Stoltz, 2011].
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Other techniques to compute thermodynamic quantities

Other algorithms which are used in MD to sample efficiently µ:

• Modify the dynamics: Metropolis Hastings algorithms with
well-chosen proposals [Talks by Jourdain and Ottobre], non-gradient
forces,...

• Interacting replicas techniques: Parallel tempering

• Conditioning and constrained sampling: Thermodynamic
integration

• Umbrella sampling and statistical reconstruction: Histogram
methods

• Out of equilibirum methods: fluctuation relations à la

Jarzynski-Crooks
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Free energy calculation methods

(a) Thermodynamic integration. (b) Histogram method.

(c) Out of equilibrium dynamics. (d) Adaptive dynamics.
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Towards computational statistics

Adaptive biasing techniques can be used whenever the sampling of
a multimodal measure is involved, for example for statistical
inference in Bayesian statistics [N. Chopin, TL, G. Stoltz, 2011]: Sampling of
posterior distributions using a MCMC ABF algorithm.

Question: What is ξ in this context ?
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Test on the fishery problem

• The size of Ndata = 256 fishes are measured, and the
corresponding histogram is approximated by a mixture of K

Gaussians:

f (y | x) =
K
∑

i=1

qi

√

vi

2π
exp
(

−vi

2
(y − µi )

2
)

.
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Application to Bayesian statistics

• Parameters describing the mixture (qK = 1 −
∑K−1

i=1
qi ):

x = (q1, . . . , qK−1, µ1, . . . , µK , v1, . . . , vK ) ∈
SK−1 × [µmin, µmax]

K × [vmin,+∞) ⊂ R
3K−1, where

SK−1 =
{

(q1, . . . , qK−1)
∣

∣

∣
0 ≤ qi ≤ 1,

∑K−1
i=1

qi ≤ 1
}

.

• Given the parameters, the likelihood of observing the data
{yi , 1 ≤ i ≤ Ndata} is

Π(y | x) =
Ndata
∏

d=1

f (yd | x).

• The prior on the parameters is: µi ∼ N (M,R2/4),
vi ∼ Gamma(a, β) with β ∼ Gamma(g , h) and
(q1, . . . , qK ) ∼ DirichletK (1, . . . , 1) for fixed values
(M,R , a, g , h) (random beta model).

So actually x = (q1, . . . , qK−1, µ1, . . . , µK , v1, . . . , vK , β).
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Application to Bayesian statistics

Objective: sample the posterior distribution (distribution of the
parameters given the observations):

Π(x |y) = Π(y |x)Prior(x)
∫

Π(y |x)Prior(x) dx
= Z−1 exp(−V )

where
V = Vlikelihood + Vprior

with Vlikelihood =
∑Ndata

d=1
ln
[

∑K
i=1 qi

√
vi exp

(

− vi

2
(yd − µi )

2
)

]

and
Vprior = 2

R2

∑K
i=1(µi − M)2 − Kα ln β + β

∑K
i=1 vi − (a − 1)

∑K
i=1 ln vi + hβ − (g − 1) ln β.

The posterior distribution is a multimodal measure (due to, but not
only, invariance by permutation of the Gaussians).

Idea: Use ABF within a Metropolis Hastings algorithm. The biasing
potential modifies the target probability measure in the
acception-rejection step.
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Algorithm: Metropolis Hastings-ABF

Iterate on n ≥ 0:

1. Update the biasing potential by computing and then
integrating (An+1)′ (the conditional expectation of f at a fixed
value of ξ).

2. Propose a move from xn to x̄n+1 according to T (xn, x̄n+1).

3. Acceptance ratio

rn = min

(

πAn+1(x̄n+1)T (x̄n+1, xn)

πAn+1(xn)T (xn, x̄n+1)
, 1

)

,

where the biased probability is
πAn+1(x) ∝ π(x) exp(An+1(ξ(x))).

4. Draw a random variable Un uniformly distributed in [0, 1]
(Un ∼ U [0, 1]).
4.1 if Un ≤ rn, accept the move and set xn+1 = x̄n+1;
4.2 if Un > rn, reject the move and set xn+1 = xn.
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Numerical parameters

• The proposal density kernel T (x , x ′) is a fixed Gaussian
centered on x .

• Binning procedure and trajectorial average: mean force and
bias in bin (zi , zi+1)

Γ∆z
n (z) =

n
∑

j=0

f (xj ) 1zi≤ξ(x j )≤zi+1

n
∑

j=0

1zi≤ξ(x j )≤zi+1

, A∆z
n (z) =

i−1
∑

k=0

∆z Γ∆z
n

(

k +
1

2
∆z

)

• M is the mean of the data, R is the range of the data, α = 2,
g = 0.2 and h = 100g/(αR2). We choose K = 3.

Question: Is there a good “reaction coordinate” ξ(x)?
Criteria: (i) How rapid is the convergence to equilibrium (convergence of

the free energy and switching of the modes) ? ; (ii) How representative are the
points simulated from the biased distribution (effective sample size) ?



Introduction Free energy and adaptive biasing techniques Accelerated dynamics and the Parallel Replica Algorithm

0 2.5e+08 5.0e+08 7.5e+08 1.0e+09
2

5

8

11

141414

Iterations

M
u

(a) No bias

0 2.5e+08 5.0e+08 7.5e+08 1.0e+09
2

5

8

11

141414

Iterations

M
u

(b) ξ = q1
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(c) ξ = β
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(d) ξ = µ

Evolution of the parameters (µ1, µ2, µ3).
The reaction coordinate ξ = β seems to be a good choice.
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(c) ξ = µ

Converged biases
The effective sample size for ξ = β is approximately 0.18N.
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Comparison of the mixture with the datas
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Application to Bayesian statistics: conclusions

For another set of data - the Hidalgo stamp problem - ξ = β again
seems to be a good choice.

Why does it work with ξ = β ? (i) The bias is relatively small;
(ii) Forcing large values of β is forcing large values of the variances,
which allows for a mixing of the components.

Extension: Bayesian model choice. Look for the best number of
components K . It seems that the bias (for ξ = β) for K = 3 is also
a good bias for K = 4 and K = 5.
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Accelerated dynamics and the Parallel Replica Algorithm
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How to simulate long trajectories of a metastable process ?

For computing thermodynamics quantities, there is a clear
classification of available methods, and the difficulties are now well
understood (in particular for free energy computations, see for
example [TL, Rousset, Stoltz, 2010]). On the opposite, computing efficiently
dynamical quantities remains a challenge.

In the following, we again focus on the overdamped Langevin
dynamics:

dX t = −∇V (X t) dt +
√

2β−1dW t .

Remember that a typical molecular dynamics trajectory is
metastable.

How to take advantage of metastability in order to build efficient
path sampling techniques ? −→ simulation
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Accelerated dynamics

The bottom line of the accelerated dynamics proposed by A. Voter
in the late 90’s is to get efficiently the state-to-state dynamics.
Three algorithms: Parallel replica, Hyperdynamics, Temperature
Accelerated Dynamics.

Let us consider the overdamped Langevin dyanmics:

dX t = −∇V (X t) dt +
√

2β−1dW t

and let assume that we are given a mapping

S : Rd → N

which to a configuration in R
d associates a state number. Think of

a numbering of the wells of the potential V .

Objective: generate very efficiently a trajectory (St)t≥0 which has
(almost) the same law as (S(X t))t≥0.



Introduction Free energy and adaptive biasing techniques Accelerated dynamics and the Parallel Replica Algorithm

The Quasi-Stationary Distribution

How to take advantage of metastability to build efficient sampling
techniques ?

Let us consider a metastable state W , and

TW = inf{t ≥ 0,X t 6∈ W }.

Lemma: Let X t start in the well W . Then there exists a probability
distribution ν with support W such that

lim
t→∞

L(X t |TW > t) = ν.

Remark: Rigorous definition of a metastable state:
exit time ≫ local equilibration time
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The Quasi-Stationary Distribution

Property 1: ∀t > 0, ∀A ⊂ W ,

ν(A) =

∫

W

P(X x
t ∈ A, t < T x

W ) ν(dx)
∫

W

P(t < T x
W ) ν(dx)

.

If X 0 ∼ ν and if (X s)0≤s≤t has not left the well, then X t ∼ ν.

Property 2: Let L = −∇V · ∇+ β−1∆ be the infinitesimal
generator of (X t). Then the density u1 of ν (dν = u1(x)dx) is the
first eigenfunction of L∗ = div (∇V + β−1∇) with absorbing
boundary conditions:

{

L∗u1 = −λ1u1 on W ,

u1 = 0 on ∂W .



Introduction Free energy and adaptive biasing techniques Accelerated dynamics and the Parallel Replica Algorithm

The Quasi-Stationary Distribution

Property 3: If X 0 ∼ ν then,

• the first exit time TW from W is exponentially distributed
with parameter λ1 ;

• TW is independent of the first hitting point XTW
on ∂W ;

• the exit point distribution is proportional to −∂nu1: for all
smooth test functions ϕ : ∂W → R,

E
ν(ϕ(XTW

)) = −

∫

∂W

ϕ∂nu1 dσ

βλ

∫

W

u1(x) dx

.

Remark: This is reminiscent of what is assumed in Transition State
Theory (first order kinetics).

back to Hyper
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Escaping from a metastable state

How to use these properties to build efficient algorithms ?

Assume that the stochastic process remained trapped for a very
long time in a metastable state W . How to accelerate the escape
event from W , in a statistically consistent way ?

Remark: In practice, one needs to:

• Choose the partition of the domain into (metastable) states;

• Associate to each state an equilibration time (a.k.a.
decorrelation time).

These are not easy tasks... we will come back to that.

Remark: All the algorithms below equally apply to the Langevin
dynamics but the extensions of the mathematical results to the
Langevin dynamics are not straightforward...
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The Parallel Replica Algorithm
Idea: perform many independent exit events in parallel.

Two steps:
• Distribute N independent initial conditions in W according to

the QSD ν ;
• Consider the first exit event, and multiply it by the number of

replicas.
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The Parallel Replica Algorithm
Why is it consistent ?

• Exit time is independent of exit point so that

X I0

T
I0
W

L
= X 1

T 1
W
,

where I0 = arg mini (T
i
W );

• Exit times are i.i.d. exponentially distributed so that, for all N,

N min(T 1
W , . . . ,TN

W )
L
= T 1

W .

Remark: In practice, discrete time processes are used. Exponential
laws become geometric, and one can adapt the algorithm by using
the identity [Aristoff, TL, Simpson, 2014]: if τi i.i.d. with geometric law,

N[min(τ1, . . . , τN)− 1] + min[i ∈ {1, . . . ,N}, τi = min(τ1, . . . , τN)]
L
= τ1.
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The Parallel Replica Algorithm

The full algorithm is in three steps:

• Decorrelation step

• Dephasing step

• Parallel step
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The Parallel Replica Algorithm

Decorrelation step: run the dynamics on a reference walker...
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The Parallel Replica Algorithm

Decorrelation step: ... until it remains trapped for a time τcorr .
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.

rm
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Parallel step: run independent trajectories in parallel...
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The Parallel Replica Algorithm

Parallel step: ... and detect the first transition event.
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The Parallel Replica Algorithm

Parallel step: update the time clock: Tsimu = Tsimu + NT .
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The Parallel Replica Algorithm

A new decorrelation step starts...
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The Parallel Replica Algorithm

New decorrelation step
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The Parallel Replica Algorithm

The three steps of ParRep:

• Decorrelation step: does the reference walker remain trapped
in a set ?

• Dephasing step: prepare many initial conditions in this
trapping set.

• Parallel step: detect the first escaping event.

−→ simulation
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The decorrelation step

How to quantify the error introduced by the dephasing and parallel
steps, when the decorrelation step is successful ?

When the decorrelation step is successful, it is assumed that the
reference walker is distributed according to the QSD : if it was
indeed the case, the algorithm would be exact. The decorrelation
step can be seen as a way to probe this assumption. What is the
error introduced there ?
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The decorrelation step
We have the following error estimate in total variation norm: for
t ≥ C

λ2−λ1
,

sup
f ,‖f ‖L∞≤1

∣

∣

∣
E(f (TW−t,XTW

)|TW ≥ t)−E
ν(f (TW ,XTW

))
∣

∣

∣
≤ C exp(−(λ2−λ1)t),

where −λ2 < −λ1 < 0 are the two first eigenvalues of L∗ with
absorbing boundary conditions on ∂W .

This shows that τcorr should be chosen such that:

τcorr ≥
C

λ2 − λ1

.

On the other hand, it should be smaller than the typical time to
leave the well, E(TW ). Since E

ν(TW ) = 1/λ1, this typically
implies the spectral gap requirement,

C

λ2 − λ1

≤ 1

λ1

.
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The Parallel Replica Algorithm

This algorithm is very versatile: it works for entropic barriers, and
for any partition of the state space into states. But it requires some
a priori knowledge on the system: the equilibration time τcorr
attached to each state S .

Two questions: How to choose τcorr ? How to sample the QSD ?

We propose a generalized Parallel Replica algorithm [Binder, TL, Simpson,

2014] to solve these issues. It is based on two ingredients:

• the Fleming-Viot particle process

• the Gelman-Rubin statistical test
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The Fleming-Viot particle process
Start N processes i.i.d. from µ0, and iterate the following steps:

1. Integrate (in parallel) N realizations (k = 1, . . . ,N)

dX k
t = −∇V (X k

t ) dt +
√

2β−1dW k
t

until one of them, say X 1
t , exits;

2. Kill the process that exits;

3. With uniform probability 1/(N − 1), randomly choose one of
the survivors, X 2

t , . . . ,X
N
t , say X 2

t ;

4. Branch X 2
t , with one copy persisting as X 2

t , and the other
becoming the new X 1

t .

It is known that the empirical distribution

µt,N ≡ 1

N

N
∑

k=1

δ
X k

t

satisfies:
lim

N→∞
µt,N = L(X t |t < TW ).
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The generalized Parallel Replica algorithm

The generalized Parallel Replica algorithm consists in using a
Fleming-Viot particle process for the dephasing step and running in
parallel the decorrelation and the dephasing steps.

If the Fleming Viot particle process reaches stationarity before the
reference walker, go to the parallel step. Otherwise, restart a new
decorrelation / dephasing step.

The time at which the Fleming-Viot particle process becomes
stationary is determined using the Gelman-Rubin statistical test.
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Numerical test case: the 7 atoms LJ cluster

(a) C0, V = −12.53 (b) C1, V = −11.50 (c) C2, V = −11.48

(d) C3, V = −11.40

We study the escape from the configuration C0 using overdamped
Langevin dynamics with β = 6. The next visited states are C1

or C2.
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Numerical test case: the 7 atoms LJ cluster

Method TOL 〈T 〉 P[C1] P[C2]

Serial – 17.0 (0.502, 0.508) (0.491, 0.498)
ParRep 0.2 19.1 (0.508, 0.514) (0.485, 0.492)
ParRep 0.1 18.0 (0.506, 0.512) (0.488, 0.494)
ParRep 0.05 17.6 (0.505, 0.512) (0.488, 0.495)
ParRep 0 .01 17.0 (0.504, 0.510) (0.490, 0.496)

Method TOL 〈tcorr〉 〈Speedup〉 % Dephased

Serial – – – –
ParRep 0.2 0.41 29.3 98.5%
ParRep 0.1 .98 14.9 95.3%
ParRep 0.05 2.1 7.83 90.0%
ParRep 0 .01 11 1.82 52.1%



Introduction Free energy and adaptive biasing techniques Accelerated dynamics and the Parallel Replica Algorithm

Numerical test case: the 7 atoms LJ cluster

Figure: LJ
2D

7
: Cumulative distribution function of the escape time

from C0.
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The Hyperdynamics
Idea: raise the potential in W to reduce the exit time.

Two steps:
• Equilibrate on the biased potential V + δV ;
• Wait for an exit and multiply the exit time T δV

W by the boost

factor B = 1

T δV
W

∫ T δV
W

0 exp(β δV (X t)) dt.
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The Hyperdynamics

Why is it consistent ?

Recall property 3 go to Prop3 . The underlying mathematical
question is: how λ1 and ∂nu1 are modified when V is changed to
V + δV ?

Recall that
{

div (∇V u1 + β−1∇u1) = −λ1u1 on W ,

u1 = 0 on ∂W .

Strategy: change u1 to u1 exp(V /2) and use results from
semi-classical analysis for boundary Witten Laplacians in order to
characterize (λ1, ∂nu1) in terms of V .
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The Hyperdynamics: mathematical analysis
Assumptions on V . We assume there exists W− ⊂⊂ W such that:

• Regularity: V and V |∂W are Morse functions ;

• Localization of the small eigenvectors in W−:
(i) |∇V | 6= 0 in W \ W− ,
(ii) ∂nV > 0 on ∂W− ,
(iii) min∂W V ≥ min∂W− V ,
(iv) min∂W− V − cvmax > cvmax − minW− V where

cvmax = max{V (x), x s.t. |∇V (x)| = 0} ;

• Non degeneracy of exponentially small eigenvalues: The
critical values of V in W− are all distinct and the differences
V (y)− V (x), where x ∈ U (0) ranges over the local minima of
V |W− and y ∈ U (1) ranges over the critical points of V |W−

with index 1, are all distinct.

Assumptions on δV .

• V + δV satisfies the same assumptions as V ;

• δV = 0 on W \ W− .
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The Hyperdynamics: mathematical analysis
Result [TL, Nier, 2013]: Under the above assumptions on the potentials
V and (V + δV ), there exists c > 0 such that, in the limit β → ∞,

λ1(V + δV )

λ1(V )
=

∫

W
e−βV

∫

W
e−β(V+δV )

(1 +O(e−βc)) ,

∂n [u1(V + δV )]
∣

∣

∂W

‖∂n [u1(V + δV )]‖L1(∂W )

=
∂n [u1(V )]

∣

∣

∂W

‖∂n [u1(V )] ‖L1(∂W )
+O(e−βc) in L1(∂W ) .

Remark: We indeed have

B =
1

T δV
W

∫ T δV
W

0

exp(β δV (X t)) dt.

≃
∫

W
exp(βδV ) exp(−β(V + δV ))
∫

W
exp(−β(V + δV ))

=

∫

W
exp(−βV )

∫

W
exp(−β(V + δV ))

.
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The Hyperdynamics: idea of the proof

Use semi-classical analysis for boundary Witten laplacians (f = V ,
h = 2/β).

• Build quasimodes for ∆
D,(p)
f ,h (W ) (p = 0, 1) using eigenvectors

of ∆
N,(p)
f ,h (W−) (p = 0, 1) and of ∆

D,(1)
f ,h (W \ W−).

• Analyze the asymptotics of the singular values of the restricted
differential (ν(h) ≤ h and limh→0 h log(ν(h)) = 0)

df ,h : F (0) → F (1) where F (p) = Ran

(

1[0,ν(h)]

(

∆
D,(p)
f ,h (W )

))

.

This is a finite dimensional linear operator.

• Show that, up to exponentially small terms,
λ1(V ) = A

∫

W
exp(−βV )

(1 +O(e−
c
h )) and ∂nu1

‖∂nu1‖
= B +O(e−

c
h )

where A and B only depends on the eigenvectors of

∆
D,(1)
f ,h (W \W−), and are thus not modified when changing V

to V + δV .
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The Temperature Accelerated Dynamics
Idea: increase the temperature to reduce the exit time.

Algorithm:
• Observe the exit events from W at high temperature ;
• Extrapolate the high temperature exit events to low

temperature exit events.

x0

x1

x2

x3

x4

∂W1

∂W2

∂W3∂W4
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Extrapolation procedure (1/2)

Rewriting the exit event using a kinetic Monte Carlo model:

Let us introduce λ1 = 1/E(TW ) and

p(i) = P(XTW
∈ ∂Wi ) = −

∫

∂Wi

∂nu1 dσ

βλ

∫

W

u1(x) dx

.

To each possible exit saddle point i is associated a rate
k(i) = λ1p(i). If τi ∼ E(ki ) are independent, then

• The exit time is min(τ1, . . . , τI );

• The exit saddle point is arg min(τ1, . . . , τI ).
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Extrapolation procedure (2/2)

Extrapolating from high temperature to low temperature:

The extrapolation procedure is based on the empirical
Arrhenius law: for large β,

k(i) = λ1p(i) ≃ ηi exp(−β(V (xi )− V (x0)))

where ηi is independent of β, which yields

k lo(i)

khi (i)
=
λlo

1 plo(i)

λhi
1 phi (i)

≃ exp(−(βlo − βhi )(V (xi )− V (x0))).

Algorithm: observe exit events at high temperature, extrapolate the
rates to low temperature, stop when the extrapolated event will not
modify anymore the low temperature exit event.

Remark: TAD can be seen as a smart saddle point search method.
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Arrhenius law

If the Arrhenius law is exactly satisfied, one can show that the
temperature accelerated dynamics method is exact.

Mathematical question: Under which assumptions is the Arrhenius
law satisfied ? This is again a semi-classical analysis problem...

In 1D, this can be done. In the
limit βhi , βlo → ∞, βlo/βhi =
r , under appropriate assump-
tions, one has [Aristoff, TL, 2014]:

b10

λhiphi
i

λloplo
i

= e−(βhi−βlo)(V (xi )−V (x0))

(

1 + O

(

1

βhi
− 1

βlo

))
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Simulating dynamics: conclusions (1/3)

Remarks on accelerated dynamics:

• From ParRep to Hyper to TAD, the underlying assumptions
for the algorithms to be correct are more and more stringent.
In particular, Hyper and TAD require energetic barriers and
small temperature.

• The QSD is a good intermediate between continuous state
dynamics and kMC-like approximations (Markov state models).
Transition rates could be defined starting from the QSD.

• It can be used to analyze the validity of the transition state
theory and kMC models, in the small temperature regime.
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Simulating dynamics: conclusions (2/3)

There are other mathematical settings to characterize / quantify
metastability:

• Large deviation techniques [Freidlin, Wentzell, Vanden Eijnden, Weare,

Touchette,...] [Talk by Touchette] and Onsager-Machlup functionals [Stuart,

Pinsky, Theil] [Talk by Pinsky]

• Potential theoretic approaches [Bovier, Schuette, Hartmann,...]

• Spectral analysis of the Fokker Planck operator on the whole
space and semi-classical analysis [Schuette, Helffer, Nier, Pavliotis]
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Simulating dynamics: conclusions (3/3)

There are many other numerical techniques:

• Going from state A to state B:
• Local search: the string method [E, Ren, Vanden-Eijnden], max flux

[Skeel], transition path sampling methods [Chandler, Bolhuis, Dellago],
• Global search, ensemble of trajectories: AMS [Talks by Cérou and

Guyader], transition interface sampling [Bolhuis, van Erp], forward flux
sampling [Allen, Valeriani, ten Wolde], milestoning techniques [Elber,

Schuette, Vanden-Eijnden]

• Importance sampling approaches on paths, reweighting [Dupuis,

Vanden-Einjden, Weare, Schuette, Hartmann]

• Saddle point search techniques [Mousseau, Henkelman] and graph
exploration

• Starting from a long trajectory, extract states: clustering,
Hidden Markov chain [Schuette]
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