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Introduction
The aim of molecular dynamics simulations is to understand the
relationships between the macroscopic properties of a molecular
system and its atomistic features. In particular, one would like to to
evaluate numerically macroscopic quantities from models at the
microscopic scale.

Some examples of macroscopic quantities:

(i) Thermodynamics quantities (average of some observable wrt
an equilibrium measure): stress, heat capacity, free energy,...

Eµ(ϕ(X )) =

∫

Rd

ϕ(x)µ(dx).

(ii) Dynamical quantities (average over trajectories at equilibrium):
diffusion coefficients, viscosity, transition rates,...

E(F((X t)t≥0)) =

∫

C0(R+,Rd )
F((x t)t≥0))W(d((x t)t≥0)).
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Introduction

Many applications in various fields: biology, physics, chemistry,
materials science. Molecular dynamics computations consume
today a lot of CPU time.

A molecular dynamics model amounts essentially in choosing a
potential V which associates to a configuration
(x1, ..., xN) = x ∈ R

3N an energy V (x1, ..., xN).

In the canonical (NVT) ensemble, configurations are distributed
according to the Boltzmann-Gibbs probability measure:

dµ(x) = Z−1 exp(−βV (x)) dx ,

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.
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Introduction

Typically, V is a sum of potentials modelling interaction between
two particles, three particles and four particles:

V =
∑

i<j

V1(x i , x j) +
∑

i<j<k

V2(x i , x j , xk) +
∑

i<j<k<l

V3(x i , x j , xk , x l ).

For example, V1(x i , x j) = VLJ(|x i − x j |) where

VLJ(r) = 4ǫ
(

(

σ
r

)12 −
(

σ
r

)6
)

is the Lennard-Jones potential.

Difficulties: (i) high-dimensional problem (N ≫ 1) ; (ii) µ is a
multimodal measure.
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Introduction
To sample µ, ergodic dynamics wrt to µ are used. A typical
example is the over-damped Langevin (or gradient) dynamics:

(GD) dX t = −∇V (X t) dt +
√

2β−1dW t .

It is the limit (when the mass goes to zero or the damping parameter to infinity) of the Langevin
dynamics:

{

dX t = M−1
Pt dt,

dPt = −∇V (X t ) dt − γM−1
Pt dt +

√

2γβ−1dW t ,

where M is the mass tensor and γ is the friction coefficient.

To compute dynamical quantities, these are also typically the
dynamics of interest. Thus,

Eµ(ϕ(X )) ≃ 1

T

∫ T

0

ϕ(X t) dt and E(F((X t)t≥0)) ≃
1

N

N
∑

m=1

F((Xm
t )t≥0).

In the following, we mainly consider the over-damped Langevin
dynamics.
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Introduction

Probabilistic insert (1): discretization of SDEs.

The discretization of (GD) by the Euler scheme is (for a fixed
timestep ∆t):

X n+1 = X n −∇V (X n)∆t +
√

2β−1∆tGn

where (G i
n)1≤i≤3N,n≥0 are i.i.d. random variables with law N (0, 1).

Indeed,

(W (n+1)∆t − W n∆t)n≥0
L
=

√
∆t(Gn)n≥0.

In practice, a sequence of i.i.d. random variables with law N (0, 1)
may be obtained from a sequence of i.i.d. random variables with
law U((0, 1)).
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µ in invariant for (GD) Proof: One needs to show that if the law of
X 0 is µ, then the law of X t is also µ. Let us denote X x

t the
solution to (GD) such that X 0 = x . Let us consider the function
u(t, x) solution to:

{

∂tu(t, x) = −∇V (x) · ∇u(t, x) + β−1∆u(t, x),
u(0, x) = φ(x)(+ assumptions on decay at infinity),

then, u(t, x) = E(φ(X x

t )). Thus, the measure µ is invariant:

d

dt

∫

E(φ(X x

t ))dµ(x) = Z−1

∫

∂tu(t, x) exp(−βV (x))dx

= Z−1

∫

(

−∇V · ∇u + β−1∆u
)

exp(−βV )= 0.

Therefore,

∫

E(φ(X x

t ))dµ(x) =

∫

φ(x)dµ(x).
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Introduction
Probabilistic insert (2): Feynman-Kac formula.

Why u(t, x) = E(φ(X x

t )) ? For 0 < s < t, we have (characteristic
method):

du(t − s,X x

s ) = −∂tu(t − s,X x

s ) ds +∇u(t − s,X x

s ) · dX x

s

+β−1∆u(t − s,X x

s ) ds,

=
(

− ∂tu(t − s,X x

s )−∇V (X x

s ) · ∇u(t − s,X x

s )

+ β−1∆u(t − s,X x

s )
)

ds +
√

2β−1∇u(t − s,X x

s ) · dW s .

Thus, integrating over s ∈ (0, t) and taking the expectation:

E(u(0,X x

t ))− E(u(t,X x

0)) =
√

2β−1E

(
∫ t

0

∇u(t − s,X x

s ) · dW s

)

= 0.



Introduction Thermodynamic integration Non-equilibrium dynamics Adaptive biasing techniques Conclusion

Introduction
Probabilistic insert (3): Itô’s calculus. (in 1d.)

Where does the term ∆u come from ? Starting from the
discretization:

Xn+1 = Xn − V ′(Xn)∆t +
√

2β−1∆tGn,

we have (for a time-independent function u):

u(Xn+1) = u
(

Xn − V ′(Xn)∆t +
√

2β−1∆tGn

)

,

= u(Xn)− u′(Xn)V
′(Xn)∆t +

√

2β−1∆tu′(Xn)Gn

+β−1(Gn)
2u′′(Xn)∆t + o(∆t).

Thus, summing over n ∈ [0...t/∆t] and taking the limit ∆t → 0,

u(Xt) = u(X0)−
∫ t

0

V ′(Xs)u
′(Xs) ds +

√

2β−1

∫ t

0

u′(Xs)dWs

+β−1

∫ t

0

u′′(Xs) ds.
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Introduction: metastability

Difficulty: In practice, X t is a metastable process, so that the
convergence to equilibrium is very slow.

A 2d schematic picture: X 1
t is a slow variable (a metastable dof) of

the system.

x1

x2

V (x1, x2)
X 1

t

t
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Introduction: metastability

A more realistic example (Dellago, Geissler): Influence of the
solvation on a dimer conformation.
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Compact state. Stretched state.

The particles interact through a pair potential: truncated LJ for all
particles except the two monomers (black particles) which interact
through a double-well potential. A slow variable is the distance
between the two monomers.
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Introduction: metastability

A “real” example: ions canal in a cell membrane. (C. Chipot).
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A second “real” example: Diffusion of adatoms on a surface.
(A. Voter).

Los Alamos
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Introduction: metastability

One central numerical difficulty is thus metastability. How to
quantify this bad behaviour ?

1. Escape time from a potential well.

2. Asymptotice variance of the estimator.

3. “Decorrelation time”.

4. Rate of convergence of the law of X t to µ.

In the following we use the fourth criterion.
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Introduction: metastability

The PDE point of view: convergence of the pdf ψ(t, x) of X t to
ψ∞(x) = Z−1e−βV (x). ψ satisfies the Fokker-Planck equation

∂tψ = div (∇Vψ + β−1∇ψ),

which can be rewritten as ∂tψ = β−1
div

(

ψ∞∇
(

ψ
ψ∞

))

.

Let us introduce the entropy

E (t) = H(ψ(t, ·)|ψ∞) =

∫

ln

(

ψ

ψ∞

)

ψ.

We have (Csiszár-Kullback inequality):

‖ψ(t, ·)− ψ∞‖L1 ≤
√

2E (t).
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Introduction: metastability

dE

dt
=

∫

ln

(

ψ

ψ∞

)

∂tψ

= β−1

∫

ln

(

ψ

ψ∞

)

div

(

ψ∞∇
(

ψ

ψ∞

))

= −β−1

∫
∣

∣

∣

∣

∇ ln

(

ψ

ψ∞

)
∣

∣

∣

∣

2

ψ =: −β−1I (ψ(t, ·)|ψ∞).

If V is such that the following Logarithmic Sobolev inequality
(LSI(R)) holds: ∀ψ pdf,

H(ψ|ψ∞) ≤ 1

2R
I (ψ|ψ∞)

then E (t) ≤ E (0) exp(−2β−1Rt) and thus ψ converges to ψ∞

exponentially fast with rate β−1R (and the converse is true).

Metastability ⇐⇒ small R
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Introduction: reaction coordinate and free energy

Metastability: How to attack this problem ?
We suppose in the following that the slow variable is of dimension 1
and known: ξ(X t), where ξ : Rn → T.
For example, in the 2d simple system, ξ(x1, x2) = x1.

x1

x2

V (x1, x2)
X 1

t

t

We will use this knowledge to build efficient sampling techniques.
Two ideas:

• Conditioning (constrained dynamics),

• Importance sampling (biased dynamics).

Free energy will play a central role.
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Introduction: reaction coordinate and free energy
Let us introduce two probability measures associated to µ and ξ:

• The image of the measure µ by ξ:

ξ ∗ µ (dz) = exp(−βA(z)) dz

where the free energy A is defined by:

A(z) = −β−1 ln

(

∫

Σ(z)
e−βV δξ(x)−z(dx)

)

,

with Σ(z) = {x , ξ(x) = z} is a (smooth) submanifold of Rd ,
and δξ(x)−z(dx) dz = dx .

• The probability measure µ conditioned to ξ(x) = z :

µΣ(z)(dx) =
exp(−βV (x)) δξ(x)−z(dx)

exp(−βA(z))
.
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Introduction: reaction coordinate and free energy

In the simple case ξ(x1, x2) = x1, we have:

• The image of the measure µ by ξ:

ξ ∗ µ (dx1) = exp(−βA(x1)) dx1

where the free energy A is defined by:

A(x1) = −β−1 ln

(
∫

e−βV (x1,x2)dx2

)

,

and Σ(x1) = {(x1, x2), x2 ∈ R}.
• The probability measure µ conditioned to ξ(x1, x2) = x1:

µΣ(x1)(dx2) =
exp(−βV (x1, x2)) dx2

exp(−βA(x1))
.
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Introduction: reaction coordinate and free energy
The measure δξ(x)−z is related to the Lebesgue measure on Σ(z)
through:

δξ(x)−z = |∇ξ|−1dσΣ(z).

This is the co-area formula. We thus have:

A(z) = −β−1 ln

(

∫

Σ(z)
e−βV |∇ξ|−1dσΣ(z)

)

.

General statement: Let X be a random variable with law ψ(x) dx
in R

n, then ξ(X ) has law
∫

Σ(z) ψ |∇ξ|−1 dσΣ(z) dz , and the law of

X conditioned to a fixed value z of ξ(X ) is

dµΣ(z) =
ψ |∇ξ|−1 dσΣ(z)∫

Σ(z) ψ |∇ξ|−1 dσΣ(z)
.

Indeed, for any two bounded functions f and g ,

E(f (ξ(X ))g(X )) =

∫

Rn
f (ξ(x))g(x)ψ(x) dx,

=

∫

Rp

∫

Σ(z)
f ◦ ξ g ψ |∇ξ|−1

dσΣ(z) dz,

=

∫

Rp
f (z)

∫

Σ(z) g ψ |∇ξ|−1dσΣ(z)
∫

Σ(z) ψ |∇ξ|−1dσΣ(z)

∫

Σ(z)
ψ |∇ξ|−1

dσΣ(z) dz.
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Introduction: reaction coordinate and free energy

Remarks:

- A is the free energy associated with the reaction coordinate or
collective variable ξ (angle, length, ...). A is defined up to an
additive constant, so that it is enough to compute free energy
differences, or the derivative of A (the mean force).

- A(z) = −β−1 ln ZΣ(z) and ZΣ(z) is the partition function
associated with the conditioned probability measures:
µΣ(z) = Z−1

Σ(z)e
−βV |∇ξ|−1dσΣ(z).

- If U =

∫

Σ(z)
V Z−1

Σ(z)e
−βV δξ(x)−z(dx) and

S = −kB

∫

Σ(z)
ln
(

Z−1
Σ(z)e

−βV
)

Z−1
Σ(z)e

−βV δξ(x)−z(dx) (and

β−1 = kBT ), then A = U − TS .
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Introduction: reaction coordinate and free energy

What is free energy ? The simple example of the solvation of a
dimer. (Profiles computed using thermodynamic integration.)
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The density of the solvent molecules is lower on the left than on
the right. At high (resp. low) density, the compact state is more
(resp. less) likely. The “free energy barrier” is higher at high density
than at low density. Related question: interpretation of the free energy barrier in terms of

dynamics ?
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Introduction: reaction coordinate and free energy
There are many free energy calculation techniques:

(a) Thermodynamic integration. (b) Histogram method.

(c) Non equilibrium dynamics. (d) Adaptive dynamics.
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Thermodynamic integration
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Thermodynamic integration
Thermodynamic integration is based on two remarks:
(1) The derivative A′(z) can be obtained by sampling the
conditioned probability measure µΣ(z) (Sprik, Ciccotti, Kapral,
Vanden-Eijnden, E, den Otter, ...)

A′(z) = Z−1
Σ(z)

∫
(∇V · ∇ξ

|∇ξ|2 − β−1
div

( ∇ξ
|∇ξ|2

))

e−βV |∇ξ|−1dσΣ(z),

=

∫

f dµΣ(z),

where f = ∇V ·∇ξ
|∇ξ|2

− β−1
div

(

∇ξ
|∇ξ|2

)

.

Another expression:

A′(z) = Z−1
Σ(z)

∫ ∇ξ
|∇ξ|2 ·

(

∇Ṽ + β−1H
)

exp(−βṼ )dσΣ(z),

where Ṽ = V + β−1 ln |∇ξ| and H = −∇ ·
(

∇ξ
|∇ξ|

)

∇ξ
|∇ξ| is the mean

curvature vector.
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Thermodynamic integration

In the simple case ξ(x1, x2) = x1, remember that

A(x1) = −β−1 ln

(
∫

e−βV (x1,x2)dx2

)

,

so that

A′(x1) =

∫

∂x1V e−βV (x1,x2) dx2

∫

e−βV (x1,x2) dx2

=

∫

∂x1V dµΣ(x1).
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Thermodynamic integration

Proof in the general case : (based on the co-area formula)

∫
(
∫

exp(−βṼ )dσΣ(z)

)′

φ(z) dz = −
∫∫

exp(−βṼ )dσΣ(z)φ
′ dz ,

= −
∫ ∫

exp(−βṼ )φ′ ◦ ξ dσΣ(z) dz ,

= −
∫

exp(−βṼ )φ′ ◦ ξ|∇ξ|dx ,

= −
∫

exp(−βṼ )∇(φ ◦ ξ) · ∇ξ
|∇ξ|2 |∇ξ|dx ,

=

∫

∇ ·
(

exp(−βṼ )
∇ξ
|∇ξ|

)

φ ◦ ξ dx ,

=

∫ ∫

(

−β∇Ṽ · ∇ξ
|∇ξ|2 + |∇ξ|−1∇ ·

( ∇ξ
|∇ξ|

)

)

exp(−βṼ )dσΣ(z)φ(z) dz .
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Thermodynamic integration

(2) It is possible to sample the conditioned probability measure
µΣ(z) = Z−1

Σ(z) exp(−βṼ )dσΣ(z) by considering the following

constrained dynamics:

(RCD)

{

dX t = −∇Ṽ (X t) dt +
√

2β−1dW t +∇ξ(X t)dΛt ,
dΛt such that ξ(X t) = z .

Thus, A′(z) = limT→∞
1
T

∫ T

0
f (X t) dt.

The free energy profile is then obtained by thermodynamic
integration:

A(z)− A(0) =

∫ z

0

A′(z) dz ≃
K
∑

i=0

ωiA
′(zi ).
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Thermodynamic integration

Notice that there is actually no need to compute f in practice since
the mean force may be obtained by averaging the Lagrange
multipliers.

Indeed, we have dΛt = dΛm
t + dΛf

t , with
dΛm

t = −
√

2β−1 ∇ξ
|∇ξ|2

(X t) · dW t and

dΛf
t =

∇ξ
|∇ξ|2

·
(

∇Ṽ + β−1H
)

(X t) dt = f (X t) dt so that

A′(z) = lim
T→∞

1

T

∫ T

0

dΛt = lim
T→∞

1

T

∫ T

0

dΛf

t .

Of course, this comes at a price: essentially, we are using the fact that

lim
M→∞

lim
∆t→0

1

M∆t

M
∑

m=1

[

ξ
(

q +
√
∆t G

m
)

− 2ξ(q) + ξ
(

q −
√
∆t G

m
)]

= ∆ξ(q),

and this estimator has a non zero variance.
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Thermodynamic integration

More explicitly, the rigidly constrained dynamics writes:

(RCD) dX t = P(X t)
(

−∇Ṽ (X t) dt +
√

2β−1dW t

)

+ β−1H(X t) dt,

where P(x) is the orthogonal projection operator:

P(x) = Id − n(x)⊗ n(x),

with n the unit normal vector: n(x) =
∇ξ
|∇ξ|(x).

(RCD) can also be written using the Stratonovitch product:
dX t = −P(X t)∇Ṽ (X t) dt +

√

2β−1P(X t) ◦ dW t .

It is easy to check that ξ(X t) = ξ(X 0) = z for X t solution to
(RCD).
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Thermodynamic integration

[G. Ciccotti, TL, E. Vanden-Einjden, 2008] Assume wlg that z = 0. The
probability µΣ(0) is the unique invariant measure with support in
Σ(0) for (RCD).

Proposition: Let X t be the solution to (RCD) such that the law of
X 0 is µΣ(0). Then, for all smooth function φ and for all time t > 0,

E(φ(X t)) =

∫

φ(x)dµΣ(0)(x).

Proof: Introduce the infinitesimal generator and apply the divergence theorem on

submanifolds : ∀φ ∈ C1(R3N ,R3N),

∫
div Σ(0)(φ) dσΣ(0) = −

∫
H · φ dσΣ(0),

where div Σ(0)(φ) = tr(P∇φ).
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Discretization: These two schemes are consistent with (RCD):

(S1)

{

X n+1 = X n −∇Ṽ (X n)∆t +
√

2β−1∆W n + λn∇ξ(X n+1),
with λn ∈ R such that ξ(X n+1) = 0,

(S2)

{

X n+1 = X n −∇Ṽ (X n)∆t +
√

2β−1∆W n + λn∇ξ(X n),
with λn ∈ R such that ξ(X n+1) = 0,

where ∆W n = W (n+1)∆t − W n∆t . The constraint is exactly
satisfied (important for longtime computations). The discretization

of A′(0) = limT→∞
1
T

∫ T

0
dΛt is:

lim
T→∞

lim
∆t→0

1

T

T/∆t
∑

n=1

λn = A′(0).
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In practice, the following variance reduction scheme may be used:

{

X n+1 = X n −∇Ṽ (X n)∆t+
√

2β−1∆W n + λ∇ξ(X n+1),
with λ ∈ R such that ξ(X n+1) = 0,

{

X ∗ = X n −∇Ṽ (X n)∆t−
√

2β−1∆W n + λ∗∇ξ(X ∗),
with λ∗ ∈ R such that ξ(X ∗) = 0,

and λn = (λ+ λ∗)/2.

The martingale part dΛm
t (i.e. the most fluctuating part) of the

Lagrange multiplier is removed.
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Error analysis [Faou,TL, Mathematics of Computation, 2010]: Using classical
technics (Talay-Tubaro like proof), one can check that the ergodic
measure µ∆t

Σ(0) sampled by the Markov chain (X n) is an

approximation of order one of µΣ(0): for all smooth functions
g : Σ(0) → R,

∣

∣

∣

∣

∣

∫

Σ(0)
gdµ∆t

Σ(0) −
∫

Σ(0)
gdµΣ(0)

∣

∣

∣

∣

∣

≤ C∆t.

Metastability issue: Using TI, we sample the conditional measures
µΣ(z) rather than the original Gibbs measure µ. The long-time
behaviour of the constrained dynamics (RCD) will be essentially
limited by the LSI contant ρ(z) of the conditional measures µΣ(z)

(to be compared with the LSI constant R of the original measure
µ). For well-chosen ξ, ρ(z) ≫ R , which explains the efficiency of
the whole procedure.
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Remarks:
- There are many ways to constrain the dynamics (GD). We chose
one which is simple to discretize. We may also have used, for
example (for z = 0)

dX
η
t = −∇V (X η

t ) dt − 1

2η
∇(ξ2)(X η

t ) dt +
√

2β−1dW t ,

where the constraint is penalized. One can show that
limη→0 X

η
t = X t (in L∞

t∈[0,T ](L
2

ω
)-norm) where X t satisfies (RCD). Notice

that we used V and not Ṽ in the penalized dynamics.

The statistics associated with the dynamics where the constraints
are rigidly imposed and the dynamics where the constraints are
softly imposed through penalization are different: “a stiff spring 6= a
rigid rod” (van Kampen, Hinch,...).
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- TI yields a way to compute
∫

φ(x)dµ(x):
∫

φ(x)dµ(x) = Z−1

∫

φ(x)e−βV (x)dx ,

= Z−1

∫

z

∫

Σ(z)
φe−βV |∇ξ|−1dσΣ(z) dz , (co-area formula)

= Z−1

∫

z

∫

Σ(z) φe−βV |∇ξ|−1dσΣ(z)
∫

Σ(z) e−βV |∇ξ|−1dσΣ(z)

∫

Σ(z)
e−βV |∇ξ|−1dσΣ(z) dz ,

=

(
∫

z

e−βA(z) dz

)−1 ∫

z

(

∫

Σ(z)
φdµΣ(z)

)

e−βA(z) dz .

with Σ(z) = {x , ξ(x) = z},
A(z) = −β−1 ln

(

∫

Σ(z)e
−βV |∇ξ|−1dσΣ(z)

)

and

µΣ(z) = e−βV |∇ξ|−1dσΣ(z)/
∫

Σ(z)e
−βV |∇ξ|−1dσΣ(z).
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- [C. Le Bris, TL, E. Vanden-Einjden, CRAS 2008] For a general SDE (with a non
isotropic diffusion), the following diagram does not commute:

Pcont

Pdisc
Projected discretized process

?

Discretized process

Projected continuous process

Continuous process

Discretized projected continuous process

∆t

∆t
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Generalization to Langevin dynamics. Interests: (i) Newton’s
equations of motion are more “natural”; (ii) leads to numerical
schemes which sample the constrained measure without time
discretization error; (iii) seems to be more robust wrt the timestep
choice.






dqt = M−1pt dt,

dpt = −∇V (qt) dt − γM−1pt dt +
√

2γβ−1dWt +∇ξ(qt) dλt ,
ξ(qt) = z .

The probability measure sampled by this dynamics is

µT∗Σ(z)(dqdp) = Z−1 exp(−βH(q, p))σT∗Σ(z)(dqdp),

where H(q, p) = V (q) + 1
2
pTM−1p.
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The marginal of µT∗Σ(z)(dqdp) in q writes:

νM
Σ(z) =

1

Z
exp(−βV (q))σM

Σ(z)(dq) 6= 1

Z
exp(−βV (q))δξ(q)−z(dq).

Thus, the “free energy” which is naturally computed by this
dynamics is

AM(z) = −β−1 ln

(

∫

Σ(z)
exp(−βV (q))σM

Σ(z)(dq)

)

.

The original free energy may be recovered from the relation: for
GM = ∇ξTM−1∇ξ,

A(z)− AM(z) = −β−1 ln

(

∫

Σ(z)
det(GM)−1/2dνM

Σ(z)

)

.
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Moreover, one can check that:

lim
T→∞

1

T

∫ T

0

dλt = (AM)′(z).

Discretization: A natural numerical scheme is to use a splitting:

• 1/2 midpoint Euler on the fluctuation-dissipation part,

• 1 Verlet step on the Hamiltonian part (RATTLE scheme) and

• 1/2 midpoint Euler on the fluctuation-dissipation part.
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p
n+1/4 = p

n −
∆t

4
γ M

−1(pn + p
n+1/4) +

√
∆t

2
σ G

n +∇ξ(qn)λn+1/4
,

∇ξ(qn)TM−1pn+1/4 = 0,




pn+1/2 = p
n+1/4 −

∆t

2
∇V (qn) +∇ξ(qn)λn+1/2

,

qn+1 = qn +∆t M−1 pn+1/2,

ξ(qn+1) = z ,

pn+3/4 = p
n+1/2 −

∆t

2
∇V (qn+1) +∇ξ(qn+1)λn+3/4

,

∇ξ(qn+1)TM−1pn+3/4 = 0,




p
n+1 = p

n+3/4 −
∆t

4
γ M

−1(pn+3/4 + p
n+1) +

√
∆t

2
σ G

n+1/2

+∇ξ(qn+1)λn+1
,

∇ξ(qn+1)TM−1pn+1 = 0,

and limT→∞ lim∆t→0
1
T

∑T/∆t

n=1

(
λn+1/2 + λn+3/4

)
= (AM)′(z).
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Using the symmetry of the Verlet step, it is easy to add a
Metropolization step to the previous numerical scheme, thus
removing the time discretization error. For this modified scheme, it
is easy to prove that

lim
∆t→0

lim
T→∞

1

T

T/∆t
∑

n=1

(

λn+1/2 + λn+3/4
)

= (AM)′(z).

By choosing M = ∆tγ/4 = Id, this leads to an original sampling
scheme in the configuration space (generalized Hybrid Monte Carlo
scheme).

Notice that it is not clear how to use such a Metropolization step
for the constrained dynamics (RCD) since the proposal kernel is not
symmetric, and does not admit any simple analytical expression.



Introduction Thermodynamic integration Non-equilibrium dynamics Adaptive biasing techniques Conclusion
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Algorithm: Let us introduce R∆t which is such that, if
(qn, pn) ∈ T ∗Σ(z), and |pn|2 ≤ R∆t , one step of the RATTLE
scheme is well defined (i.e. there exists a unique solution to the constrained problem).

Then the GHMC scheme writes (M = ∆tγ/4 = Id):
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Consider an initial configuration q0 ∈ Σ(z). Iterate on n ≥ 0,

1. Sample a random vector in the tangent space TqnΣ(z) (∇ξ(qn)T pn = 0):

p
n = β

−1/2
P(qn)Gn

,

where (Gn)n≥0 are i.i.d. standard random Gaussian variables, and

compute the energy E
n =

1

2
|pn|2 + V (qn) of the configuration (qn, pn);

2. If |pn|2 > R∆t , set En+1 = +∞ and go to (3); otherwise perform one
integration step of the RATTLE scheme:





pn+1/2 = p
n −

∆t

2
∇V (qn) +∇ξ(qn)λn+1/2

,

q̃n+1 = q
n +∆t p

n+1/2
,

ξ(q̃n+1) = z ,

p̃n+1 = p
n+1/2 −

∆t

2
∇V (q̃n+1) +∇ξ(q̃n+1)λn+1

,

∇ξ(q̃n+1)T p̃n+1 = 0;
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3. If |p̃n+1|2 > R∆t , set En+1 = +∞; otherwise compute the energy

E
n+1 =

1

2
|p̃n+1|2 + V (q̃n+1) of the new phase-space configuration.

Accept the proposal and set qn+1 = q̃n+1 with probability

min
(

exp(−β(En+1 − E
n)), 1

)
;

otherwise, reject and set qn+1 = qn.

Proposition: The probability measure

νM
Σ(z) =

1

Z
exp(−βV (q))σM

Σ(z)(dq)

is invariant for the Markov Chain (qn)n≥1.



Introduction Thermodynamic integration Non-equilibrium dynamics Adaptive biasing techniques Conclusion

Non-equilibrium dynamics



Introduction Thermodynamic integration Non-equilibrium dynamics Adaptive biasing techniques Conclusion

Non-equilibrium dynamics

Let us consider a stochastic process such that X 0 ∼ µΣz(0)
and



















dX t = −P(X t)∇Ṽ (X t) dt +
√

2β−1P(X t) ◦ dW t

+∇ξ(X t)dΛ
ext

t ,

dΛext

t =
z ′(t)

|∇ξ(X t)|2
dt,

where z : [0,T ] → [0, 1] is a fixed deterministic evolution of the
reaction coordinate ξ, such that z(0) = 0 and z(T ) = 1.
One can check that

ξ(X t) = z(t).
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The dynamics can also be written using a Lagrange multiplier:

{

dX t = −∇Ṽ (X t) dt +
√

2β−1dW t +∇ξ(X t)dΛt ,
ξ(X t) = z(t).

And we have
dΛt = dΛm

t + dΛf

t+dΛext

t ,

where dΛm
t = −

√

2β−1 ∇ξ
|∇ξ|2

(X t) · dW t , dΛf
t = f (X t) dt and

dΛext
t = z ′(t)

|∇ξ(X t)|2
dt.
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How to get equilibrium quantities (like the free energy) through
non-equilibrium simulations ?

The idea is to associate to each trajectory X t a weight

W(t) =

∫ t

0

f (X s)z
′(s) ds =

∫ t

0

z ′(s)dΛf

s .

and to compute free energy differences by a Feynman-Kac formula
(Jarzynski identity):

A(z(t))− A(z(0)) = −β−1 ln (E (exp(−βW(t)))).
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[TL, M. Rousset, G. Stoltz, 2007]. The proof consists in introducing the
semi-group associated with the dynamics

u(s, x) = E

(

ϕ(X s,x
t ) exp

(

−β
∫ t

s

f (X s,x
r )z ′(r) dr

))

and to show that d
ds

∫

u(s, .) exp(−βṼ )dσΣz(s)
= 0 using the

divergence theorem on submanifolds. Then
∫

u(t, .) exp(−βṼ )dσΣz(t)
=

∫

u(0, .) exp(−βṼ )dσΣz(0)

is equivalent to
∫

ϕ exp(−βṼ )dσΣz(t)

= exp(−βA(z(0)))E

(
∫

ϕ(X t) exp

(

−β
∫ t

0

f (X r )z
′(r) dr

))

.
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A more general relation is the so-called Crooks identity which is a
more general formula relating the free energy to the work of
forward and backward switched processes. Let qf

t and qb
t satisfy:

qf
0 ∼ µΣ(z(0)), qb

0 ∼ µΣ(z(T )),

{

dqf
t = −∇Ṽ (qf

t ) dt +
√

2β−1dW f
t +∇ξ(qf

t )dΛ
f
t ,

ξ(qf
t ) = z(t),

{

dqb
t′ = −∇Ṽ (qb

t′) dt ′ +
√

2β−1dW b
t′ +∇ξ(qb

t′)dΛ
b
t′ ,

ξ(qb
t′) = z(T − t ′).
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Then, for any θ ∈ [0, 1], for any path functional φ,

exp
(

− β(A(z(T ))− A(z(0))
)

E

(

φ({qb
T−s}0≤s≤T ) exp(−βθWb(T ))

)

= E

(

φ({qf
s }0≤s≤T ) exp(−β(1 − θ)W f (T ))

)

,

where W f (T ) =
∫ t

0
f (qf

s )z
′(s) ds and

Wb(T ) = −
∫ t

0
f (qb

s )z
′(T − s) ds.

This identity can be used to combine forward and backward
processes to get better estimates of the free energy difference, see
for example bridge sampling methods [Bennett, Meng and Wong, Shirts].
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The discretization of the constrained process is (as before):

(S1)

{

X n+1 = X n −∇Ṽ (X n)∆t +
√

2β−1∆W n + λn∇ξ(X n+1),
with λn such that ξ(X n+1) = z(tn+1),

(S2)

{

X n+1 = X n −∇Ṽ (X n)∆t +
√

2β−1∆W n + λn∇ξ(X n),
with λn such that ξ(X n+1) = z(tn+1).

To extract λf
n from λn, one can e.g. compute:

λf

n = λn −
z(tn+1)− z(tn)

|∇ξ(X n)|2
+
√

2β−1
∇ξ
|∇ξ|2 (X n) ·∆W n.
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Another method to compute λf
n consists in:

{

XR
n+1 = X n −∇Ṽ (X n)∆t −

√

2β−1∆W n + λR
n ∇ξ(XR

n+1),

with λR
n such that 1

2

(

ξ(XR
n+1) + ξ(X n+1)

)

= ξ(X n).

We then have λf
n = 1

2

(

λn + λR
n

)

.
The weight is then approximated by

{

W0 = 0,

Wn+1 = Wn +
z(tn+1)−z(tn)

tn+1−tn
λf

n,

and a (biased) estimator of the free energy difference

A(z(T ))− A(z(0)) is −β−1 ln
(

1
M

∑M
m=1 exp

(

−βWm
T/∆t

))

.
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In practice, the efficiency of this numerical method is not clearly
demonstrated. If the transition is too fast, the variance of the
estimator is very large. If the transition is slow, we are back to
thermodynamic integration...

Ideas: (i) combine forward and backward trajectories, (ii) add
selection mechanisms [M. Rousset, G. Stoltz, 2006] or (iii) use importance
sampling to help the transition (escorting) [Vaikuntanathan, Jarzynski, 2008].

All this can be generalized to Langevin (phase-space) dynamics,
with the additional difficulty that generalized free energies with
constraints on both positions and momenta are obtained.
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Adaptive biasing techniques

Recall that the original gradient dynamics (GD)

dX t = −∇V (X t) dt +
√

2β−1dW t

is metastable. We want to use the information that ξ(X t) is a slow
variable, where ξ : Rn → T to have better sampling.

We will use the free energy

A(z) = −β−1 ln

(

∫

Σ(z)
e−βV δξ(x)−z(dx)

)

,

to bias the dynamics.
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The bottom line of adaptive methods is the following: for “well
chosen” ξ the potential V − A ◦ ξ is less rugged than V . Indeed, by
construction ξ ∗ exp(−β(V − A ◦ ξ)) = 1T.

Problem: A is unknown ! Idea: use a time dependent potential of
the form

Vt(x) = V (x)− At(ξ(x))

where At is an approximation at time t of A, given the
configurations visited so far.

Hopes:

• build a dynamics which goes quickly to equilibrium,

• compute free energy profiles.

Wang-Landau, ABF, metadynamics: Darve, Pohorille, Hénin, Chipot, Laio, Parrinello, Wang, Landau,...
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A 2d example of a free energy biased trajectory: energetic barrier.
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A 2d example of a free energy biased trajectory: entropic barrier.
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The ABF method

How to update At ? Two methods depending on wether A′
t

(Adaptive Biasing Force) or At (Adaptive Biasing Potential) is
approximated.

For the Adaptive Biasing Force (ABF) method, the idea is to use
the formula

A′(z) =

∫
(∇V · ∇ξ

|∇ξ|2 − β−1
div

( ∇ξ
|∇ξ|2

))

e−βV δξ(x)−z(dx)
∫

e−βV δξ(x)−z(dx)

=

∫

f dµΣ(z) = Eµ(f (X )|ξ(X ) = z).

The mean force A′(z) is the mean of f with respect to µΣ(z).
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Notice that actually, whatever At is,

A′(z) =

∫

f e−β(V−At◦ξ) δξ(x)−z(dx)
∫

e−β(V−At◦ξ) δξ(x)−z(dx)

.

Thus, if the bias is fixed:

dX t = −∇(V − At0 ◦ ξ)(X t) dt +
√

2β−1dW t ,

we obtain the free energy at equilibrium:

lim
t→∞

E(f (X t)|ξ(X t) = z) = A′(z).

Of course, we will adapt At as time goes...
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The ABF method
Thus, we would like to simulate:

{

dX t = −∇(V − A ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′(z) = Eµ (f (X )|ξ(X ) = z)

but A is unknown...
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The ABF method

The ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .
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The ABF method

The ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .

The associated (nonlinear) Fokker-Planck equation writes:























∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫

f ψ δξ(x)−z(dx)
∫

ψ δξ(x)−z(dx)

,

where X t ∼ ψ(t, x) dx . A numerical illustration.
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The ABF method

The ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .

The associated (nonlinear) Fokker-Planck equation writes:























∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫

f ψ δξ(x)−z(dx)
∫

ψ δξ(x)−z(dx)

,

where X t ∼ ψ(t, x) dx . A numerical illustration.

Questions: Does A′
t converge to A′ ? What did we gain compared

to the original gradient dynamics ?
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Adaptive methods (1)

Two variants:

• A may be approximated instead of A′, using the formula

A(z) = −β−1 ln

(
∫

Σz

e−βV |∇ξ|−1dσΣz

)

.

This leads to Adaptive Biasing Potential (ABP) methods.

• To avoid geometry problem, an extended configurational space
(x , z) ∈ R

n+1 is considered, together with the meta-potential:

V k(x , z) = V (x) + k(z − ξ(x))2.

Choosing (x , z) 7→ z as a reaction coordinate, the associated
free energy Ak is close to A (in the limit k → ∞, up to an additive constant).
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Adaptive methods (2)

Adaptive algorithms used in molecular dynamics fall into one of
these four possible combinations:

A′
t At

V ABF Wang-Landau

V k ... metadynamics
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Longtime convergence and entropy (1)

Recall the original gradient dynamics:

dQt = −∇V (Qt) dt +
√

2β−1dW t .

The associated (linear) Fokker-Planck equation writes:

∂tφ = div
(

∇Vφ+ β−1∇φ
)

.

where Qt ∼ φ(t,q) dq.

The metastable behaviour of Qt is related to the multimodality of
µ, which can be quantified through the rate of convergence of φ to
φ∞ = Z−1 exp(−βV ).
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Longtime convergence and entropy (2)

Recall that exponential convergence to equilibrium of the entropy is
equivalent to LSI(R).

Exponential convergence to equilibrium: For any initial condition,
E (t) ≤ E (0) exp(−2β−1Rt) where

E (t) = H(φ(t, ·)|φ∞) =
∫

ln
(

φ
φ∞

)

φ.

Logarithmic Sobolev inequality (LSI(R)): For all probability density
function φ,

H(φ|φ∞) ≤ 1

2R
I (φ|φ∞).

We thus measure metastability through LSI constants:
Metastability ⇐⇒ small R

What did we gain compared to the original gradient dynamics
(GD) ?
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Convergence of ABF (1)
A convergence result [TL, M. Rousset, G. Stoltz, Nonlinearity 2008] : Recall the
ABF Fokker-Planck equation:







∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫
f ψ δξ(x)−z (dx)∫
ψ δξ(x)−z (dx)

.

Suppose:

(H1) “Strong mixing” of the microscopic variables: the conditional
probability measures µΣ(z) satisfy a LSI(ρ),

(H2) Bounded coupling:
∥

∥∇Σ(z)f
∥

∥

L∞ <∞,
then

‖A′
t − A′‖L2 ≤ C exp(−β−1 min(ρ, r)t).

The rate of convergence is limited by:

• the rate r of convergence of ψ =
∫

ψ δξ(x)−z(dx) to ψ∞,

• the LSI constant ρ (the real limitation).
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Convergence of ABF (2)

In summary:

• Original gradient dynamics: exp(−β−1Rt) where R is the LSI
constant for µ ;

• ABF dynamics: exp(−β−1ρt) where ρ is the LSI constant for
the conditioned probability measures µΣ(z).

If ξ is well chosen, ρ≫ R : the free energy can be computed very
efficiently. Once the free energy is known, there are classical
techniques to compute averages wrt µ (unbiasing, conditioning).

Two ingredients of the proof:

(1) The marginal ψ(t, z) =
∫

ψ(t, x) δξ(x)−z(dx) satisfies a closed
PDE:

∂tψ = β−1∂z,zψ on T,

and thus, ψ converges towards ψ∞ ≡ 1, with exponential speed
C exp(−4π2β−1t). (Here, r = 4π2).
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Convergence of ABF (3)

(2) The total entropy can be decomposed as [N. Grunewald, F. Otto, C. Villani,

M. Westdickenberg, Ann. IHP, 2009]:

E = EM + Em

where
The total entropy is E = H(ψ|ψ∞),

The macroscopic entropy is EM = H(ψ|ψ∞),

The microscopic entropy is

Em =

∫

H
(

ψ(·|ξ(x) = z)
∣

∣

∣
ψ∞(·|ξ(x) = z)

)

ψ(z) dz .

We already know that EM goes to zero: it remains only to consider
Em...
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Convergence of ABF (4)

Other results based on this set of assumptions:

• [TL, JFA 2008] LSI for the cond. meas. µΣ(z)

+ LSI for the marginal µ(dz) = ξ ∗ µ(dz)
+ bdd coupling (‖∇Σ(z)f ‖L∞ <∞) =⇒ LSI for µ.

• [F. Legoll, TL, Nonlinearity, 2010] Effective dynamics for ξ(Qt). Uniform
control in time:

H(L(ξ(Qt))|L(zt)) ≤ C

(‖∇Σ(z)f ‖L∞

ρ

)2

H(L(Q0)|µ).
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Discretization of ABF (1)

Discretization of adaptive methods can be done using two
(complementary) approaches:

• Use trajectorial averages along a single path:

E(f (X t)|ξ(X t) = z) ≃
∫ t

0
f (X s) δ

α(ξ(X s)− z) ds
∫ t

0
δα(ξ(X s)− z) ds

.

• Use empirical means over many replicas (interacting particle
system):

E(f (X t)|ξ(X t) = z) ≃
∑N

m=1 f (Xm,N
t ) δα(ξ(Xm,N

t )− z)
∑N

m=1 δ
α(ξ(Xm,N

t )− z)
.
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Discretization of ABF (2)

Interest of a discretization using an interacting particle system:

• Convergence can be more easily analyzed !

• Very efficient parallelization.

• A selection mechanism may be added to duplicate “innovative
particles” and kill “redundant particles”. [TL, M. Rousset, G. Stoltz, J

Chem Phys 2007].

• Better sampling of all reactive paths.
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Multiple channel cases

In some practical cases (multi-channel case), ρ may be small... Are
these convergence results optimal ?

Numerically, it is observed [C. Chipot, TL, K. Minoukadeh, 2010] that in such a
situation, the ABF method actually converges rapidly, in particular
when using implementations using many replicas.

Test case: Compact configurations of a deca-alanine peptide. It
appears that using many replica in parallel and empirical means
yields better sampling, even at fixed CPU time.
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Multiple channel cases
Mean force and free energy profiles obtained with 4 independent runs.

Top left: 1 walker, T=100 ns ; Top right: 32 walkers, T=100ns ;

Bottom: 32 walkers, T=3ns.
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Convergence of ABF in a bi-channel case

Theoretically, it can be shown [TL, K. Minoukadeh, 2010] that, in a
bi-channel situation, the ABF method actually converges with a
rate limited by the LSI constants of the conditional measures in
each channel (2d, ξ(x , y) = x and β = 1 for simplicity).



















dXt = −∇(VIt
− At ◦ ξ)(Xt)dt +

√
2dBt ,

A′
t
(x) = E [∂xVIt

(Xt)|ξ(Xt) = x ] ,

It ∈ {0, 1} is a jump process changing value

with intensity λ(ξ(Xt)) dt.

∃ E ⊂ T, λ = λ01T\E and ∀x ∈ T \ E ,V0(x , ·) = V1(x , ·)

The process (Xt , It) has law with density ψ(t, x , y , i) satisfying
∂tψ = div(∇(Vi − At ◦ ξ)ψ +∇ψ)− λ ◦ ξ(ψ − ψ1−i ).
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Convergence of ABF in a bi-channel case

The non-linear Fokker-Planck equation writes:



































∂tψ = div (∇(Vi − At ◦ ξ)ψ +∇ψ)− λ ◦ ξ(ψ − ψ1−i ),

A′
t(x) =

1
∑

i=0

∫

∂xVi ψ dy

1
∑

i=0

∫

ψ dy

.

A convergence result in a bi-channel case [TL, K. Minoukadeh, 2010]:
Suppose that in each channel, the conditional measures satisfy
LSI(ρ), and that the free energy is a good bias in each channel.
Then, exponential convergence of A′

t to A′ at a rate close to ρ can
be proven.
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Adaptive biasing techniques
Coming back to the original aim: how to use free energy to
compute canonical averages

∫

ϕdµ =
∫

ϕZ−1e−βV ?

• Importance sampling:

∫

ϕ dµ =

∫

ϕe−βA◦ξ Z−1
A e−β(V−A◦ξ)

∫

e−βA◦ξ Z−1
A e−β(V−A◦ξ)

.

• Conditioning:

∫

ϕ dµ =

∫

z

(

∫

Σ(z)
ϕ dµΣ(z)

)

e−βA(z) dz

∫

z

e−βA(z) dz

.

This requires the sampling of the conditional probability
measure µΣ(z) which can be done using projected Langevin
dynamics [TL, M. Rousset, G. Stoltz, 2011].
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Adaptive biasing techniques: conclusions

Interesting features of the algorithm: parallelization and adaptivity.

Entropy approaches are powerful techniques to investigate
multimodal measures, metastable dynamics and analyze sampling
algorithms.

These techniques can be used whenever the sampling of a
multimodal measure is involved, for example for statistical inference
in Bayesian statistics [N. Chopin, TL, G. Stoltz, 2011].
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Conclusion

To efficiently sample multimodal distributions, we have introduced:

• methods based on constraints (TI, non-equilibrium dynamics),

• importance sampling techniques (free energy biasing methods).

All these techniques (constraining / importance sampling) do not
apply when the drift is not a gradient (non reversible dynamics).
How to treat efficiently such cases (sampling of Non Equilibrium
Steady States) ?
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Conclusion
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