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Introduction
The aim of molecular dynamics simulations is to understaral th
relationships between thenacroscopic propertiesf a molecular
system and itsaatomistic features. In particular, one would like to to
evaluate numerically macroscopic quantities from modelshat t
microscopic scale.

Some examples of macroscopic quantities:

(i) Thermodynamics quantitieverage of some observable wrt
an equilibrium measure). stress, heat capaditge energy..
z

E(X)= Rd' (x) (dx):

(i) Dynamical quantitiegaverage over trajectories at equilibrium):
di usion coe cients, viscosity, transition rates,...
z

E(F((Xt)t o)) = © )F((Xt)t 0)) W(d((x¢t)t 0)):

R+;R
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Many applications in various elds: biology, physics, chergijst
materials science. Molecular dynamics computations comesum
today a lot of CPU time.

A molecular dynamics model amounts essentially in choosing a
potential V which associates to a con guration
(X1;25Xn) = X 2 RN an energyV (X1; 2, Xn).

In the canonical (NVT) ensemble, con gurations are distribdt
according to the Boltzmann-Gibbs probability measure:

d xX)= Z texd V(X)) dx;

R
whereZ = exg V(X)) dx is the partition function and
=(ksgT) 1!is proportional to the inverse of the temperature.
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Typically, V is a sum of potentials modelling interaction between
two particles, three particles and four particles:

X X X
V= Vi(xi; xj) + Vao(Xi; Xj; Xk) + Va(Xi; Xj; Xk X1):
i<j i<j<k i<j<ks<l

For exampleV1(xi; Xj) = Vii(jxi  Xxjj) where

12 6

V) =4 -+ T is the Lennard-Jones potential.

Di culties : (i) high-dimensional problemN 1) ; (i) isa
multimodal measure.
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To sample , ergodic dynamics wrt to are used. A typical
example is theover-damped Langevifor gradient) dynamics:

p
(GD) dXi{=r V(Xydt+ 2 1dw¢:

It is the limit (when the mass goes to zero or the damping param eter to in nity) of the Langevin
dynamics :

dX¢ =M lpdt; P
dPy = r V(X¢)dt M lpidt+ 2 Tdw;

where M is the mass tensor and is the friction coe cient.

To compute dynamical quantities, these are also typically the
dynamics of interest. Thus,

Z 1

Xy
ECON 7 XodtandEF (XD o) & FX o)

m=1

1
T

In the following, we mainly consider tlever-damped Langevin
dynamics
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Probabilistic insert (1):discretization of SDEs

The discretization of (GD) by the Euler scheme is (for a xed
timestep t):

p
Xn+1:Xn r V(Xn) t+ 2 1 th

where(G,‘])l i 3N:n o are i.i.d. random variables with laiN (0; 1).

Indeed, P

(W(n+1) t Wnthh o ﬁ(Gn)n 0-
In practice, a sequence of i.i.d. random variables with N0; 1)
may be obtained from a sequence of i.i.d. random variables with
law U((0; 1)).
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in invariant for (GD)Proof: One needs to show that if the law of
Xois , then the law ofX is also . Let us denoteX} the
solution to (GD) such thatX o = x. Let us consider the function
u(t;x) solution to:

@u(t;x)=r V(x) ru(t;x)+ 1 u(t;x);
U(O;X): (X)(+ assumptions on decay at in nity ),

then, u(t;x) = E( (XY{)). Thus, the measure is invariant:
z z
d E( (XX))d x)=Z 1 @ut;x)exg V(x))dx
Z
=z r Vriu+t Yuexg V)=O

Z Z
Therefore, E( (X{))d (x)= (x)d (x).
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Probabilistic insert (2):Feynman-Kac formula
Why u(t;x) = E( (X})) ? For 0< s< t, we have ¢haracteristic
method:
dut s;X3)= @u(t s;X3)ds+ru(t s;X%) dX3
+ Lout sXX)ds;
= @u(t s;X%) r V(XY rut s;X3)

p
+ Lout sX% ds+ 2 lrut sX¥ dwWe:

Thus, integrating oves 2 (0;t) and taking the expectation:
p Zt
E(u(0; X)) E(u(t;X3)= 2 LE rutt sX%) dws
0

=0
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Probabilistic insert (3):1té's calculus n 1a)
Where does the term u come from ? Starting from the
discretization:

p
Xn+1= Xn VIXy) t+ 2 1 tGy;

we have (for a time-independent functiar):

P
uXns1) = U Xp VAX) t+ 2 1 tG,

= u(Xn)  u{Xn)VAXn) t+p 2 1 tuXn)Gn
+ HGY)AUXn) t+ o b):

Thus, summing oven 2 [0:::t= t] and taking the limit t! O,
t p t
u(X¢) = u(Xo) VIXudXs)ds+ 2 1 udXs)dws
7 0 0
t
+ 1 u%xo) ds:
0
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Introduction

Di culty: In practice, X is ametastable processo that the
convergence to equilibrium is very slow.

A 2d schematic picture: Xis a slow variablga metastable dof) of

the system.

X2

V (X1; X2) L
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A more realistic example (Dellago, Geissldr) uence of the
solvation on a dimer conformation

o o O o . O
O O O O
‘§ O O o ©O
© . O O ole
o O O O O O

Compact state. Stretched state.

The particles interact through a pair potential: truncated for all
particles except the two monomers (black particles) whidetiact
through a double-well potential. A slow variable is the dista
between the two monomers.
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Introduction: metastability

A real example ions canal in a cell membrané€C. Chipot).
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A second real exampieDi usion of adatoms on a surface.

(A. Voter).
t=0.00 ps

=0.15 ps =0.25 ps
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One central numerical di culty is thusmetastability How to
guantify this bad behaviour ?

1. Escape time from a potential well.

2. Asymptotice variance of the estimator.

3. Decorrelation time .

4. Rate of convergence of the law &f; to

In the following we use the fourth criterion.
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The PDE point of view: convergence of the pdft;x) of X; to
1 (x)=Z e V. satis es the Fokker-Planck equation

@ =dv(rVv + I );

which can be rewritten a@® = Ldiv O
Let us introducethe entropy
Z

E(t)=H( (t;)j 1)=1In -
We have (Csiszar-Kullback inequality):

k (t:) 1ku P 2E(1):
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dE z
9 n — @
7 1
= Y In — div qr
1 1
Z 2
= ' vrIn — = Yo ) o1):

If V is such that the followind-ogarithmic Sobolev inequality
(LSI(R)) holds: 8 pdf,
: 1 .
H(J 1) ﬁ'( j 1)

thenE(t) E(0)exf 2 !Rt) andthus converges to 1
eXponentia”y fast with rate 1R (and the converse is true) .

Metastability () smallR



Introduction Thermodynamic integration Non-equilibrium dynamics  Adapt ive biasing techniques Conclusion

Introduction: reaction coordinate and free energy

Metastability How to attack this problem ?
We suppose in the following that the slow variableisgdimension 1
andknown (X), where :R"! T.
For example, in the 2Xd simple systenfxi; x2) = Xi.
2

AP

We will use this knowledge to build e cient sampling technip.
Two ideas:

Conditioning (constrained dynamics),
Importance sampling (biased dynamics).
Free energyill play a central role.
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Let us introduce two probability measures associated tand :
The image of the measure by :

(dz) = exp( A(z2))dz

where thefree energyA is de ned by:
7 !
A(z) = YIn e vV (x 2(dx)
(2)

with ( z) = fx; (x)= zgis a (smooth) submanifold oRY,
and (x) ,(dx)dz= dx.

The probability measure conditioned to (x) = z:

ex V(X)) (9 2(dX),

R 0)
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Introduction: reaction coordinate and free energy

In the simple case(x1;X2) = X1, we have:
The image of the measure by :

(dxa) = exp( A(x1)) dxa

where the free energk is de ned by:
Z
A(x1) = lln e VOuxgy, -

and ( x1) = f(x1;%2); X2 2 Rag.
The probability measure conditioned to (X1;X2) = X1:

expl  V(X1;X2)) dxg
exg A(x1)

( xp) (%) =
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Introduction: reaction coordinate and free energy

The measure () , is related to the Lebesgue measure Qre)
through:
w 2= ()

This is theco-area formuIaVZVe thus have:

A(z) = YIn e Vir jld (y

(2)

General statementLet X F@e a random variable with law(x) dx
in R", then (X) has law (2) jr i td (2 dz and the law of

X conditioned to a xed value of (X) is
r U0 td (4
(2 N td (5
Indeed, for any two bounded functions f and g,
z
E(FC XPagXp = x)Nax) (x)dx;
ZR z

= f ir i td dz;
R () g | (2)
R

d (5=

z n9 it (5?

(o r i o, (2

1@ roj gz

R
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Remarks:

- A is the free energyassociated with theeaction coordinateor
collective variable (angle, length, ...).A is de ned up to an
additive constant, so that it is enough to compute free energy
di erences, or the derivative of (the mean forcg

-A(z) = YInZ ; andZ , is the partition function
associated with the conditioned probability measures:
— 1 Vi i1 .
(z)-é(z)e rojd

-lfU = VZ
Z 2
S= ks nz e vV z.3,
(2)
1= kgT), thenA=U TS.

(1Z)e V' (%) 2(dx) and

e vV (x 2(dx) (and
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What is free energy ? The simple example of the solvation of a

dimer. (Pro les computed using thermodynamic integration.)
. L

Free energy difference D F(z)
Free energy difference D F(z)

06 07 08 09 1 0 01 02 03 04 06 07 08 09 1

0 01 02 03 04 05
Parameter z

The density of the solvent molecules is lower on the left than on
the right. At high (resp. low) density, the compact state isone
(resp. less) likely. The free energy barrier is higher ahhdensity
than at low denSity.Related question: interpretation of the free energy barrie  r in terms of

dynamics ?
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Introduction: reaction coordinate and free energy
There are manyiree energy calculation techniques

>

(a) Thermodynamic integration.

(C) Non equilibrium dynamics. (d) Adaptive dynamics.
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Thermodynamic integration
Thermodynamic integrations based on two remarks:
(1) The derivativeAYz) can be obtained by sampling the
conditioned probability measure( ,y (Sprik, Ciccotti, Kapral,
Vanden-Eijnden, E, den Otter, ...)
z

rvr _ r o
Ao(z)=Z(1z) e Ldiv T e Vir M (y;
Z
= fd (g
wheref = 'er > v
Another expression:
Z
.
Alz)= 23, e TV Hoex( V) (4
whereV = V+ llnjr jandH = r I I _is the mean

iryoard
curvature vector.
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Thermodynamic integration

In the simple case(xi;x2) = X1, remember that

Z
A(xq) = lin e V0uxdgy
so that
Z
@\Ve YV0ux)dy,
AYx) = —Z
e V(Xl;XZ) dX2
Z

= @Vd ( x1)-
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Thermodynamic integration

Proof in the general CASE (based on the co-area formula)

z Zz 0 zz
exd( V) (, (2)dz= exf V)d (5 %z
zZ7Z
= exdk V)% d (,dz
z
= exgd V) % jr jdx;
z r
= exgl  V)r ( ) —ir jdx;
7 rj
r
= r exy V)—r: dx;
ir | |
Z7Zz -

rv r . r
7r?f+ﬂ jor Fﬁ? exdkn V)d (, (z2)dz



Thermodynamic integration

Thermodynamic integration

(2) It is possible to sample the conditioned probability reese
(2) = Z( 12) exl  V)d () by considering the following
constrained dynamics

dX¢ = rV(Xt)dt+p2 1th+r (Xt)d ts

(RCD) d { such that (X{)= z:

R
Thus, AQz) = limry 3 o f(Xq)dt.

The free energy pro le is then obtained ligermodynamic
integration
Z, ¥
A(z) A0 = AYz)dz: LiAYZ):
0 i=0
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Thermodynamic integration

Notice that there is actually no need to compuitein practice since
the mean force may be obtained by averaging the Lagrange

multipliers
Indeed, we havd { = d M+ d {; with
— r
d M= 2 1jr z(Xt) dW and
d {:J;—JZ rv+ IH (X{)dt=f(X;)dt so that
Z Z
AYz) = lim ! Td = im 2 Td g
T T o Tt T oo U
Of course, this comes at a price: essentially, we are using th e fact that
. . 1 WM h P— m p— mI _ .
Mlll{n 't'T“oﬁm:l q+ tG 2 (@+ q tG = (a)

and this estimator has a non zero variance.
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Thermodynamic integration

More explicitly, the rigidly constrained dynamics writes:

(RCD) dX{=P(X{) r V(X{)dt+ b3 Idw, + IH(X.)dt;
whereP(x) is the orthogonal projection operator:

P(x)=1d n(x) n(x);
with n the unit normal vector:n(x) = jrrj(x)'

(RCD) can also be written uijng th&tratonovitch product
dX{= PX)r v(Xy)dt+ 2 IP(Xy) dwW;.

It is easy to check that (X{) = (Xg) = z for X solution to
(RCD).
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Thermodynamic integration

[G. Ciccotti, TL, E. Vanden-Einjden, 2008] ~ ASsume wlg thatz = 0. The
probability ( o) is the unique invariant measuraith support in
( 0) for (RCD).
Proposition Let X; be the solution to (RCD) such that the law of
Xois (- Then, for all smooth function and for all timet > 0,
z
E( (Xv)) = (x)d  ()(x):

Proof: Introduce the in nitesimal generator and apply the divergence theorem on
submanifolds: 8 2 CY(R3N;RSN),

z z
div (0)( )d (0= H d (O)!

wherediv ( o)( )= tr(Pr ).
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Thermodynamic integration

Discretization: These two schemes are consistent with (RCD):

p
Xne1=Xp 1 V(Xy) t+ 2 L Wh+ ar (Xn+1);

(S1) with 2 R such that (Xp+1) = 0;

Y
Xn+l:Xn I’ V(Xn) t+ 2 1 Wn+ nr (Xn),

(S2) with , 2 R such that (X +1) = O;

where Wnp=W 1) ¢ Wp t. The constraint is exactly
satis ed (important fohlongtime computations). The discieation
of AY0) = limry & S d ¢ is:

1 TXE t
lim lim = n = AY0):
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Thermodynamic integration

In practice, the followingrariance reduction schenmay be used:

p
Xne1=Xnp 1 V(Xp) t+ 2 1 Wp+ 1 (Xpse1);
with 2 R such that (Xp+1) = O;

X =Xnpr V(Xy t p2 L Wh+ r (X))
with 2 R such that (X )= 0;

and ,=( + )=2

The martingale partd {" (i.e. the most uctuating part) of the
Lagrange multiplier is removed.
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Thermodynamic integration

Error analysSiSraou,t, Mathematics of computation, 20100 : Using classical
technics (Talay-Tubaro like proof), one can check that thgedic
measure (‘0) sampled by the Markov chaifX ) is an
approximation of order one of ( : for all smooth functions

g: (0! R,

4 V4

gd 'y gd (¢ C t
(0 (0

Metastability issue Using TI, we sample the conditional measures
( ) rather than the original Gibbs measure The long-time
behaviour of the constrained dynamics (RCD) will be essewntiall
limited by the LSI contant (z) of the conditional measures ;)
(to be compared with the LSI constaR of the original measure
). For well-chosen, (z) R, which explains the e ciency of
the whole procedure.
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Thermodynamic integration

Remarks:

- There are many ways to constrain the dynamics (GD). We chose
one which is simple to discretize. We may also have used, for
example (forz = 0)

dX¢ = 1 V(X)dt or ((X)dtr 2 Wy

where the constraint is penalized. One can show that
limy oX{ = Xt n L 0r,?)nom WhereX, satis es (RCD).Notice
that we usedV and notV in the penalized dynamics

The statistics associated with the dynamics where the caists
are rigidly imposed and the dynamics where the constrairgs ar
softly imposed through penalizaticare di erent. a sti spring 6 a
rigid rod (van Kampen, Hinch,...)
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Thermodynamic integration

. R _
—ZTI yields a way to %)mpute x)d (x):
x)d )=z 1  (x)e V®Xdx;

ZZ
=7 1 - e er J 1d ( 2) dZ, (co-area formula)
z z
R
. Z
e Vijr j d
=z1! R _ e Vir j i (yz

I
o
P4
N
o
N
a
=
o
Pg
=
Q
N

with ( z) = fx; ng)z Z4,
- 1 Vie i1
A(z) = In (£ U] d ( and
V. . 1 R V. - 1
(=€ "I j7d (= (£ TIrjd (g
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Thermodynamic integration

- [C. Le Bris, TL, E. Vanden-Einjden, CRAS 2008  FOr @ general SDE (with a non
isotropic di usion), the following diagrandoes not commute

Projected continuous proce%s;{Discretized projected continuous pro%es:

‘o

Reont

Continuous process ?

t { Discretized pfOCESSJé[ Projected discretized proces%
Riisc
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Generalization to Langevin dynamidsiterests: (i) Newton's
equations of motion are more natural ; (ii) leads to nuncai
schemes which sample the constrained measure without time
discretization error; (iii) seems to be more robust wrt thméstep
choice.

8

< dg = M lp dt; 0
dpe=r1 V(g)dt M Ipdt+ 2  dWpi+r (q)d ¢;
() = z

The probability measure sampled by this dynamics is
T (p(dgdp = Z Tex H(g;p) T (2 (dudp);

whereH(g;p) = V(g)+ 3p™™M Ip.
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Thermodynamic integration
The marginal of 1 ( ;) (dgdp) in g writes:

M= %exq V(q)) ', (dd) 6 Zlexp( V() (q 2(da):

Thus, the free energy which is naturally computed by this
dynamics is
7 !
AMz)= ' ex( V(@) Y, (do)

(2)

The original free energy may be recovered from the relation: for
Gu=r "™ %

7 !

Az) AV(z)= Ln det(Gu) d V',
(2)
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Thermodynamic integration

Moreover, one can check that:

Discretization A natural numerical scheme is to use a splitting:
1/2 midpoint Euler on the uctuation-dissipation part,
1 Verlet step on the Hamiltonian part (RATTLE scheme) and
1/2 midpoint Euler on the uctuation-dissipation part.
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Thermodynamic integration

r

VAVA"]

n+ 1= n t n n+ 1=
prtt=p 2 M Yt ptth +

r (qn)T M lpn+l:4 - O,

7t Gn+ r (qn) n+1=4;
pn+1:2 - pn+1:4 Ttr V(qn)+ r (qn) n+1=2;
qn+1 = qn + tM 1pn+1=2;
(qn+1) =z

+3= +1= t + + +3=
pn34:pn12 7rv(qnl)_'_r(qnl)n34.

r (qn+1)TM lpn+3=4 - 0'

WA 00 T WKW ARRKRA @0 * V

r
phtl = pntast Tt M (™3 p™ )+ 7'[ Gnri2
+r (qn+1) n+1;
r (qn+1)TM 1pn+l: 0;

. . P+ - -
andlimryy  lim o2 50 "4 I o (AM)z),

clusion
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Thermodynamic integration

Using the symmetry of the Verlet step, it is easyddd a
Metropolization stepto the previous numerical scheme, thus
removing the time discretization error. For this modi ed some, it
is easy to prove that

TXEt

; ; 12 3= o AMYR).
m m — + A
I:! OTI!Il T (AT)A2):

By choosingM = t =4 = 1Id, this leads to an original sampling
scheme in the con guration spacgéneralized Hybrid Monte Carlo
schemg

Notice that it is not clear how to use such a Metropolizatiorest
for the constrained dynamics (RCD) since the proposal kernebis
symmetric, and does not admit any simple analytical expression
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Thermodynamic integration

Algorithm: Let us introduceR ; which is such that, if
(@:p") 2T ( 2),andjp"j? R , one step of the RATTLE
scheme is well de nede. there exists a unique solution to the constrained problem)

Then the GHMC scheme writed(= t =4 = 1d):
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Thermodynamic integration
Consider an initial con gurationg® 2 ( z). lterate onn O,
1. Sample a random vector in the tangent spacEqn ( z) (r (g")" p" = 0):
p"= PRGN
where (G"), o are i.i.d. standard random Gaussian variables, and
compute the energyE" = %jp”j2 + V(q") of the con guration (q";p");

2. 1fjp"j?> R ¢, setE™1 =+ 1 and go to(3); otherwise perform one
integration step of the RATTLE scheme:

n+1 2 _

P V@) (@) "
n+1 — q + tpn+1:2;
(qn+1)_ Z

2
r (qn+l)T n+1l _ 0

§Bn+1 — pn+l 2 —tl’ V(qn+1)+ r (qn+1) n+1;
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Thermodynamic integration

3. Ifjp"tj®> R, setE™! =+ 1 ; otherwise compute the energy
EMT = %jp"”j2 + V(") of the new phase-space con guration.
Accept the proposal and se"*! = g"** with probability

min exp( (E™' E");1;

otherwise, reject and seg™* = q".

Proposition The probability measure

Vo= Sex V@) Yo

is invariant for the Markov Chaigq"), 1.

clusion
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Non-equilibrium dynamics

Let us consider a stochastic process such tKat 20 @nd

8 p
% dX¢ = P(Xt)r V(Xt)dt+ 2 1P(Xt) dW ¢
+r (Xt)d teXt;

g ees _2W_g
ir (Xy)

wherez : [0;T]! [0;1] isa xed deterministic evolution of the
reaction coordinate , such thatz(0) = 0 andz(T) = 1.
One can check that

(X¢) = z(t):
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Non-equilibrium dynamics

The dynamics can also be written using a Lagrange multiplier:

p
dX¢i=r V(Xt)dt+ 2 1th+r (Xt)d ts
(Xt) = z(t):
And we have
di=d M+d {+d P
o R
whered " = 2 17 5(Xy) dwWy,d f'=f(X)dt and

t - 2%
d &= T XOR dt.




Introduction Thermodynamic integration Non-equilibrium dynamics Adaptive biasing techniques Conclusion

Non-equilibrium dynamics

How to get equilibrium quantities (like the free energy) thrdug
non-equilibrium simulations ?

The idea is to associate to each trajectofy a weight
z t YA t

W)=  f(Xg)zqs)ds=  z%s)d L
0 0

and to compute free energy di erences by a Feynman-Kac formula
(Jarzynski identity):

A(z(t))  A(z(0)) = YIn(E(exd W(D)):
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Non-equilibrium dynamics
[TL, M. Rousset, G. Stoltz, 2007. 1 he Proof consists in introducing the
semi-group associated with the dynamics
Z t
uis;x)= E " (X{) exp f(X$¥)zqr) dr

S

R
and to show that$  u(s;:)exp(  V)d = 0 using the
divergence theorem on submanifolds. Then
Z z

ut;)exg Wv)d u(o;)exg  V)d

z(t) = z(0)

is equivalent to

Z
"exy V)d 20
Z Z

=exq AZ(O)NE " (Xi)exp tf(Xr)ZO(f) dr
0
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Non-equilibrium dynamics

A more general relation is the so-call€dooks identitywhich is a
more general formula relating the free energy to the work of
forward and backward switcheatocesses. Legf and g satisfy:
ab ( 2(0))» a8 (z(T)

p
dof = r V(g)dt+ 2 Idw{+r (g)d I;
(a) = z(t);

p
dgp=r V(g dt’+ 2 1dWg+r (gl)d X
(g% = z(T t9:
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Non-equilibrium dynamics

Then, for any 2 [0; 1], for any path functional ,

exp (AZ(T) A@z(O0) E (fa? <G s T)exp WP(T))

=E (folgo s Ve (1 )W(T)) ;

Rt
whereW (T L= of (gf)zYs) ds and
Wo(T)= [ f(@)zAT s)ds.
This identity can be used taombine forward and backward

processes to get better estimates of the free energy di eeersee
for examplebridge samplingnethodsisennett, Meng and wong, shirts]
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Non-equilibrium dynamics

The discretization of the constrained process is (as before)

(S1)

(S2)

p
Xn+1:Xn r V(Xn) t+ 2 1 Wn+ nr (XI'H‘l)!
with  such that (Xn+1) = z(th+1);

p—
Xn+1 Xn r V(Xn) t+ 2 1 Wn+ nr (Xn),
with  such that (Xn+1) = z(th+1):

To extract f from ,, one cane.g. compute:

f Z(th+ 1) Z(tn)+p 1 r )
Sl o — (X)W
" ir (Xn)? o W

= n
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Non-equilibrium dynamics

Another method to compute f, consists in:

P ——
XRo1=Xn 1 V(Xp) t 2 1 Wp+ Rr (XR0);
with R suchthat: (XR, )+ (Xne1) = (Xn):

f-1 R
We then have [, = 5+ .

n
The weight is then approximated by
(
Wo = 0
Wiig = Wy + 2nea) 2t) o

and a (biased) estimator of the free energy di erence

AZ(T)) A@O)is ‘I 1 Y exp wm,
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Non-equilibrium dynamics

In practice, the e ciency of this numerical method is not eldy
demonstrated. If the transition is too fast, the variance oéth
estimator is very large. If the transition is slow, we are baxk
thermodynamic integration...

Ideas: (i) combine forward and backward trajectories, (iilda
selection mechanism rousset, 6. swltz, 20059 OF (iii) use importance
sampling to help the transition (escorting}iuntanathan, sarzynski, 2008]

All this can be generalized to Langevin (phase-space) dyr&amic
with the additional di culty that generalized free energiegith
constraints on both positions and momenta are obtained.
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Adaptive biasing techniques
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Adaptive biasing techniques

Recall that the original gradient dynamics (GD)

dX¢=r V(Xt)dt+ 2 1th

is metastable. We want to use the information thagX) is a slow
variable, where : R" ! T to have better sampling.
We will use the free energy

z
A(z) = lin e vV  dx)

(2)

to bias the dynamics.
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Adaptive biasing techniques

The bottom line of adaptive methods is the followinigpr well
chosen the potentialV A s less rugged thal. Indeed, by
construction exg (V A ))= 1r.

Problem: A is unknown ! Idea: use a time dependent potential of
the form
Vi(x) = V(x) A (X))

whereA; is an approximation at timé of A, given the
con gurations visited so far.
Hopes:
build a dynamics which goes quickly to equilibrium,
compute free energy pro les.

Wang-Landau, ABF, metadynamics: Darve, Pohorille, Hénin, Chipot, Laio, Parrinello, Wang, L andau,...
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Adaptive biasing techniques

y coordinate
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A 2d example of a free energy biased trajectoeyiergetic barrier
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Adaptive biasing techniques
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The ABF method

How to updateA; ? Two methods depending on wethéf
(Adaptive Biasing Force) oA; (Adaptive Biasing Potential) is
approximated.

For the Adaptive Biasing ForcéABF) method, the idea is to use

the formula
Z
rv r

T Ldiv

jl’ j2 € v (x) z(dx)

€ v (x) z(dx)

Z

AYz) =

z
= fd (»=E (f(X)] X)=2):

The mean forceAYz) is the mean of with respect to ( 2)-
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The ABF method

Notice that actually, whateve# is,

Z
fe OV Ac)y ,(dx)
Ahz)= Z :

€ vV AC) (x) z(dx)

Thus, if the bias is xed:
dX¢= r (V Ay )(Xp)dt+ P 2 dwy;
we obtain the free energy at equilibrium:
Jim E(f(X0)j (Xo) = 2) = AYz):

Of course, we will adap#; as time goes...
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The ABF method
Thus, we would like to simulate:

( dXi=r1 (V A )(Xt)dt+p2 ldwy;

AYz) = E (f(X)j (X)= z)

but A is unknown...
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The ABF method

The ABF dynamics is then:

( dXe=r1 (V A )(Xt)dt+p2 1dw ;

Adz) = E(f(Xv)j (X1)= 2):

Conclusion
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The ABF method

The ABF dynamics is then:

( -
dXi=r (V At )(Xt)dt+ P 2 1th;

Adz) = E(f(Xv)j (X1)= 2):

The associated (nonlinear) Fokker-Planck equation writes
8

g@zdi\ér(v A ) +
3 A2 = ;0
’ (x) z(dx)

whereX ¢ (t;x) dx. A numerical illustration
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The ABF method

The ABF dynamics is then:

( -
dXi=r (V At )(Xt)dt+ P 2 1th;

Adz) = E(f(Xv)j (X1)= 2):

The associated (nonlinear) Fokker-Planck equation writes

§@=di\£r(v A ) +
f (x) z(dx)

2 A= 2 :

’ (x) z(dx)

whereX ¢ (t;x) dx. A numerical illustration

Questions: Doe#? converge toA°? What did we gain compared
to the original gradient dynamics ?
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Adaptive methods (1)

Two variants:
A may be approximated instead #f, using the formula

z
A(z) = YIn e Vjir jid

z

z

This leads toAdaptive Biasing Potentia{fABP) methods.

To avoid geometry problem, an extended con gurational space
(x;z) 2 R™ 1 is considered, together with theeta-potentiaf

VE(x;z)= V(X)) + k(z  (x))%

Choosing(x;z) 7! z as a reaction coordinate, the associated
free energ)Ak is close toA (in the limit k '1 , up to an additive constant).
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Adaptive methods (2)

Adaptive algorithms used in molecular dynamics fall into one of
these four possible combinations:

A? A
V | ABF Wang-Landau
vk metadynamics
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Longtime convergence and entropy (1)

Recall the original gradient dynamics:

p
dQi = r V(Qt)dt + 2 1th:
The associated (linear) Fokker-Planck equation writes:
@ =dv rv + '

whereQ; (t;q)dg.

The metastable behaviour @; is related to the multimodality of
, which can be quanti ed through theate of convergence of to
1 =2Z texg V).
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Longtime convergence and entropy (2)

Recall thatexponential convergence to equilibrium of the entropy is
equivalent to LSIR).

Exponential convergence to equilibrium: For any initial dtod,
E(t) E(Q)exp 2 1Iﬁt) where

E)= H( (t:)j 1)= In

Logarithmic Sobolev inequality (LSR]): For all probability density
function

HOi 1) el 1)

We thus measure metastability through LSI constants:
Metastability () smallR

What did we gain compared to the original gradient dynamics
(GD) ?
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Convergence of ABF (1)

A convergence resufii, m. rousset, G. stoltz, Nonlinearity 200 . Recall the
ABF Fokker-Planck equation:
8

<@ =dv r(v A ) +
R
AtO(Z) — d (x) z(dx) .

(x) 2(dx)
Suppose:

(H1) Strong mixing of the microscopic variabtethe conditional
probability measures ( ,) satisfy a LSI(),

(H2) Bounded coupling r ( ,f <1,

then

L1
kA A%. Cexg  Imin(; nt):
The rate of convergence is limited hy;

the rater of convergence of = o z(dX) to 1
the LSI constant (the real limitation).
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Convergence of ABF (2)

In summary:
Original gradient dynamics: ekp  'Rt) whereR is the LSI
constant for ;
ABF dynamics: exp ! t) where is the LSI constant for
the conditioned probability measures ;).

If is well chosen, R: the free energy can be computed very
e ciently. Once the free energy is known, there are classical
techniques to compute averages wrt(unbiasing, conditioning).

Two ingredients of the proof:

_ R
(1) The marginal (t;z) = (t;X) (x) z(dx) satis es a closed
PDE:
@7 = l@;zi onT,
and thus, converges towards; 1, with exponential speed
Cexg 4 2 ). (Here,r =4 ?).



Introduction Thermodynamic integration Non-equilibrium d ynamics Adaptive biasing techniques Conclusion

Convergence of ABF (3)

(2) The total entropy can be decomposed @Sunewai, F. oo, c. Villani,

M. Westdickenberg, Ann. IHP, 2009]
E=Ew+ En
where
The total entropy isk = H( j 1);
The macroscopic entropy By = H( | 1 );

The microscopic entropy is
VA

En= H (j(x)=2) 1(j x)=2) (2)dz

We already know thaEy goes to zero: it remains only to consider
Em...
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Convergence of ABF (4)

Other results based on this set of assumptions:

L, ora 2008; LS| for the cond. meas. ( 2)
+ LSI for the marginal—(dz) = (d2)
+ bdd coupling kr ( »fki: < 1) =) LSlfor .

[F. Legoll, TL, Nonlinearity, 2010] ~ E ective dynamics for (Q¢). Uniform
control in time:

. kr (Z)f K1 2
HILC QL (=z) € —————

H(L(Qo)i ):
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Discretization of ABF (1)

Discretization of adaptive methods can be done using two
(complementary) approaches:

Use trajectorial averages along a single path:
R
o f(Xs) ((Xs) 2)ds

E(f(X0)] Xi)=2)" v ((Xs) 2)ds

Use empirical means over many replicas (interacting particl
system):

E(f (Xo)j (X¢)=2)" Pmﬁ.‘;f(X{n;N) ((X{“;N) z):
No1r (XY 2)
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Discretization of ABF (2)

Interest of a discretization using an interacting partisigstem:
Convergence can be more easily analyzed !
Very e cient parallelization.

A selection mechanism may be added to duplicate innovative
particles and kill redundant particlesrt, m. rousset, G. stoltz, 3

Chem Phys 2007].

Better sampling of all reactive paths
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Multiple channel cases

In some practical cases (multi-channel case)nay be small... Are
these convergence results optimal ?

Numerically, it is observed. cnipot, 1L, k. Minoukaden, 20101 that in such a
situation, the ABF method actually converges rapidly, intmaidar
when using implementations using many replicas.

Test case Compact con gurations of a deca-alanine peptide.
appears that using many replica in parallel and empiricaumse
yields better sampling, even at xed CPU time.
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Multiple channel cases
Mean force and free energy pro les obtained with 4 indepeantdeins.

Top left: 1 walker, T=100 ns ; Top right: 32 walkers, T=100ns ;
Bottom: 32 walkers, T=3ns.
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Convergence of ABF in a bi-channel case

Theoretically, it can be showf, k. minoukaden, 2010~ that, in a
bi-channel situation, the ABF method actually convergeshvét
rate limited by the LSI constants of the conditional measure
each channef2d, (x;y)= x and = 1 for simplicity).

AXX) = E[@Vi, (X0)j (%)= XI;
l; 2 0;1gis a jump process changing value
with intensity ( (X)) dt:

8 _
% dXt =T (V|I A )(Xt)dt + P ZdBt,
3

9E T; = olype @and8x 2 TnEVo(X; )= Vi(X;)

The procesgX;; l;) has law with density (t;x;y;i) satisfying
@ =div(r (Vi A ) +r ) ( 1)
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Convergence of ABF in a bi-channel case

The non-linear Fokker-Planck equation writes:

8@=div(r(Vi A ) +r ) ( 1i);
L

@V dy
% Ax) = =57 :

dy

A convergence result in a bi-channel case&. minoukaden, 2010)
Suppose that in each channel, the conditional measuresfgati
LSI( ), and that the free energy is a good bias in each channel

Then, exponential convergence Af to A%at a rate close to can
be proven.
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Adaptive biasing techniques

Coming back to the originghaim: hqgw to use free energy to
compute canonical averages d = 'Z e V ?

Importance sampling:Z

7 re A ZAle v A)
'd = Z :
e A ZAle vV A )
Conditioning:
z z !
Z 'd (z) © A2) dz
' g = z ( zé

e gz
z
This requires the sampling of the conditional probability
measure ( ;) which can be done usingrojected Langevin
dynamicsm, M. Rousset, G. Stoltz, 2011]
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Adaptive biasing techniques: conclusions

Interesting features of the algorithnparallelizationand adaptivity.

Entropy approaches are powerful techniques to investigate
multimodal measures, metastable dynamics and analyze sagnpli
algorithms.

These techniques can be used whenever the sampling of a
multimodal measure is involved, for example for statistical ariee
in Bayesian statistic:. chopin, TL, 6. stoltz, 2011)
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Conclusion

To e ciently sample multimodal distributions, we have intdoiced:
methods based on constraints (Tl, non-equilibrium dynamics
importance sampling techniques (free energy biasing method

All these techniques (constraining / importance samplimy) not
apply when the drift is not a gradient (non reversible dynamics)
How to treat e ciently such cases (sampling of Non Equilibrium
Steady States) ?
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Conclusion
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